Comportamento de Cultivares de Milho no Nordeste Brasileiro: Safra 2009/2010.

<u>Camila Rodrigues Castro¹</u>, Hélio Wilson Lemos de Carvalho², Milton José Cardoso³, Cleso Antônio Pato Pacheco⁴, Leonardo Melo Pereira Rocha⁴, Ivênio Rubens de Oliveira², José Nildo Tabosa⁵, Cinthia Souza Rodrigues⁶, Vanessa Marisa Miranda Menezes⁶.

Resumo

No ano agrícola de 2009/2010, foram avaliadas 50 cultivares de milho, em 11 ambientes do Nordeste brasileiro, em blocos ao acaso, com duas repetições, objetivando conhecer o comportamento dessas cultivares nessas diferentes condições ambientais para fins de recomendação. Detectaram-se, nas análises de variância conjuntas, diferenças entre as cultivares, os ambientes e inconsistência no comportamento dessas cultivares em face das oscilações ambientais, quanto às características rendimento de grãos, alturas de plantas e de espigas. Os híbridos mostram melhor adaptação que as variedades tendo papel de destaque para a agricultura regional, a exemplo dos BM 3061, RBX 9007, 2 B 433, RB 9308 YG, 2 B 655 HX, DKB 370 e 2 B 688 HX.

Introdução

No Nordeste brasileiro, cerca de 2.800.000 ha, distribuídos nos diferentes biomas dessa ampla região, são destinados ao cultivo do milho, nos mais variados sistemas de produção, indo desde aqueles tradicionais, onde é marcante a ausência de tecnologias de produção, até aqueles onde se procura explorar todo o potencial da lavoura, através do uso de insumos modernos de produção. Nesse contexto, tanto o uso de variedades, para atender sistemas de produção dos pequenos produtores rurais, quanto a utilização de híbridos para aqueles produtores que praticam uma agricultura empresarial, revestem-se de grande importância para a região, justificando, dessa forma, a implantação de um programa de melhoramento voltado para a avaliação de variedades e híbridos de milho, visando a transferência daquelas cultivares de melhor adaptação e portadoras de atributos agronômicos desejáveis.

Diversos trabalhos de avaliação de cultivares já realizados no Nordeste brasileiro têm permitido a indicação de variedades e híbridos de melhor adaptação para áreas do agreste, sertão e cerrados nordestinos, aonde vem se registrando rendimentos médios de grãos da ordem de 8 t/ha a 10 t/ha, principalmente em áreas de agreste dos estados da Bahia e Sergipe e, de cerrados, localizadas nos estados da Bahia, Maranhão e Piauí (Cardoso et al.2007), Oliveira et . (2008) e Carvalho et al. (2008 e 2009)).

Nesse contexto, realizou-se o presente trabalho visando avaliar variedades e híbridos de milho em diferentes ambientes do Nordeste brasileiro, para fins de recomendação.

Material e Métodos

Os ensaios foram avaliados no Nordeste brasileiro, na safra 2009/2010, nos estados do Maranhão (4 ensaios), Piauí (3 ensaios), Pernambuco (1 ensaio), Sergipe (2 ensaios) e Bahia (1 ensaio). Utilizou-se o delineamento experimental em blocos ao acaso, com duas repetições dos cinqüenta tratamentos. Cada parcela constou de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,8m com 0,2 m entre covas, nas fileiras. Foram semeadas duas plantas por cova, deixando-se uma planta por cova, após o desbaste. Foram colhidas as duas fileiras centrais de forma integral correspondendo a uma área útil de 8 m². As adubações foram realizadas de acordo com os resultados das análises de solo de cada área experimental.

¹ Estagiária Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, Jardins, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: camila.rcastro@hotmail.com

² Pesquisadores da Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mails:ivenio@cpatc.embrapa.br; helio@cpatc.embrapa.br

³ Pesquisador da Embrapa Meio-Norte, Av. Duque de Caxias, 5650, Buenos Aires, Teresina, PI, CEP: 64006-220, E-mail:milton@cpamn.embrapa.br

⁴ Pesquisadores da Embrapa Milho e Sorgo, Rod. MG 424, km 45, Sete Lagoas, MG, CEP: 35701-970. E-mails: cleso@cnpms.embrapa.br, leonardo@cnpms.embrapa.br

⁵ Pesquisadores do IPA, Caixa Postal 1022, Recife-PE, e-mail: tabosa@ipa.br

⁶ Bolsista PIBIC / CNPq/Embrapa Tabuleiros Costeiros, Av. Beira Mar, 3250, C.P. 44, Aracaju, SE, CEP: 49025-040. E-mail: cinthia-sr@hotmail.com; vanessammm2003@yahoo.com.br

