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1. Introduction

Since 1996, the cultivation of genetically modified (GM) crops around the world has
increased more than 80-fold. In 2009, it was registered that a total area of 134 million
hectares in 25 countries were used for biotech crops, which constituted a 7 % increase from
2008. 14 million farmers, of whom 90% were small producers, grew GM cultivars in 25
countries during 2009. Nowadays, GM soybean, cotton and corn correspond to 99% of all
GM cultivars planted worldwide (JAMES, 2009).

In the same year, with regard to the soybean crop, the planted area reached 90 million
hectares worldwide, of which 69 million were GM. The world leaders of soybean production
are the United States (33%), Brazil (27%) and Argentina (21%), which are also leaders in the
use of GM seeds. The eight following countries also cultivate GM soybean, seven of which
are developing countries: Paraguay, South Africa, Uruguay, Bolivia, Mexico, Chile and
Costa Rica (JAMES, 2009). Through this use, the GM seed market contributes to an amount
of US$ 10.5 billion annually to agriculture. Furthermore, GM soybean, along with corn and
cotton, yielded US$ 130 million in 2008 and US$ 143 million in 2009 to the agribusiness
sector, with a 10% increase projected for 2010. Each year, countries from the European
Union import no less than 40 million tonnes of raw soy products, at a cost of more than U$
15 billion, mainly from the three biggest producers.

With respect to the agronomical traits used in GM crops, herbicide and insect resistance, or a
combination of both traits, are the most utilised. Nevertheless, several other characteristics
are being tested, such as increased nutritional quality, dry and cold tolerance, bacteria
resistance, fungal and nematode resistances. Therefore, there is an expectation for future
development of innovative molecular strategies in order to generate GM plants with novel
features that promote reduction of costs and contamination risks for consumers, producers
and the environment by decreasing the use of agrotoxic compounds.

Most of the soybean-planted area is comprised of herbicide-tolerant crops (62%), distributed
across 11 countries. Transgenic soybean with multiple combined traits corresponds to 21%
of all biotech crops around the world (JAMES, 2009). During 2009/2010, a second generation
of GM crops appeared in the market. RReady2Yield Soybean was cultivated by 15,000
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farmers distributed across 0.5 million hectares in the US and Canada, providing a higher
production than traditional soybean crops.

Until January of 2009, there was no GM soybean that was resistant to insect-pests or
pathogens being commercialised, although the need for this trait is extremely important.
However, an insect-resistant event of GM soybean, developed in China, is in the commercial
and regulatory pipeline in that country (STEIN e RODRIGUEZ-CEREZO, 2009 - Table 1).
Today, there is only one commercial GM soybean event from Monsanto, which presents
only herbicide-resistance as a trait. Four other GM soybean events are in the commercial
pipeline (authorised but not yet commercialised), but all present herbicide resistance genes
and demonstrate no resistance against pathogenic fungi, insect-pests or nematodes.
In addition, three other soybean events resistant to herbicides are in the regulatory
process required for worldwide marketing. Furthermore, two GM soybean events are
already at late stages of development, although not yet in the regulatory process. While
Monsanto is developing a soybean resistant to insect-pests, Syngenta is leading the
development of a cultivar resistant to the cyst nematode (STEIN e RODRIGUEZ-CEREZO,
2009 - Table 1).

2. Major soybean pests and diseases

Soybean plants originate from the South Asia region, where several microorganisms and
insects evolved ecological interactions. All three major soybean-producing countries in the
world are located on the American continent, where more than 50% of all soybeans are
harvested. This geographic distribution facilitates the spread of insect-pests and diseases.
Hence, soybean can be attacked by many different organisms, ranging from viruses to
nematodes and insects. These pathogens and pests can cause damage in seeds, roots, leaves,
stems and pods, and usually are tissue-specific. Here, we describe some of the most
important diseases that attack soybeans, as well as the major pests and pathogens, mainly
found in North and South America. A list of pathogens, the diseases they cause and the
infected tissues are presented in Table 2.

2.1 Seedling diseases

Diseases that affect soybean seeds occur before germination or after seedling establishment.
The primary reason for this is the presence of wet and/or cool soil, which enables the
growth of pathogenic fungi, such as Fusarium spp, Rhizoctonia solani, Phytophthora sojae and
Phythium spp. In some locations, Macrophomina spp, Coletotrichum spp and Phomopsis spp
can cause this type of damage in soybean seeds. Seedling diseases can decrease seed quality,
due to variation in stands, which are formed by lesions on the cotyledons, soft young stems
and primary leaves. Furthermore, these diseases can retard seedling growth, causing
moderate to severe losses in crop yield and, in turn, a significant increase in the use of
fertilisers and herbicides (MALVICK, 2007).

