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a b s t r a c t

Laser induced breakdown spectroscopy (LIBS) is an atomic emission spectroscopy technique for simple,
direct and clean analysis, with great application potential in environmental sustainability studies. In a
single LIBS spectrum it is possible to obtain qualitative information on the sample composition. However,
quantitative analysis requires a reliable model for analytical calibration. Multilayer perceptron (MLP), an
artificial neural network, is a multivariate technique that is capable of learning to recognize features from
examples. Therefore MLP can be used as a calibration model for analytical determinations. Accordingly,
the present study proposes to evaluate the traditional linear fit and MLP models for LIBS calibration,
in order to attain a quantitative multielemental method for contaminant determination in soil under
sewage sludge application. Two sets of samples, both composed of two kinds of soils were used for
alibration
ultilayer perceptron

calibration and validation, respectively. The analyte concentrations in these samples, used as reference,
were determined by a reference analytical method using inductively coupled plasma optical emission
spectrometry (ICP OES). The LIBS–MLP was compared to a LIBS–linear fit method. The values determined
by LIBS–MLP showed lower prediction errors, correlation above 98% with values determined by ICP OES,
higher accuracy and precision, lower limits of detection and great application potential in the analysis of

different kinds of soils.

. Introduction

Laser induced breakdown spectroscopy (LIBS) is an emerging
nalytical technique based on atomic and ionic emission of ele-
ental sample constituents. Due to its instrumental features, LIBS

s able to perform multielemental direct analysis, dispensing the
re-treatment of samples, in addition to showing the potential
o perform in situ analysis [1]. During the LIBS analytical process
he sample is irradiated by a high-energy laser pulse, which then
bsorbs this energy. This absorption causes a local heating of the
aterial, resulting in its evaporation or sublimation. The high tem-

erature of the ablated material generates a small plasma plume.

s a result of the plasma temperature, the ablated material breaks
own into excited atomic and ionic species [2]. During the plasma
ooling, the excited species return to their ground state, emitting
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electromagnetic radiation in characteristic wavelengths. Therefore,
the emission spectra analysis gives a qualitative view of the sam-
ple’s elemental composition. Notwithstanding, it is not a simple
task to perform LIBS quantitative analysis, because the elements
emission lines in LIBS spectrum are closely related with the matrix
in which they are embedded. The chemical matrix effects in LIBS
spectra occur due to several reasons: all of the elements in the
plasma may not be equally ionizable, creating variations in the
equilibrium between neutral and ionized atoms; the mass of dif-
ferent ablated elements changes due to differences in the heat
capacity and vaporization temperatures [3,4]. Some, other draw-
backs of LIBS include its strict dependence on the fulfillment of
equilibrium conditions in the plasma, the possible saturation of
the signal for high concentration elements due to self-absorption
effects, even for high-energy lines, hence making their quantifi-
cation difficult or impossible with LIBS and the large number of
complex physical–chemical phenomena involved in the processes
of ablation and plasma formation, evolution and interaction with
the background ambient [5]. Due to this feature of LIBS emission

signal, it is very difficult to find appropriate calibration standards
for LIBS methods. In some cases the appearance of the so-called
matrix effects could be reduced by using multivariate calibra-
tion techniques [6,7]. However, some authors have found a way
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The samples were submitted to 10 ton of pressure for 2 min to
form pellets. Three pellets were prepared with the samples from
Fig. 1. A typical artificial neural network setup.

o adapt univariate calibration models, constructed with classical
east-squares regression for specific LIBS application [8,9].

Artificial neural network (ANN) is a multivariate technique
hich due to its superior classification and prediction capabilities,
as impacted spectral analysis and has gained ground in LIBS spec-
roscopy [10–12]. An ANN represents a computational paradigm
hat solves problems by imitating the structure of a human brain.
t involves a network of simple processing elements (artificial neu-
ons) that can exhibit a complex global behavior determined by the
onnections (analogous to synapses in the human brain) between
he processing elements and element parameters. In other words,
NNs are nonlinear statistical models or decision making tools,
hose practical use comes with algorithms designed to alter the

trength (weights) of the connections in the network to produce a
esired signal flow [13].

