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Abstract

Background: Nearly 6,000 QTL have been reported for 588 different traits in pigs, more than in any other livestock species.
However, this effort has translated into only a few confirmed causative variants. A powerful strategy for revealing candidate
genes involves expression QTL (eQTL) mapping, where the mRNA abundance of a set of transcripts is used as the response
variable for a QTL scan.

Methodology/Principal Findings: We utilized a whole genome expression microarray and an F2 pig resource population to
conduct a global eQTL analysis in loin muscle tissue, and compared results to previously inferred phenotypic QTL (pQTL)
from the same experimental cross. We found 62 unique eQTL (FDR ,10%) and identified 3 gene networks enriched with
genes subject to genetic control involved in lipid metabolism, DNA replication, and cell cycle regulation. We observed
strong evidence of local regulation (40 out of 59 eQTL with known genomic position) and compared these eQTL to pQTL to
help identify potential candidate genes. Among the interesting associations, we found aldo-keto reductase 7A2 (AKR7A2) and
thioredoxin domain containing 12 (TXNDC12) eQTL that are part of a network associated with lipid metabolism and in turn
overlap with pQTL regions for marbling, % intramuscular fat (% fat) and loin muscle area on Sus scrofa (SSC) chromosome 6.
Additionally, we report 13 genomic regions with overlapping eQTL and pQTL involving 14 local eQTL.

Conclusions/Significance: Results of this analysis provide novel candidate genes for important complex pig phenotypes.
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Introduction

Integration of transcriptional profiling with genotyping data in

segregating populations allows linkage mapping of expression

quantitative trait loci (eQTL) [1,2]. Over the last decade, such

studies have been conducted in human cell lines and model

organisms [3] and in plant species [2,4], but in livestock species

global eQTL experiments are still sorely lacking. In particular,

genetical genomics studies in livestock have concentrated on

experimental design and modeling issues [5,6,7,8], on the analysis

of selected transcripts [9] or on the comparative transcriptional

profiling of genetically diverging lines [6,10], and only recently has

a global analysis been published for pigs [11].

The implementation of eQTL mapping has the potential to

uncover gene networks and the genetic control of gene activity, as

well as shed light on the genetic architecture of phenotypic

variation, through integration with phenotypic QTL (pQTL)

results [12].

To date, 5,732 pig QTL have been reported to the PigQTLdb

database (http://www.animalgenome.org/QTLdb/) [13] for a total

of 588 traits, but a very small proportion of these have materialized

into causative variation associated with known genes [14].

The use of eQTL analysis has been demonstrated as a

promising tool for narrowing the gap between detected pQTL

regions and confirmed causative variants for the pig species [14].

Additionally, eQTL mapping can be used to reconstruct

regulatory networks involving endpoint traits and expression

traits, resulting in information useful for selection decisions [12].

For example, previous work has detected gene expression traits

associated with pQTL for drip loss, an important pork quality trait

[9,15]. However, results were derived from a series of pre-selected

transcripts based on phenotypic correlations with a trait of interest.

This group has recently performed an eQTL analysis for

longissimus dorsi transcripts and their association with meat quality

traits [11], and they have identified over 9,000 eQTL at a

suggestive significance threshold of LOD .2.
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In this paper, we present a genome-wide linkage analysis of

global gene expression using an F2 intercross of two pig breeds

(Duroc and Pietrain). We used a sub-sample [7] from a large

resource population that we created for pQTL mapping [16,17].

We tested the expression of almost 20,000 transcripts on a recently

developed microarray for linkage across the pig genome.

Furthermore, we compared existing pQTL regions with local

eQTL to identify candidate genes for traits of interest. We also

performed gene set analysis to uncover regulatory networks subject

to genetic control.

Results

Physical location of oligonucleotides
To evaluate gene expression we used the swine protein-

annotated oligonucleotide microarray (Pigoligoarray) [18]. This

microarray includes 20,400 unique 70-mer oligonucleotides

designed from contigs developed by comparison of expressed

sequence tags to phylogenetically defined vertebrate proteins. Our

previous publication [18] included comparative annotation for this

array, but determining the physical positions of the oligonucleo-

tides in the pig genome was not possible at that time.

Determination of local and distant regulatory variation requires

knowledge of the physical positions of probes on the expression

profiling platform. We aligned 20,400 oligonucleotides from the

Pigoligoarray [18] with the pig genome (Build 9; www.ensembl.

org). The array included 19,980 non-control probes along with

negative and mismatch probes, and we determined the positions

for 13,611 oligonucleotides. Therefore, approximately one third of

the probes could not be aligned to the current pig genome

assembly. A list of these oligonucleotides and their positions is

available in the Supporting Information (Table S1). The number

of oligonucleotides per chromosome ranged between 286 for Sus

scrofa (SSC) chromosome 16 to 1,399 for SSC1 (Figure 1). SSC12

presented the highest density of oligonucleotides per megabase,

whereas SSC11, 16 and X had the lowest densities. We compared

the physical distribution of oligonucleotides with the distribution of

automatically annotated genes along the pig genome (Figure 1).