2.2 Leaf pests and diseases

There are several organisms that attack soybean leaves, including viruses, bacteria, fungi
and insects. Among the diseases that have already been described, the most important are
soybean rust, septoria brown spot, bacterial blight, bacterial pustule, downy mildew,
cercospora leaf blight, frogeye leaf spot, powdery mildew, soybean mosaic virus and bean
pod mottle virus.
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Table 2. Soybean diseases.
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Fungi are the most common soybean pathogens, and include Phakopsora pachyrhizi and P.
meibomiae, which are the main agents of soybean rust, a disease that causes up to 50% of all
crop losses in the United States and Mexico. Moreover, Septoria glycines is the agent responsible
for brown spot, a common disease characterised by defoliation following the formation of
brown to red lesions, which affects not only trifoliolate leaves, but also primary leaves and
cotyledons (DORRANCE et al., 2008; LUSTER et al., 2010). The fungal-like Peronospora
manshurica is a worldwide pathogen that causes reduction of seed size and quality due to
defoliation, leading to a disease called Downy Mildew (WYLLIE e WILLIAMS, 1965).

When soybean plants contaminated with Soybean Mosaic Virus (SMV) or the Bean pod
mottle virus (BPMV), plants become susceptible to other pathogenic agents, especially fungi,
which increase damage in the plant and treatment becomes more difficult. Virus diseases
can affect seedlings, reducing their quality and germination growth. A decrease in yield is
also observed, being less or greater depending on the gravity of the infection (GOLDBACH
etal., 1995).

Bacterial infections are widespread diseases that occur mainly in the mid-to-upper and
young leaves of the soybean plant. The bacterial blight and bacterial pustules are the most
common diseases described thus far. While the first of these infections is characterised by
the presence of blight lesions, the second shows light green spots on the surface of the
leaves. Both diseases are very similar, rarely causing defoliation or yield loss (WRATHER et
al., 2001; YANG, 1997).

Insect-pests are also significant predators of soybean leaves. Some Lepidoptera species, such
as Anticarsia gemmantalis, known as the velvet caterpillar, cause damage in soybean plants,
leading to defoliation (SWAN e PAPP, 1972). Spodoptera species also attack the leaves of
soybean plants, although they are not tissue-specific and can spread to the pod as well as the
entire plant in severe cases. Moreover, some Coleoptera insects have chosen soybean as one
of their main target (MUSEUM, 2007). Hence, the Mexican bean beetle (Epilachna varivestis)
and the Spotted cucumber beetle (Diabrotica speciosa) can cause defoliation, decreasing
soybean quality and production (CAB/EPPO, 2003; CRANSHAW, 2004). Soybean insect-
pests are described in Table 3.

2.3 Stem-and-Pod pests and diseases

Fungi and insects are the major causes of stem and pod damage in soybean. Anthracnose is
one of the most well-known fungal diseases, and it attacks soybean plants during wet and
warm conditions. Colleotricum spp and Glomerella glycines may not cause significant yield
loss, but they can reduce stand and seed quality (MACHADO e NETO, 2003). Some regions
of the US. and Canada are commonly attacked by Sclerotinia stem rot (Sclerotinia
sclerotiorum) every year (PURDY, 1979). In contrast to Anthracnose, these fungi appear
during cool weather and resistant varieties of soybean are already being developed.