Foram avaliados dados de peso de grãos, alturas de planta e de espigas, estande de colheita e número de espigas colhidas, os quais foram submetidos a análise de variância, por local. A análise de variância conjunta obedeceu ao critério de homogeneidade dos quadrados médios residuais (Gomes, 1990), e foram processadas conforme Vencovsky & Barriga (1989)

Resultados e Discussão

Houve efeitos significativos (p<0,01) quanto às cultivares, ambientes e interação cultivares x ambientes, evidenciando diferenças entre as cultivares, os ambientes e inconsistência no comportamento das cultivares em função das variações ambientais, no que se refere ao rendimento de grãos, alturas de plantas e de espigas (Tabela 1). Interações significativas têm sido detectadas em trabalhos similares de melhoramento (Souza et al. (2004), Oliveira et al. (2008) e Carvalho et al. (2009). Os coeficientes de variação obtidas nas análises de variância conjuntas para essas características conferiram boa precisão aos ensaios, conforme critérios adotados por Lúcio et al (1999).

As alturas médias de plantas e de espigas foram de 207 cm e 106 cm, respectivamente, destacando-se as cultivares 2 B 433, SHS 5121, XB 8010, DKB 615 e PRE 197 com menores valores para altura de planta (Tabela 1). Menores portes de planta permitem o uso de um maior número de plantas por unidade de área. As cultivares mostraram comportamento semelhante no que se refere ao estande de colheita e número de espigas colhidas, cujas médias foram de 48 plantas por parcela, correspondente a 60000 plantas/há e, 57500 espiga colhidas/há, respectivamente (Tabela 1).

As produtividades médias de grãos oscilaram de 4953 kg/ha (Cruzeta) a 9120 kg/ha (2 B 688 HX), com média geral de 7287 kg/ha, evidenciando o alto potencial para a produtividade do conjunto avaliado (Tabela 1). Os materiais de produtividades médias superiores à média geral mostraram melhor adaptação (Vencovsky & Barriga, 1992), destacando-se, entre eles, os BM 3061, RBX 9007, 2 B 433, RB 9308 YG, 2 B 655 HX, DKB 370 e 2 B 688 HX, com rendimentos médios de grãos entre 8282 kg/ha a 9120 kg/ha. Tais materiais têm importância fundamental no desenvolvimento dos sistemas de produção de milho em realização no Nordeste brasileiro. Os híbridos mostraram melhor adaptação quando comparados com as variedades, à semelhança do observado em trabalhos anteriores realizados nessa ampla região (Oliveira et al.2008 e Carvalho et al.2008 e 2009).

Conclusões

Os híbridos mostram melhor adaptação que as variedades tendo papel de destaque para a agricultura regional, a exemplo dos BM 3061, RBX 9007, 2 B 433, RB 9308 YG, 2 B 655 HX, DKB 370 e 2 B 688 HX.

Referências

Cardoso, M. J.; Carvalho, H. W. L. de; Santos Rodrigues, A. Rodrigues, S.S. Performance de cultivares de milho com base na análise de estabilidade fenotípica no meio-norte brasileiro. **Agrotrópica**, Ilhéus, v. 19, n. único, p. 43-48, 2007.

Carvalho, H. W. L.de.; Cardoso, M. J.; Guimarães, P. E.; Pacheco, C. A. P.; Lira, M. A. L.; Tabos, J. N.; Ribeiro, S. S.; Oliveira, V. D de. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 2006. **Agrotópica**, Ilhéus, v. 21, n. 1, p. 25-32, 2009.

Carvalho, H. W. L.de.; Cardoso, M. J.; Leal, M. de L, da S.; Santos, M. X. dos.; Silva, A. A. G. S.; Lira, M. A. L.; Tabos, J. N.; Sousa, E. M.; Feitoza, L. F.; Melo, K. E. O. Adaptabilidade e estabilidade de milho no Nordeste brasileiro. **Agrotópica**, Ilhéus, v. 20, p. 5-12, 2008.

Gomes, F. P. Curso de estatística experimental. 8ª Ed. São Paulo. Nobel, 1990. 450p.

Lúcio, A.D.; Storck, L.; Banzatto, D. A. Classificação dos experimentos de competição de cultivares quanto à sua precisão. **Pesquisa Agropécuária Gaúcha,** v. 5, p.99-103, 1999.