Coverage was uniform across chromosomes as shown in Figure 1

where the relative number of genes and oligonucleotides for each

chromosome was similar.

Significance tests and putative eQTL
The datasets for analysis included gene expression data

(normalized log-intensity) for each transcript determined from

longissimus dorsi muscle (loin muscle) tissue for each F2 animal, and

genotype and phenotype information for a three generation pig

pedigree (F0, F1 and F2 individuals). Genotype information was

used to derive breed of origin probabilities across the genome of F2

animals at each marker and at 11 equidistant inter-marker

positions yielding 1,279 putative QTL positions. We subsequently

fit linear mixed models to each expression trait (20,400) and

putative QTL position. A nominal p-value was used to test the null

hypothesis of no eQTL at each position and expression trait

combination. Testing for 1,279 putative QTL positions in almost

20,000 expression traits produced over 26 million p-values that

required multiple test correction. Inspection of the quantile-

quantile plots of p-values (Figure 2) revealed an excess of smaller p-

values compared to what was expected under the null hypothesis.

Using a p-value cutoff of P,0.0001, a total of 397 putative eQTL

peaks were inferred and 253 of those were associated with

oligonucleotides with known physical position. Notably, local

(putatively cis-acting) eQTL had in general smaller p-values

compared to trans-acting eQTL. The global pattern is represented

in Figure 3.

For individual gene analyses, a more stringent significance

threshold (P,0.0000035, FDR,10%) was used. This produced a

total of 978 significant tests, corresponding to 62 unique linkage

peaks comprising 59 genes with comparative human gene

Figure 1. Histogram of oligonucleotide and gene densities across chromosomes. Green bars pointing up represent the distribution of
oligonucleotides on the microarray. Blue bars pointing down represent the distribution of genes in the pig genome assembly (Build 9, www.ensembl.
org). The bar width is proportional to chromosome length in base pairs, the height of the bar is proportional to the feature density, and the area of
the bar is proportional to the feature count. Counts next to each bar represent oligonucleotide (green bars) and gene counts (blue bars).
doi:10.1371/journal.pone.0016766.g001
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annotation (Tables 1 and 2). The positional analysis of these

oligonucleotides indicated that 40 of these 59 eQTL were located

on the same chromosome as the physical location of the

oligonucleotide (local eQTL). Very limited evidence of hotspots

of trans-regulation was found on only SSC13 and SSC15 after

correction for multiple tests (Figure 4). At a nominal p-value

threshold of P,0.0001, we would expect 20 false positives at any

putative QTL position. The hotspot on SSC13 includes 27 eQTL

and the hotspot on SSC15 includes 23 significant eQTL. We

consider that these putative hotspots are actually not significant

once we correct for multiple tests; a confirmation would require a

computationally prohibitive permutation analysis [19] and conse-

quently we do not pursue further study of trans regulation in this

paper.

Gene networks subject to genetic control
The p-values and fold-changes (relative expression of Duroc to

Pietrain allele of origin) for significant eQTL were input into the

Ingenuity Pathways Analysis software (Ingenuity Systems, Red-

wood City, CA, USA) for further data mining of pathways subject

to genetic control. Three gene networks were enriched for

differentially expressed genes between alleles of alternative breed

origin (Table 3). This suggests that the corresponding eQTL genes

influence loin muscle tissue accretion via common metabolic

pathways. One network associated with lipid metabolism includes

two members of the cytochrome P450 4F family of genes which

are involved in the metabolism of long chain fatty acids, and these

two genes were overexpressed in animals carrying the Duroc

allele. This network also contains several genes including aldo-keto

reductase 7A2 (AKR7A2), thioredoxin domain containing 12 (TXNDC12)

and translocase of inner micochondrial membrane 44 (TIMM44) that have

functions related to oxidative stress and which were overexpressed

in animals carrying the Pietrain allele. A second network

associated with the cell cycle and lipid metabolism includes three

members of the glutathione S-transferase mu family as well as

glutathione peroxidase 8 (GPX8), again showing an increase in

expression of genes with functions related to oxidative stress in

animals with the Pietrain allele. This network also includes two

genes overexpressed in animals with the Duroc allele that function

as transcriptional repressors (zinc finger protein 24 (ZNF24) and

enhancer of rudimentary homolog (ERH)). A third network associated

with DNA replication, recombination and repair, the cell cycle,

and cell death includes several genes that function in cell growth or

the cell cycle which were all overexpressed in animals carrying the

Pietrain allele (cyclin-dependent kinase 2 (CDK2), methionyl aminopeptidase

1 (METAP1), suppressor of fused homolog (SUFU), synovial sarcoma X

breakpoint 2 interacting protein (SSX2IP), and Werner syndrome RecQ

helicase-like (WRN)). These results support these genes and networks

as promising candidates for sources of variation in growth, carcass

merit and meat quality observed in this population.