The insect-pests that target pods and stems in soybean cultivars are varied. Lepidoptera,
Coleoptera and Hemiptera species contribute to a decrease in plant production and loss of
quality (Table 3). In this way, Helicoverpa zea is an insect-pest widely distributed across
North and South America that has been recently introduced to the Hawaiian Islands. This
pest initially eats soybean leaves but can later attack pods, causing serious yield damage
(HARDING, 1976). Furthermore, larvae of the soybean stem borer Dectes texanus texanus
feed within young soybean plants, resulting in a small yield loss. However, severe stem
damages from the inside of the plant can threaten an entire plantation (CAMPBELL e
DUYN, 1977).
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Order Soybean tissue Popular Name Scientific Name
attacked
Lepidoptera Leaf Green cloverworm Plathypena scabra
Soybean Looper Pseudoplusia includens
Velvetbean Anticarsia gemmatalis
Caterpilar Estigmene acrea
Saltmarsh Spodoptera ornithogalli
caterpillar
Yellowstriped
armyworm
Lower leaves to the Beet armyworm Spodoptera exigua
whole plant Spodoptera latifascia
Leaf and Pod Spodoptera
eridania
Pod Corn Earworm Helicoverpa zea
Silverspotted Epargyreus clarus
skipper
Stem and Plantlet Elasmopalpus lignosellus
Epinotia aporema
Coleoptera Leaf Mexican Bean Epilachna varivestis
Beetle Cerotoma trifurcata
Bean Leaf Beetle Diabrotica undecimpunctata howardi
Spotted Cucumber Diabrotica speciosa
Beetle Epicauta pestifera, Epicauta
Blister Beetle lemniscata
Japanese Beetle Aracanhtus mourei
Popillia japonica
Maecolaspis calcarifera
Megascelis sp.
Stem and Plantlet Soybean stem Dectes texanus texanus
borer Colaspis brunnea
Grape colaspis Sternechus subsignatus
Chalcodermus sp
Myochrous armatus
Leaf eating beetle Blapstinus sp
Root Phyllophaga cuyabana
Lyogenis suturalis
Hemiptera Pod Green Stink Bug Acrosternum hilare, Nezara viridula
Brown Stink Bug Euschistus servus
Euchistus heros
Piezodorus guildinii
Maruca testulalis
Etiella zinckenella
Root Scaptocoris castanea
Atarsocoris brachiariae
Dysmicoccus sp
Pseudococcus sp
Stem and Plantlet Threecornered Spissistilus festinus
alfalfa hopper Dichelops melacanthus e Dichelops
furcatus
Thyanta perditor
Orthoptera Leaf Grasshopper Melanoplus spp

Table 3. Soybean Insect-pests
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2.4 Root pests and diseases

Although several fungi and insect species can damage soybean roots, nematodes are the
most nocive and well-studied organisms that cause significant yield losses in this crop
(Tables 2 and 3). Sedentary phytonematodes are divided into three classes: Globodera,
Heterodera and Meloidogyne, and are the most nocive plant pathogens worldwide, causing
losses of US$ 125 billion annually in agriculture (CHITWOOD, 2003; SASSER, 1980).
Parasitic nematodes are responsible for 12%-20% of all crop losses (KOENNING et al., 1999;
SASSER e FRECKMAN, 1987). Worldwide losses caused by nematodes from the Meloidogyne
genus can reach US$ 16.5 billion per year in some cultivars (TRUDGILL e BLOK, 2001).
Among these, Meloidogyne incognita is probably the most important nematode for
agriculture, due to its worldwide distribution and the wide range of plants that it attacks
(EHWAETI et al.,, 1999; TRUDGILL e BLOK, 2001). In addition, this species is responsible for
95% of nematode infestations around the world. By comparison, species from the genus
Heterodera cause estimated annual losses of US$ 430 million in the US and US$ 95 million in
Europe (MULLER, 1999; SASSER et al., 1983; WRATHER et al., 1997).

The soybean cyst nematode (Heterodera glycines) is a widespread pathogen that can be under
the soil for years before it can be identified and the host eliminated. It usually causes non-
evident symptoms, making diagnosis difficult. This nematode enters the plant root and
starts to feed, not visible to the farmers. Consequently, soybean plant losses from this
pathogen can reach 30% due to the late diagnosis and difficulties associated with pathogen
control (ICHINOHE, 1988).

In addition, root-knot nematodes, represented by many species of Meloidogyne, are
worldwide-distributed plant-parasites that feed on soybean roots, causing an average of 5%
of crop loss around the world (SASSER e CARTER, 1985). They are most common in warm
and moist soils, can easily be introduced into soybean roots and are difficult to control
(EISENBACK e TRIANTAPHYLLOU, 1991; STIRLING et al., 1992).

In Brazil, the nematode Pratylenchus brachyurus can cause losses of 30-50% in some soybean
fields. Their life cycle is very short, ranging from 3 to 4 weeks, which enables them to
reproduce quickly and present many generations during the same cultivation period.
Therefore, the control of P. brachyurus is very difficult, once that nematicides and culture
rotation are inefficient strategies for the elimination of this plant parasite.