The multilayer perceptron (MLP) is a type of ANN based on
upervised learning. An MLP maps the sets of input data onto a
et of appropriate output. It is an extension of the standard linear
erceptron in which three or more layers of nonlinear neurons are
ully linked. This arrangement is more powerful than the linear per-
eptron as it can distinguish the data that are not linearly separable,
r separable by a hyperplane [14].

Fig. 1 illustrates a useful scheme of a layer-structured MLP like
hat used in this work. Each layer has a set of neurons and each neu-
on has a mathematical function responsible for its activation. The
rst layer receives a set of values, i.e. an input vector containing
he values measured for the variables. The dimensionality of the
ector corresponds to the number of neurons in the input layer.
he weights are a set of numerical values (weight vector) associ-
ted with each neuron to represent its synaptic connections. The
nowledge is codified in weights by means of an algorithm. The
nner product between input vector and weight vector is applied
o the activation function to produce the neuron output. The out-
uts of a layer are used as inputs for the next layer. As a result, the
utput layer provides a value or a set of values, corresponding to
he propagation of a set of values from the input layer to the output
ayer (forward phase).

A task is learned by an MLP from a training dataset, which is
set of input vectors with their respective desired outputs. The

rocedure applied to perform the training process is called learning
lgorithm and its function is to modify the weights of the network
n order to attain a desired goal [15].

During the training process, all the weights are changed to min-
mize the error between the desired output and MLP output. The
earning paradigm of MLPs entails developing mathematical mod-
ls to extract important features from the training dataset. After

he training process, a validating process should be conducted to
stimate the MLP performance on the testing datasets.
85 (2011) 435–440

Thus, the use of LIBS and MLP can result in a fast, direct and clean
method for multielemental determinations with great application
potential in environmental sustainability studies. Therefore, this
study evaluates a LIBS–MLP method for determination of Ba, Co,
Cu, Mn, Ni, V and Zn in two kinds of soils for sustainability studies,
in which sewage sludge was applied to agricultural soil as fertilizer.

2. Experimental

2.1. Samples

A set of samples was constituted of 28 samples from two trop-
ical soils, classified as Typic Eutrorthox and Typic Haplorthox,
exhibiting different textures. The samples were collected from an
experimental field which was previously submitted to the applica-
tion of different amounts of sewage sludge.

After the sample collection was performed, the samples were
dried at room temperature and passed through a 5 mm sieve.

2.2. Reference concentration determinations

To obtain the reference values for LIBS calibration and valida-
tion, the soil samples were submitted to elemental determination
by inductively coupled plasma optical emission spectrometry (ICP
OES). Before ICP OES measurements, a sample preparation step was
carried out to obtain samples in liquid form. For this, a digestion
step was performed by means of a modified procedure based on
the use of high pressure microwave heating, previously proposed
by Vieira et al. [16]. A mass of 0.1 g of soil samples was directly
weighed in the modified polyethylene (TFM) microwave vials, then
2.0 mL of decomposition solution was added, prepared by mixing 3
parts of nitric acid (14 mol L−1) with one part of hydrochloric acid
(6 mol L−1). These mixing solutions were kept in contact for 1 h, to
enable a pre-decomposition. Afterwards, 1.0 mL of hydrogen per-
oxide (30%, w w−1) was added, and after 30 min the samples were
submitted to microwave irradiation, in a cavity-microwave oven,
model Multiwave Sample Preparation System (Anton Paar, Austria).