Co-localization analysis
Analysis for pQTL was performed for over 60 growth, carcass

merit and meat quality traits measured on the Michigan State

University Duroc x Pietrain F2 resource population [16,17]. Many

of these traits were measured on (or were directly related to) the

same tissue where mRNA abundance was measured (i.e., loin

muscle). We subsequently performed a co-localization analysis

between pQTL and eQTL, and significant pQTL traits observed

in this analysis were related to muscle size and meat quality. Co-

localization analysis of pQTL and eQTL traits revealed 62

overlapped eQTL/pQTL regions, significantly more than expect-

ed by chance. We grouped these into 13 common genomic regions

(Table 4) on seven chromosomes. Thus, these loci are candidate

genes for the pQTL. Four pQTL regions linked to muscle size

traits overlap local eQTL for DYNLT1 on chromosome 1,

TXNDC12 on SSC6, MRLP14 on SSC7 and WRN on SSC15.

Traits related to meat color have pQTL overlapping eQTL on

SSC15 (OCA2) and SSC8 (LIMCH1, METAP1). Expression QTL

regions on SSC6 (AKR7A2) and SSC12 (PPNO, COIL) overlap

pQTL for intramuscular fat traits. Moisture content had three

pQTL regions coincident with local eQTL (PPNO, COIL on

SSC12, ETV2 on SSC6 and LIMCH1 on SSC8). Protein content

had two pQTL regions associated with eQTL, one on SSC6 that

also coincided with pQTL for muscle size (TXNDC12) and another

on SSC15 (CDK2). A pQTL region for meat tenderness

overlapped the eQTL for WRN (SSC15) that also coincided with

pQTL for muscle size. Ultimate meat temperature had a pQTL

coincident with an eQTL for TMEM69 on SSC6. Finally, a single

eQTL region for loin muscle off-flavor on SSC2 overlapped a local

eQTL for RFXANK.

Discussion

We performed a genome-wide linkage analysis of global gene

expression in a segregating swine population. Previous studies of

eQTL in pigs used a global expression array [9], but the analysis

itself was restricted to a set of pre-selected genes based on

correlations with a trait of interest [9,15]. In contrast, we did not

pre-screen probes on the microarray for differential expression or

correlations, but instead performed a QTL scan for transcript

abundances derived from each probe. In this way, we did not bias

the eQTL discovery towards genes correlated with a particular

trait at the expense of introducing multiple testing that when

accounted for may result in less power. Recently, Ponsuksili et al.

[11] performed QTL analysis of expression traits in longissimus dorsi

muscle of a Duroc x Pietrain cross. They used a different

significance criteria than we used in our study leading to over

9,000 putative eQTL. Among their findings, they identified local

Figure 2. Quantile-quantile plot of p-values. Each point
represents the p-value (log-scale) from a test. Expected values are
plotted on the horizontal axis and observed values are plotted on the
vertical axis. The expected distribution under the null hypothesis is
represented by the diagonal red line. An excess of small p-values is
observed compared to the null model represented by the red line.
doi:10.1371/journal.pone.0016766.g002
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eQTL for OCA2 and AKR7A2 in similar chromosomal positions to

local eQTL for these transcripts that we identified in our study.

Deriving eQTL profiles for each of 20,000 probes is a

computationally prohibitive task using publicly available software

for QTL mapping in crosses of outbred lines [20]. Consequently,

we programmed a computationally tractable implementation of

the line cross model [21], that can accommodate random and

fixed effects as required by two-color microarray data [22]. All

programs are available upon request from the authors.

The expression platform used was the Pigoligoarray [18], which

allowed us to infer local (on the same chromosome) or distant

eQTL for over 13,000 probes. Comparatively, an alternative

expression platform from the Affymetrix company currently has

less than 9,000 probesets mapped to the pig genome (www.

ensembl.org; queried April 2010 using http://www.biomart.org/).

The physical position of oligonucleotides on the Pigoligoarray was

generated as part of this work and is made available as additional

annotation (Table S1).

To set a threshold for declaring statistical significance, we used a

stringent p-value cutoff of P,3.561026. Due to the many

simultaneous tests performed, this resulted in a FDR of 10%.

Even with this significance level we found 62 eQTL, of which 40

had linkage peaks on the same chromosome where the

oligonucleotide was physically located.

Figure 3. Global plot of physical position of oligonucleotide probe versus linkage position of eQTL across the pig genome. Points
along the gray curve represent local eQTL (most likely cis-acting), while points off the line represent trans-acting eQTL. Colors represent increasing
significance from yellow to green to blue to indigo.
doi:10.1371/journal.pone.0016766.g003
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This analysis has revealed new gene targets for further

validation as potential genes controlling variation in pig pQTL

traits. Among the local (potentially cis-acting) eQTL genes, many

have limited functional information reported for any species.