3. Biotechnological strategies to circumvent pests and diseases

3.1 Bt soybean: a future tool on insect-pests control

In nature, there are roughly 100 known bacterial species with potential for insect
pathogenesis, but only a few have succeeded as bio-insecticides (ROWE e MARGARITIS,
2004). Among them, formulations based on Bacillus thuringiensis (Bt) have showed an
effective activity against mosquito larvae and the insecticide activity of this bacteria is due to
proteins produced during sporulation, which include a crystal complex (FEDERICI, 2005).
Insects from the Lepidoptera order are particularly susceptible to Cryl toxins from B.
thuringiensis (Bt toxins), which are highly toxic after ingestion. They are soluble and are
processed by proteases presented in the insect midgut. The active toxins can interact with
specific receptors at the midgut, leading to pore formation after toxin conformation change
and, consequently, cell death (GILL et al.,, 1992; KNOWLES, 1994, RAJAMOHAN et al,,
1998). Although this is the most commonly suggested method of action for Cry toxins,
details about this mechanism, such as pos-binding effects and receptor specificities, are not
yet clear (GOMEZ et al., 2002; ZHANG et al., 2005).
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In this way, genetic transformation of soybean to induce resistance to lepidopterans using
the insertion of Bt toxins has been performed for over a decade. Hence, many techniques
have been applied in order to successfully transfer Cry genes into soybean embryos. The
bombardment method has provided stable transformed soybean plants (CHRISTOU, 1990;
MCCABE e CHRISTOU, 1993). However, the use of Agrobacterium for transformation of
cotyledonary nodes and the microprojectile bombardment of somatic embryos provided the
growth of less fertile transformed plants (FINER e MCMULLEN, 1991; PARROTT et al,,
1994; SATO et al.,, 1993; TOWNSEND e THOMAS, 1993). Nevertheless, years later, it was
possible to produce a fertile transformed soybean containing a synthetic B. thuringiensis
insecticidal crystal protein gene (CrylAc) through microprojectile bombardment. These
plants showed resistance toward Helicoverpa zea, the soybean looper Pseudoplusia includes,
the tobacco burworm (Heliothis virescens) and the velvetbean caterpillar (Anticarsia
gemmatalis) (STEWART et al., 1996).

In order to increase plant resistance against insect-pests, pyramiding strategies were applied in
soybean using a synthetic Bt toxin (CrylAc) with native plant resistance genes. Two QTLs
from Japanese soybean lines, named 229-H and 229-M, have been described as showing
antixenosis and antibiosis resistance towards lepidopteran insects (CREGAN et al., 1999).
Hence, a GM soybean presenting a combination of 229-M from the strain PI 22948 and a
synthetic crylAc gene demonstrated resistance against H. zea, P. includens, A. gemmatalis and
Elasmopalpus lignosellus (WALKER et al., 2000). Further studies utilised both QTLs, 229-H and
229-M, with the synthetic cryIAc gene for production of transgenic soybean, which showed to
be resistant against three lepidopteran insect-pests (H. zea, P. includes and H. virescens)
(WALKER et al, 2004). Later, new reports described the production of a GM soybean
containing a third QTL, named QTL-G, along with the cry1Ac resistance gene. It was showed
that QTL-M presented the largest effect on P. includens and H. zea resistance. QTL-G worked
better against H. zea larvae (RECTOR et al., 2000; ZHU et al., 2008), while QTL-H was not as
effective when compared to the other two resistance genes (WALKER et al., 2004; ZHU et al,,
2008). Therefore, the addition of another QTL, in order to increase insect resistance, represents
an interesting strategy for biological control in soybean cultivars (ZHU et al., 2008).

Recently, transgenic lines of soybean expressing the B. thuringiensis toxin CrylAc were tested
in the field for their potential resistance against lepidopteran pests. It was demonstrated that Bt
toxins could also be used in soybean as a resistance methodology aimed towards A.
gemmatalis, P. includens, and Hypena scabra (MCPHERSON e MACRAE, 2009).