At the end of the heating program and cooling of the vials, the
samples were transferred to graduated polypropylene vials, and
the volumes were adjusted to 10 mL with ultra pure water. The
silicate compounds, which remained after the decomposition pro-
cedure, were separated from the solution by centrifugation. These
compounds were dissolved at room temperature by adding 1.0 mL
of concentrated hydrofluoric acid and 48 h of mixing. After disso-
lution of the silicates, 0.5 g of boric acid was added to the sample
in order to complex the remaining fluorides to prevent reactions
with the quartz ICP torch. The silicates from the resulting solution
were merged with the supernatant collected earlier, with the vol-
ume made up to 15 mL with water. Each sample was prepared in
duplicate.

The ICP OES elemental determinations were carried out in
a radial view spectrometer model VISTA PRO-CCD from Varian
(Australia).

2.3. LIBS determinations

The set of 28 samples was divided into calibration and validation
sets. The calibration set comprised 19 samples, 11 samples from
Haplorthox typic soil and eight from Eutrorthox soil. The validation
set was composed of nine samples with five samples (referred as
1–5) from Haplorthox soil and four samples (referred as 6–9) from
Eutrorthox soil.
the calibration set and two from the validation set. Twenty LIBS
spectra were captured from different regions of each pellet, with
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Table 1
Spectral variables used for ANN training and validation.

Analyte Selected emission lines (nm)

Ba (I) 307.16; (II) 413.06; (II) 455.40;
(I) 553.55

Co (II) 234.74; (I) 241.16; (I) 242.49;
(I) 344.36; (I) 347.40; (I) 356.94

Cu (I) 217.89; (II) 219.23; (I) 223.01;
(I) 324.75; (I) 327.40

Mn (II) 257.61; (II) 259.37; (I) 279.48;
(II) 344.20; (I) 403.31

Ni (II) 217.51; (II) 221.65; (I) 234.55;
(I) 300.25; (I) 341.35; (I) 346.17; (I)
352.45; (I) 356.64; (I) 361.94

V (II) 311.07; (II) 311.84; (I) 318.54;
(II) 319.07; (I) 385.58; (I) 412.81;
(I) 413.20; (I) 437.92; (I) 439.52; (I)
609.02

Zn (II) 202.55; (I) 213.86; (II) 250.20;
(I) 307.59; (I) 328.23; (I) 468.01; (I)

(

e
p
p
s
m
t

m
p
(
s
S
a
p
fi
w
d
t

o
r

2

r
l
4
N

p

2

c
d

s

s
t
n
h
p

Table 2
“Back-Propagation” parameters and MLP topology defined for different analytes.

Analyte Training
time (N)

Momentum
(M)

Learning
rate (L)

No. of neurons in
the intermediate
layer

Ba 1100 0.6 0.5157 2
Co 4600 0.5579 0.4314 3
Cu 2150 0.01 0.2629 3
Mn 2500 0.01 0.6 3
Ni 400 0.4314 0.0521 5

However LTE is rarely complete, so physicists have settled for a
useful approximation. For this reason, many analytical purposes
assume LTE in laser induced plasmas [21]. In this paper the LTE
occurrence was also assumed.

Table 3
LODs calculated for LIBS–MLP and LIBS–linear fit.

Analyte LOD (mg kg−1)

LIBS–linear fit LIBS–MLP

Ba 37.6 8.01
Co 9.32 9.33
Cu 28.5 9.94
472.22; (II) 491.16; (I) 636.23

I) and (II) atomic and ionic lines, respectively.

ach spectrum corresponding to two accumulated laser pulses. A
revious laser pulse was always used to clean the surface of the
ellets, before capturing a spectrum. The average of the twenty
pectra (40 pulses) in a pellet was considered a single measure-
ent. Thus, the final average and deviation was calculated using

he mean spectrum obtained in all three pellets of the same sample.
The LIBS spectra of the pellets were captured using a system

odel LIBS2500, from Ocean Optics (USA). This system com-
rises seven spectrometers, which allows a resolution of ∼0.1 nm
FWHM) for the spectral analysis ranging from 188 to 980 nm, a Q-
witched Nd:YAG laser at 1064 nm, manufactured by Quantel (Big
ky Laser Ultra50), an ablation chamber, a lens for laser focalization
nd an optical system to collect plasma emission and to conduct
lasma emission to the spectrometers made up of a lens and an
ber optic bundle. All measurements used pulse energy of 50 mJ
ith 8 ns duration and the fixed system instrumental conditions of
elay time (relative to a Q-switch delay) and 2.1 ms of integration
ime.