However, for eQTL genes that have been studied, although they

would not have been obvious functional candidates for the pQTL

trait phenotypes, consideration of their known functions can reveal

potentially new biological roles for these genes in pig skeletal

muscle.

The genes encoding aldo-keto reductase 7A2 (AKR7A2) and

thioredoxin domain containing 12 (TXNDC12) both have roles in

oxidative stress and cellular detoxification. Our results revealed

a significant AKR7A2 eQTL coincident with pQTL for %

intramuscular fat and marbling traits on SSC6. While AKR7A2

has been shown to be ubiquitously expressed in numerous human

tissues including skeletal muscle [23], no reports have examined

AKR7A2 in skeletal muscle under varying physiological states.

However, Picklo et al. [24] reported AKR7A2 expression to be

elevated in cerebral cortexes of Alzheimer’s disease patients, a

disease associated with elevated aldehyde products. TXNDC12 has

also been shown to be expressed in many human tissues including

skeletal muscle [25]. While no studies have considered the function

of TXNDC12 in skeletal muscle, its role as a thiol-disulfide

oxidoreductase in other cell types has been demonstrated

[26,27,28]. Our results indicate SSC6 pQTL for protein content,

loin muscle area (LMA) and loin muscle chop weight coincident

with an eQTL for TXNDC12.

An eQTL for dynein light chain Tctex-type 1 (DYNLT1) coincident

with a pQTL for LMA was observed on SSC1. DYNLT1 is a

component of the dynein complex which is part of the

Table 1. Details of eQTL detected on Chromosomes 1–7.

Linkage peak Annotation Physical Position

SSC cM Flanking markers h2 Overa p-value OligoID HGNC SSC Base pair Methodb Local

1 21.2 SW1514 SW1515 4.7% Du 7.00E-07 19030:2021_CL1Contig1:f DYNLT1 1 9.6M BLAT YES

1 70.6 S0008 S0331 1.5% Du 1.30E-07 35366:45360_37797494:f UNKNW

2 69.3 SW240 S0170 10.9% Du 2.61E-07 11910:1243_CL4Contig1:f CKMT2 2 79.1M BLAT YES

2 70.5 S0170 S0170 8.9% Du 2.45E-08 12040:12202_CL2Contig7:r CYP4F2 2 60.4M BLAT YES

2 72.6 S0170 SW1026 5.6% Pie 6.10E-08 12039:12202_CL2Contig2:r CYP4F3 2 60.4M BLAT YES

2 88.9 SW1026 S0370 5.7% Du 1.08E-07 12429:2139_CL1Contig1:r RFXANK 2 61.7M–63.6M Comp YES

3 158.4 SW2408 SW2408 9.2% Du 6.62E-07 NM_213966.1 LCTHIO 3 105.2M BLAT YES

3 182.1 SW1327 SW2532 5.1% Pie 9.99E-07 13665:2306_9018750:f KCNS3 3 111.3M BLAT YES

4 76.4 SW2454 SW2454 4.0% Du 1.27E-06 9659:11373_CL1Contig2:f S100A1 4 83.3M–105.2M Comp YES

4 92.6 S0107 S0214 8.9% Pie 2.90E-08 2602:3589_CL1Contig1:f ZFAND1 4 0.9M–83.3M Comp YES

4 100.7 S0107 S0214 10.4% Pie 1.26E-08 20010:19865_CL1Contig1:f DUSP12 4 92.5M BLAT YES

4 131.1 S0214 S0097 3.1% Du 2.60E-06 31129:32045_49416036:f GSTM5 13 112.8M BLAT NO

4 131.1 S0214 S0097 8.0% Du 1.30E-06 30881:32045_CL1Contig1:r GSTM4 13 113.0M Comp NO

4 136.1 S0214 S0097 11.9% Pie 2.72E-06 33801:32045_59789022:f GSTM1 4 115M BLAT YES

4 136.1 S0214 S0097 12.8% Pie 2.95E-07 30820:32045_34160672:f GSTM1 13 113.0M Comp NO

4 141.1 S0214 S0097 7.9% Pie 1.13E-10 33036:32045_CL3Contig1:r GSTM4 13 113.0M Comp NO

5 129.2 SW2 S0005 8.3% Du 2.69E-07 12773:4749_CL1Contig1:f ZBTB5 1 249.6M BLAT NO

5 132.1 SW2 S0005 16.9% Du 2.26E-06 10816:45360_CL475Contig1:r CLEC1A 5 58.5M BLAT YES

6 20.4 S0099 SW2406 4.1% Du 5.55E-07 19460:24177_CL1Contig1:f Gcshd 14 116.6M BLAT NO

6 118.9 S0087 S0220 13.4% Du 6.83E-07 4057:25577_CL11Contig1:r ETV2 6 30.3M BLAT YES