Oliveira, V. D., Carvalho, H. W. L. de, Cardoso, M. J., Lira, M. A. Cavalcante, M. H. B., Ribeiro, S. S. Adaptabilidade e estabilidade de cultivares de milho na zona agreste do Nordeste brasileiro na safra de 2006. **Agrotrópica**, 19:63-68. 2007.

Souza, E. M. de; Carvalho. H. W. L. de.; Leal, M. de L. da S.; Santos, D. M. dos Adaptabilidade e estabilidade de cultivares de milho nos Estados de Sergipe e Alagoas. **Revista Ciência Agronômica**, Fortaleza, v. 35, n. 1

Vencovsky. R.; Barriga, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1- Médias e resumos das analises de variância referente às características, rendimento de grãos (kg/ha), alturas (cm) de plantas e de espigas, estande de colheita e numero de espigas colhidas, obtidas em ensaios de competição de cultivares de milho. Região Nordeste do Brasil, 2009/2010.

Cultivares	Peso de grãos	Altura de plantas	Altura de espiga	Estande de colheita	Numero de espigas
2B 688 HX	9120a	206d	102b	46b	47a
DKB 370	8838a	210c	108a	48b	47a
2B 655 HX	8808a	211c	105b	49b	47a
RB 9308 YG	8453b	233ª	113a	47b	46a
2B 433	8349b	197e	101b	48b	47a
RBX 9007	8296b	209c	110a	49b	47a
BM 3061	8282b	223b	116a	48b	46a
20 A 78	8181c	201d	101b	48b	48a
SYN 7316	8010c	201d 205d	101b	48b	46a
XB 8030	7963c	208c	110a	48b	48a
BM 502	7950c	209c	10a 106b	48b	46a 46a
DKB 789	7896c	202d	103b	47b	46a
Garra	7890c	206d	112a	48b	47a
BM 207	7833c	207c	113a	47b	47a
XB 7116	7768c	214c	115a	49b	47a
BM 2202	7632c	207c	109a	48b	47a
XB 7253	7626c	217c	117a	48b	46a
PRE 32D10	7464d	204d	101b	47b	47a
SMS 3E482	7416d	208c	103b	52b	49a
Orion	7383d	204d	106b	47b	45a
SHX 5121	7377d	190e	101b	47b	45a
PRE 22T10	7373d	208c	105b	46b	46a
GNZ 2005	7370d	205d	105b	49b	46a
Taurus	7368d	207c	109a	48b	46a
XB 8010	7351d	197e	103b	47b	45a
XB 7070	7301d	206d	103b	65 ^a	46a
BRS 2022	7251d	204d	105b	46b	46a
BRS 2020	7206d	201d	103b	48b	47a
CMS 3E482	7200d 7136e	201d 201d	100b	49b	48a
GNZ 2728	7121e	210c	107b	48b	47a
Cargo	7101e	200d	106b	48b	46a
PL 6882	7073e	206d	113a	47b	45a
PRE 22D11	7058e	211c	109a	48b	46a
BRS 3060	7058e	211c	103b	48b	45a
PRE 22T12	7011e	202d	103b	46b	46a
BRS 3035	6922e	199d	102b	47b	46a
DSS 1001	6892e	212c	110a	47b	45a
AL Avaré	6802e	206d	106b	47b	46a
BRS 3025	6753e	200d	101b	44b	42a
Sócrates	6622f	205d	106b	47b	45a
DKB 615	6619f	189e	93b	46b	63a
AL Bandeirante	6577f	211c	108a	47b	45a
BRS Caimbé	6568f	213c	112a	47b	46a
AL Piratininga	6533f	214c	112a	47b	45a
AL Alvorada	6419f	213c	112a 112a	47b	45a
CMS Sint 1X	6388f	202d	103b	48b	44a
BRS 4103	6288f	202d 204d	100b	46b	44a 44a
Ipanema	6067g	215c	113a	46b	43a
PRE 22T11	5968g	197e	104b	48b	45a
Potiguar	5952g	211c	111a	46b	42a
Cruzeta	4953h	206d	106b	42b	39a
Média	7287	207	106	48	46
C.V (%)	9	7	9	24	24
F (cultivares)	31,6**	5,9**	5,7**	1,2ns	1,1ns
F (Local)	227,5**	224,6**	352,3**	1,8ns	2,2*
F (Interação)	2,8**	263,0**	1,2**	1,0ns	1,0ns

^{**} e * Significativos a 1% e 5% de probabilidade, respectivamente, pelo teste t de Student, para b. ** e * Significativos a 1% e 5%, respectivamente, pelo teste F para s²_d. As médias seguidas pelas mesmas letras não diferem entre si pelo teste de Scott-Knott a 5% de probabilidade.