Before the calibration study, the spectra were corrected for the
ffset, discounting from all spectra the average of a pure noise
egion, at the beginning of the spectrum.

.4. Linear fit: assessment strategy for calibration of LIBS

Emission lines free of spectral interferences were chosen to cor-
elate their intensities with the reference concentration, in the
inear fit calibration procedure. The lines chosen were: Ba (II)
55.40 nm, Co (I) 242.49 nm, Cu (I) 324.75 nm, Mn (I) 403.08 nm,
i (I) 341.48 nm, V (I) 438.47 nm and Zn (I) 328.23 nm.

A single linear model obtained for each analyte was applied to
redict the concentration in the samples of the validation set.

.5. MLP: assessment strategy for calibration of LIBS

The average spectrum, obtained after the individual offset
orrection and the reference analyte concentrations, previously
etermined by ICP OES, were used as inputs for MLP.

A MLP was trained for each single analyte. Table 1 describes the
et of emission lines selected for each MLP training and validation.

The Weka system (Waikato Environment for Knowledge Analy-
is) version 3.5.7 was used for the training and for the validation of

he calibration methods [17]. The activation function used for the
eurons was the hyperbolic tangent. The number of neurons in the
idden layer was in accordance with the number of input variables
lus one divided by two, considering only the numbers referent to
V 1450 0.305 0.5157 5
Zn 50 0.4736 0.5157 5

the entire term. Thus, for instance, a MLP with 5 inputs has (5 + 1)/2
neurons in the hidden layer.

The MLP was trained by Back-Propagation algorithm and the
better combinations among Back-Propagation parameters were
previously obtained by using a cross validation method in 10 folds
[18]. Each parameter was varied in 15 levels, in agreement with the
following rate values: training time, from 50 to 5000, momentum,
from 0.01 to 0.6 and learning rate, from 0.01 to 0.6. The best set of
parameters and the MLP configuration for each analyte are detailed
in Table 2.

The performance of the MLPs was evaluated in the validation
set by Pearson’s correlation coefficient and the absolute error of
prediction.

3. Results and discussions

Currently, sustainability studies that involve soil elemental
determinations require fast, clean and reliable analysis methods.
The traditional methods used to determine elements in soil are
developed by using techniques such as atomic absorption spec-
troscopy (AAS) or ICP OES. For these techniques, the soil samples
should be converted into liquid samples by acid decomposition,
high-temperature and, sometimes high pressures [19]. Consider-
ing the interesting features of LIBS analysis, especially regarding
the possibility of direct analysis that dispenses chemical treatments
for sample preparation, a multielemental determination method in
soil under sewage sludge application was studied.

For quantitative analysis in LIBS it is important to generate
plasmas in local thermodynamic equilibrium (LTE). However, to
determine LTE is not an easy task in an inhomogeneous and time-
varying multi-element plasma. A detailed description of the plasma
requires careful knowledge of the distribution of the population of
the different atomic and ionic electronic levels as well as of the free
electrons.

In accordance with Cremers and Radziemski [20] the properties,
such as the relative populations of energy levels and the distribu-
tions of the speed of the particles, can be described if LTE exists.
Mn 416 114
Ni 8.87 7.86
V 260 46.9
Zn 42.3 30.7
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Fig. 2. Validation results for Ba, Co, Cu, M

Firstly, a conventional unvaried calibration involving the lin-
ar fit of samples from a calibration set was experimented. The
inear models obtained for each element were applied to predict
he analyte concentrations in the samples from the validation set.
ext, an MLP was trained with samples from the calibration set
nd the mathematical models obtained after training were applied
o the concentration predictions in the samples of the validation
et. Fig. 2 shows the detailed plots for the concentration results of
even elements determined in the samples from the validation set
sing the linear fit and MLP as strategy for LIBS calibration. The
oncentrations predicted by the two evaluated calibration models
re compared to ICP OES determinations, which were considered
s the reference values.