6 142.1 SW122 SW1881 6.1% Pie 7.59E-11 5683:11259_CL1Contig1:r AKR7A2 6 53.3M BLAT YES

6 149.0 SW122 SW1881 9.3% Du 2.85E-10 31282:45360_CL420Contig1:f ZNF24 4 115.0M Comp NO

6 155.8 SW122 SW1881 5.8% Du 7.17E-09 9232:7693_25014272:r SSX2IP 6 89.1M BLAT YES

6 194.4 SW1881 SW322 4.1% Du 1.53E-06 9344:7136_CL1Contig1:r TXNDC12 6 114.0M BLAT YES

6 220.8 SW322 SW2419 18.5% Pie 2.74E-11 15007:3644_CL1Contig1:r TMEM69 6 88.8M–122.2M Comp YES

7 55.4 S0064 SW1369 8.2% Du 3.76E-08 34740:1138_CL1Contig12:mm2 HLA-A

7 90.4 SW1369 SW859 13.6% Pie 6.10E-07 32929:10370_CL1Contig2:r MRPL14 7 45.6M BLAT YES

7 193.8 S0115 SWR773 7.8% Pie 8.89E-08 688:4338_CL1Contig2:r ERH 7 101.5M BLAT YES

7 241.5 SW764 SW764 6.7% Du 3.54E-11 17750:32199_CL8Contig1:f RAP2C

7 241.5 SW764 SW764 1.8% Du 9.90E-07 17698:46145_21549326:f CDH12 16 9.4M BLAT NO

aBreed of origin of over-expressed allele: Duroc (Du) or Pietrain (Pie).
bMethod used to determine oligonucleotide physical position: BLAST-Like Alignment Tool alignment of 70-mer (BLAT) or Comparative mapping of putative human

gene onto pig genome sequence (Comp).
cLocal QTL is called when oligo is on same chromosome as eQTL peak.
dComparative mouse annotation available for this oligo; mouse genome symbol indicated instead of HGNC.
doi:10.1371/journal.pone.0016766.t001
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microtubule-based motile process within the cellular cytoskeleton

[29]. Microtubules are not present in appreciable amounts in the

cytoskeleton of skeletal muscle [30]. DYNLT1 is most highly

expressed in human immune system cells and testis, and is

expressed at relatively lower levels in skeletal muscle (BioGPS;

http://biogps.gnf.org/), although expression was detected in all

tissues examined by Watanabe et al. [31] using northern blot

analysis, with skeletal muscle exhibiting relatively high abundance

compared to other tissues. Reports regarding the function of

DYNLT1 have focused on the role of this gene in mouse neuron

development [32] and have included observations of direct

interaction of this protein with specific neuronal Ca2+ channels

in rats [33]. Further research will be needed to determine if this

gene has a similar function in pig skeletal muscle tissue.

Werner syndrome protein (WRN) is a member of a family of RecQ

helicases that are involved in maintenance of genome stability.

WRN has roles in DNA replication and repair, transcription, and

telomere maintenance, and defects in WRN cause Werner

syndrome, an autosomal recessive disorder associated with

premature aging [34]. Our results identified a WRN eQTL

coincident with pQTL for LMA and tenderness on SSC15. While

no studies have been reported regarding the role of WRN in

skeletal muscle, the functions of this protein in cell growth and

transcription support the potential effects on muscle size and meat

quality phenotypes observed in this study and indicate that further

study is warranted.

An eQTL for cyclin-dependent kinase 2 (CDK2) coincident with a

pQTL for protein content was observed on SSC15. CDK2 is

involved in control of the cell cycle and also has cell cycle

independent functions including DNA damage repair [35]. In

skeletal muscle, CDK2 has been shown to be a part of the

mechanism that tightly controls MyoD levels and subsequent

myoblast cell cycle progression or exit into differentiation [36]. In

addition, Thomas et al. (2000) demonstrated with in vitro studies

that myostatin decreased levels and activity of CDK2 in myoblasts

and also altered expression of other cell cycle components which

Table 3. Description of three networks enriched for eQTL genes.

Associated terms Gene Symbolsa

Lipid Metabolism, Small Molecule Biochemistry,
Post-Translational Modification

ACTN1, AKR7A2, CASP2, CASP4, CASP7, CCNE1, CTSD, CYP4F2, CYP4F3, DNAJA3,
DUSP12, DYNLL2, DYNLT1, HNF4A, LSM3, MRPS14, PAWR, PNPO, PSMA1, RAP2C, RNF167,
S100A1, SART3, SLC2A4, SOCS3, TIMM44, TXNDC12, UBE2M, ZFYVE20

Cell Cycle, Drug Metabolism, Lipid Metabolism AIFM2, BYSL, CASP7, CBL, CCDC130, CCNE1, CEP70, COIL, ERH, FOLH1, GCSH,
GPX8, GSTM1, GSTM4, GSTM5, IGSF21, LRBA, MAD1L1, MYO5B, MYO6, NID1,
PINK1, PSME3, PTPRK, TGFB1, TP53, TSPYL2, ZBTB5, ZBTB16, ZNF24