For Co the LIBS–MLP determinations were not possible for sam-
les 2–5, because the concentration of these samples was lower
han the limit of detection. With the exception of Co, a slightly
etter correlation was observed between the reference values and
he concentrations determined by LIBS–MLP. The correlation coef-
cients for comparisons between the concentration determined by
his strategy and the reference concentrations were all above 98%,
hile the linear models show R ranging from 95 to 99%.

In the bar plots, the difference between the bar heights of the
tudied prediction methods and the ICP OES reference method rep-
esent the prediction errors. As can be observed, the prediction

rrors of LIBS–MLP do not vary so drastically from all the valida-
ion samples when compared to those obtained by LIBS–linear fit.
t is also interesting to notice that the high errors from the linear

odel were obtained in the predictions of the 1–5 samples, while
and Zn for LIBS–linear fit and LIBS–MLP.

the errors obtained for 6–9 samples were similar to that obtained
by MLP. Two hypotheses could explain these error differences: the
limit of detection (LOD), since the high linear model errors are con-
centrated in the samples of lower analyte concentrations (samples
1–5), and/or the applicability of the linear model for different kinds
of soils simultaneously. To check these hypotheses, the LODs were
calculated for the two evaluated models. The methods, the LODs for
LIBS–linear fit and LIBS–MLP were estimated in the same manner,
according to Sirven et al. [10], by fitting the predicted concentra-
tions of the validation set versus the reference concentrations by a
straight line a + bc, so that the LOD is given by:

LOD(mg kg−1) = 3�a

b

where �a is the standard deviation of a, given by the regression.
Although this method has been proposed to calculate the LODs
from calibrations performed with artificial neural networks, in the
present work it was also applied to the linear calibration for the
comparison of methodologies. Table 3 shows the calculated LODs
for the two calibration models.

The results show that higher LODs were obtained by the
LIBS–linear fit method, when compared to those obtained by
LIBS–MLP. These results suggest the inability of LIBS–linear fit for
low concentration predictions. This limitation can also be due to the

difficulty demonstrated by unvaried calibration methods applied to
LIBS in overcome matrix effects. The advantage of using MLP as a
calibration strategy is to explore its ability to learn from the charac-
teristic standards. Moreover the multivariate feature provided by
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Fig. 2.

he MLP rendered possible to overcome some drawbacks from the
IBS signal.

The LODs obtained by LIBS–MLP were considered satisfactory
or predictions of the evaluated analytes as contaminants, since the
alculated LODs are well below the safe limit established by USEPA
2010) and by the CETESB regulations (1999) [22,23].

The high precision of determinations, represented by lower
tandard deviation (bars errors at the top of the bar plots in Fig. 2)
ere also obtained in the LIBS–MLP predictions.

The results indicate that LIBS–MLP is a suitable method for soil
ontamination evaluation, exhibiting interesting features for sus-
ainability studies, especially to provide fast and reliable results
ithout generating chemical residues.

. Conclusions

The evaluation of LIBS calibration alternatives, in order to pro-
ose a method for soil contaminants determination, shows that
he use of MLP is an interesting alternative when compared to the
onventional linear fit calibration. LIBS–MLP shows accurate and
recise elemental predictions for the two different types of soil
valuated. The results suggested the ability of MLP to overcome the
atrix effects, which is very common in LIBS spectra. Even though

he proposed method used ICP OES data to calibrate and validate

IBS method, given that a calibration set was constructed based
n this reference technique, the LIBS analysis can be carried out
ndependently, providing fast and reliable results without generat-
ng chemical residues. Therefore, LIBS–MLP proved to be useful in

[

[
[

 Samples

nued).

environmental studies, particularly those concerning sustainabil-
ity.
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