DNA Replication, Recombination, and Repair,
Cell Cycle, Cell Death

BCL2L12, CASP3, CASP7, CDK2, CENPC1, CKMT2, CTNNB1, CXCL12, DFFB, E2F4, EXOSC6,
GAS2, HSH2D, KCNS3, LIMCH1, METAP1, MRPL14, MYC, OAS2, RFXANK, RNF17,
SSX2IP, SUFU, WRN

aGene symbols in bold denote genes with significant eQTL and overexpressed in animals carrying the Pietrain allele. Gene symbols that are underlined denote genes
with significant eQTL and overexpressed in animals carrying the Duroc allele. Gene symbols in black denote genes in the network with no eQTL detected. Networks
and associated terms were determined using the Igenuity Pathways Analysis software (Ingenuity Systems, Redwood City, CA, USA).

doi:10.1371/journal.pone.0016766.t003

Figure 4. Number of putative eQTL per genomic position (p,0.0001). Vertical dotted lines represent the chromosome limits in the linkage
map. The horizontal line indicates the expected number of significant eQTL under the null hypothesis (of no linkage). The number of putative eQTL
rises above the threshold in only two hotspots. This indicates that despite finding strong evidence of eQTL, our study does not show evidence of the
presence of hotspots.
doi:10.1371/journal.pone.0016766.g004
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led to arrest of myoblasts in the G(1)-phase of the cell cycle. While

no studies have considered the function of CDK2 in postnatal

muscle satellite cells or mature myofibers, further study is needed

to evaluate the potential role of this gene in pig skeletal muscle

growth and to confirm the association of this gene with skeletal

muscle protein content.

The oculocutaneous albinism II (OCA2) gene has been studied

extensively for its role in the mammalian pigmentary system [37].

Allelic variants of OCA2 define human blue-brown eye color;

OCA2 also functions in melanin synthesis within melanocytes, and

aberrant OCA2 alleles cause type 2 oculocutaneous albinism in

humans. Our results identified a significant OCA2 eQTL

coincident with a pQTL for both objective and subjective meat

color phenotypes on SSC15. No previous studies have reported an

association of this gene with muscle color. Additional research will

be needed to confirm this association and to determine if the

cellular mechanism involves tyrosine transport similar to the

mechanism in melanocytes.

This whole genome linkage analysis of global gene expression

provides insight into genes and gene networks subject to genetic

control in a segregating pig population. Individual gene analyses

allowed identification of candidate genes in previously mapped

pQTL regions.

Methods

Animals and genotyping
The Michigan State University (MSU) pig resource population

is an F2 cross originated from 4 F0 Duroc sires and 16 F0 Pietrain

dams. The full pedigree includes a single large family of 20 F0, 56

F1 and 954 F2 animals. We have previously published details of

this cross [17]. Briefly, from the F1 progeny, 50 females and 6

males were retained to produce the F2 generation. Pigs were

weaned at 16 to 25 (mean 19.8) days of age and moved into

nursery pens. All diets fed were MSU standard swine farm diets

that met or exceeded National Research Council [38] require-

ments for all nutrients at each production stage. At 10 weeks of

age, F2 pigs were moved into finishing facilities at the MSU Swine

Teaching and Research Farm. Pigs had ad libitum access to feed

and water.

Of the 954 total F2 animals for which growth, carcass and meat

quality phenotypes were recorded, 510 F2 pigs along with the F0

and F1 pigs were genotyped for 124 microsatellite markers (3–9

makers per chromosome) in an initial genome scan [16,17]. These

510 animals were sampled from 61 litters across all farrowing

groups and represented all F1 sires with at least 100 grand progeny

from each F0 sire. By using the three generation pedigree, the

breed of origin probability for each putative QTL position can be

obtained if the QTL is assumed fixed for alternative alleles in each

breed.

Ethics statement
Experimental procedures were approved by the All University

Committee on Animal Use and Care at Michigan State University

(AUF# 09/03-114-00).

Phenotype collection
Details of growth, carcass and meat quality phenotypes

collected on the MSU Duroc x Pietrain resource population have

been reported previously [16,17]. Briefly, live animal traits

collected on the F2 pigs included body weight at birth, weaning,

and 6, 10, 13, 16, 19 and 22 weeks of age. In addition, B-mode

ultrasound (Pie Medical 200SLC, Classic Medical Supply Inc.,

Tequesta, FL) estimates of 10th-rib backfat (BF10), last-rib backfat

(LRF), and loin muscle area (LMA) were recorded at 10, 13, 16, 19

and 22 weeks of age. The average daily gain from 10 to 22 weeks

of age and the number of days to reach 105 kg were calculated

from these body weight measures [17]. At each of these

timepoints, measures of fat-free total lean (FFTOLN), total body

fat tissue (TOFAT), empty body protein (EBPRO), and empty

body lipid (EBLIPID) were calculated [17]. For slaughter, pigs

were transported to one of two abattoirs. A total of 176 pigs were

slaughtered at the federally inspected MSU Meat Laboratory (East

Lansing, MI) to facilitate tissue collection for the current study,

and the remaining pigs were slaughtered in a federally inspected

plant in western Michigan (DeVries Meats, Coopersville, MI).

Slaughter age was 165.869.2 d (11269 kg live body weight).

Carcass traits collected included hot carcass weight (HCW), and

loin muscle pH and temperature at 45 min and 24 hour

Table 4. Overlapping eQTL and pQTL regions.

SSC cMa eQTL (gene symbols) pQTL p-valueb

1 8–26 DYNLT1 Loin muscle area 0.006

2 84–100 RFXANK Meat off -flavor 0.004

6 106–124 ETV2 % Moisture 0.005

6 137–147 AKR7A2 Marbling, % Fat ,0.0001

6 180–199 TXNDC12 % Protein, Loin muscle area, Loin chop weight 0.006

6 216–226 TMEM69 Ultimate meat temperature ,0.0001

7 85–101 MRPL14 Carcass length, Loin muscle area 0.003

8 83–111 LIMCH1 b*, % Moisture 0.006

8 153–168 METAP1 L* 0.003

12 46–74 PNPO, COIL % Fat, % Moisture 0.004

15 45–64 WRN Loin muscle area, Tenderness 0.009

15 55–74 OCA2 L*, a*, Meat color 0.002

15 72–85 CDK2 % Protein 0.007

aTotal length of the overlapped region in cM.
bLargest overlap p-value between pQTL and eQTL traits.
doi:10.1371/journal.pone.0016766.t004
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postmortem. Dressing percentage was calculated by dividing

HCW by live slaughter weight. After overnight chilling, midline

first-rib backfat, last-rib backfat, last-lumbar backfat, number of

ribs, and carcass length measurements were recorded [16].

Weights of primal cuts of ham, closely trimmed loin, picnic

shoulder, Boston shoulder, belly and spareribs were also recorded

[16]. A section of loin from the 10th rib to the last rib of the left

side of the carcass was further evaluated for meat quality traits at

MSU. Traits included scores for subjective color, marbling and

firmness, objective color scores of CIE L* (lightness), a* (redness)

and b* (yellowness) using a Minolta CR-310 colorimeter, drip loss,

cook yield, and Warner Bratzler shear force [16]. Samples were

also evaluated for proximate composition (moisture, fat and

protein) and a trained sensory panel evaluated samples for

juiciness, muscle fiber and overall tenderness, connective tissue,

and off-flavor [16].

Gene expression
We utilized a recently developed pig whole-genome 70-mer

oligonucleotide microarray for this study. The swine protein-

annotated oligonucleotide microarray, or Pigoligoarray, was

evaluated by our group for use in pig gene expression studies

and we reported on the utility of this microarray, as well as

information regarding hybridization and analysis methods [18].

The Pigoligoarray includes 20,400 oligonucleotides. Probes were

designed from contigs by comparison of pig expressed sequence

tags (ESTs) to phyogenetically defined vertebrate proteins and

were annotated using descriptions of homologous proteins (http://

www.pigoligoarray.org). The microarray includes 60 negative

control probes and six mismatch hybridization stringency control

probes designed against each of 60 contigs with the highest EST

count in the database. Further annotation of Pigoligoarray probes

to include HUGO Gene Nomenclature Committee (HGNC)

identities was reported by our group [18].

Longissimus dorsi (loin) muscle tissue was sampled from 176 F2

pigs slaughtered in the MSU Meat Laboratory. The 176 F2 pigs

were selected from 44 litters (4 per litter). Within each litter, pigs

were selected for transcriptional profiling using a selective

phenotyping strategy which consisted of choosing the two extreme

males and females within each litter for a trait of interest. For 24

litters loin muscle area was the selection criteria while for the other

20 litters, the extreme pigs were selected based on backfat depth.

This selective profiling strategy has been previously described by

our group [7]. Tissue samples were flash frozen in liquid nitrogen

and stored at – 80uC. Total RNA from 1.0 g of each tissue sample

was extracted using TRIzol reagent (Invitrogen Corp.) according

to the manufacturer’s instructions. RNA concentration and quality

were determined with an RNA 6000 Pico LabChipH kit using an

Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.). Samples

were paired for microarray hybridizations within sex and within

litter such that extreme phenotype males and extreme phenotype

females within a litter were paired on microarrays. In addition,

dyes were balanced so that, within a litter, samples of high

phenotype males and low phenotype females had the same dye,

and each dye was used equally for each phenotype group across

the experiment.

Sample preparation, microarray hybridization and processing

were as previously described by our group [18]. Briefly, for each

sample, 1 mg of total RNA was reverse transcribed with a T7

oligo(dT) primer using the Amino Allyl MessageAmpTM II aRNA

Amplification Kit (Ambion Inc.) according to the manufacturer’s

instructions. After aRNA purification, 10 mg of aRNAs were

labeled with N-hydroxysuccinate ester Cy3 or Cy5 dyes (GE

Healthcare). The labeled aRNAs (2.5 mg) were purified, combined

with Slide Hyb #1 solution (Ambion Inc.) and denatured at 70uC.

Hybridizations were performed in sealed cassettes (ArrayIt,

TeleChem International, Inc.) for 18 h at a humid 54uC.

Following hybridization, slides were washed and rinsed as we

have reported previously. Fluorescent images were detected by an

Axon GenePixH 4000B scanner (Molecular Devices), and

fluorescence intensity data were collected using GenePixH Pro 6

software (Molecular Devices) after spot alignment. The gene

expression data were deposited in the NCBI Gene Expression

Omnibus database (http://www.ncbi.nlm.nih.gov/geo/) [acces-

sion number GSE23351]. Median intensities were extracted and

normalized using a within-print-tip lowess location normalization

and an overall scale normalization [39] with no background

correction. This normalization removed intensity dependent biases

from each printing block in each slide. The resulting normalized

data were expressed in the log2 scale.

Statistical analysis
The following linear mixed model was fit to normalized log-

intensity data on an oligonucleotide-by-oligonucleotide basis:

Y~mzDyezArrayzSexzLitterzgrowth groupzcaaze

where Y is the normalized log-intensity, Dye, Sex and growth_group

are fixed effects accounting for systematic variation, and Array and

Litter are random effects. Growth group had four categories

corresponding to the extremes for selection criteria: 1) High loin

muscle area, 2) low loin muscle area, 3) high back fat and 4) low

back fat. The additive eQTL coefficient ca was derived assuming

that the parental breeds were fixed for alternative eQTL alleles

[21]. A t-test for the additive eQTL effect a was performed at each

of the 1,279 putative eQTL positions (at every marker and 11

inter-marker positions) for each expression trait and the p-values

were corrected for multiple testing (q-value) across all traits and

positions. A preliminary analysis considered P,0.0001

(FDR,56%) as significance threshold. Candidate eQTL analysis

on individual genes used P,0.0000035 (FDR,10%).

Physical localization of oligonucleotides relative to
localization of eQTL

All oligonucleotides were aligned against the pig genome (Build

9; www.ensembl.org) using the BLAT [40] sequence alignment

tool. Up to 3 mismatches were allowed and multiple alignments of

the same oligonucleotide sequence were discarded as they

indicated ambiguous positions due to problems with the genome

assembly or with the oligonucleotide design. By comparing the

position of each significant linkage peak to the physical position of

the corresponding oligonucleotide, local and distant eQTL were

declared. We declared local eQTL as those where the linkage peak

and the oligonucleotide in question were on the same chromosome

and distant eQTL as those where the eQTL and the oligonucle-

otide were on different chromosomes. All distant eQTL are trans-

acting, whereas only a proportion of the local eQTL are cis-acting.

While the local eQTL are putatively cis-acting, it is not possible to

make definitive determinations from the current map resolution

with the available genomic sequence and marker density.

Gene networks subject to genetic control
Oligonucleotide annotation was obtained from our previous

work [18]. The corresponding HGNC name and its associated

QTL p-value and fold-change (relative expression of Duroc and

Pietrain allele of origin) were input into the Ingenuity Pathways
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Analysis software (Ingenuity Systems, Redwood City, CA, USA) to

test for enrichment of functional categories.

Co-localization of eQTL and pQTL
A set of 67 phenotypic traits has been previously analyzed for

QTL (pQTL) in this cross [16,17]. For the current study, we

repeated the pQTL analysis to account for a different mapping

function and to compute multiple test p-value corrections (FDR).

Standard QTL analysis approaches were applied as we have

previously reported [16,17]. Given a particular eQTL region,

delimited by a 5 cM interval to each side of the peak, all

overlapping pQTL regions were selected [4]. The probability of

two intervals of this length (10 cM) overlapping in a 3,000 cM

long genome (the length of our linkage map) is P~

1{ 1{
10

3000

� �2

~0:0067. We computed a p-value for observing

(by chance) an overlap as long as the one observed in each eQTL/

pQTL region (distance between center of intervals smaller or

equal to the observed one) using this expression: p{value~

1{ 1{
dist

3000

� �2

, where dist is the distance between two eQTL.

Note that this formula does not depend on the length of the

interval. The formulas were derived assuming uniform distribution

of the center of the interval and verified using Monte-Carlo

simulation.

Supporting Information

Table S1 Position of oligonucleotides in the pig genome.
Position is relative to the beginning of the chromosome (SSC). Pig

Genome information corresponds to Build 9; accessible at: www.

ensembl.org.

(XLS)
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