3.2 Digestive enzyme inhibitors

The occurrence of proteinase inhibitors (PIs) as defence-related proteins and their role on
plant protection are well described in the literature. Since 1947, it has been observed that Pls
from soybean were able to inhibit the growth of insect-pests larvae, including the coleoptera
Tribolium confusum (HAQ et al., 2004; LYSON, 2002; MICKEL e STANDISH, 1947). Later, in
vitro and in vivo bioassays demonstrated that protease inhibitors were also active against
other insect species, such as Anagasta kuehniella, Hypera postica and Anthonomus grandis
(FRANCO et al., 2003; MACEDO et al., 2003; WILHITE et al., 2000). Hence, as there is no
evidence that proteinase inhibitors have toxic or deleterious effects on mammals, they
constitute a significant alternative for the development of transgenic crops resistant to
insect-pests and nematodes.

Soybean cultivars are predated by several insect species, requiring the application of
different insecticide compounds in agriculture. Proteinase inhibitors, such as AKTI (Albizzia
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kalkira proteinase inhibitor), could, therefore, be a promising choice, as it has been shown to
reduce the activity of the beet armyworm S. exigua by 57% (ZHOU et al., 2008).

Approaches for the development of genetically engineered soybean lines, which express
insecticidal molecules, are also being widely studied. Transgenic tobacco expressing a
cowpea trypsin inhibitor (CpTI) showed activity against Heliothis virescens larvae
(GATEHOUESE et al., 1993), as well as species from Diabrotica spp and Spodoptera spp
(HILDER et al., 1987). However, it was shown that in Nicotiana tabacum transgenic plants
expressing the barley trypsin inhibitor BTI-CMe, although larvae of Spodoptera exigua were
susceptible to the proteinase inhibitor, they were able to produce alternative proteins that
could maintain survivance of the insect-pest (LARA et al., 2000). This report demonstrated
the adaptation development of S. exigua over genetically modified tobacco cultures.

The inhibition of nematode digestive enzymes is one type of anti-feeding strategy, exemplified
by plant transformation with genes encoding proteinase inhibitors (ATKINSON et al., 2001;
LILLEY et al, 1999a; LILLEY et al., 1999b). To this end, there are reports that describe the
characterisation of proteinase activities in crude protein extracts of plant-parasitic nematodes
(LILLEY et al., 1996; MICHAUD et al., 1996) or the isolation of their proteinase genes
(FRAGOSO et al., 2005, FRAGOSO et al.,, 2009; LILLEY et al., 1997, NEVEU et al., 2003;
URWIN et al, 1997a). For example, the production of a genetically modified Arabidopsis
thaliana with a gene encoding the modified proteinase inhibitor from rice, cystatin Oc-1 delta
D86, was able to inhibit growth of Heterodera schachtii and Meloidogyne incognita females,
blocking egg production and pest proliferation. Other reports showed the potential application
of anti-feeding strategies based on plant transformation to express proteinase inhibitors
(ATKINSON et al., 2001; URWIN et al., 1997b; URWIN et al., 1998), proteinase gene silencing
by RNAi (URWIN et al.,, 2002), in vitro inhibition of cysteine proteinase activity using the
cognate pro-region of nematode cysteine proteinase (SILVA et al., 2004) and the
transformation of soybean roots to express the propeptide (MARRA et al., 2009).

3.3 Defensins: small tools against insect resistance

Defensins are antimicrobial peptides varying from 45-54 amino acid residues stabilised by 3-
4 disulfide bridges, which are isolated from different sources, such as plants, mammals,
insects and crustaceous (THOMMA et al., 2002). They have been described as important
tools for the control of pathogenic fungi, especially Rhizoctonia solani and Fusarium species,
which are important organisms that causes damage in soybean cultivars (OLLI e KIRTI,
2006; WANG e NG, 2007). Therefore, the study of defensins may lead to the development of
future transgenic plants encoding peptides toxic to these phytopathogenic fungi.

It was previously demonstrated that a recombinant defensin from mungbean (rVrD1) was able
to inhibit the growth of R. solani and F. oxysporum (CHEN, 2004). The same fungi also had their
activity inhibited by another defensin-like peptide, called coccinin, isolated from the seeds of
large scarlet runner beans (Phaseolus coccineus) (Ngai et al., 2004). Furthermore, Tfgdl, a
recombinant defensin from the legume Trigonella foenum-graecum, demonstrated similar
features, inhibiting the growth of R. solani at a low concentration (OLLI e KIRTI, 2006). In
addition, F. oxysporum growth was strongly affected by the recombinant Vitis vinifera
antimicrobial peptide (Vv-AMP1), as well as by the peptide from the flowers of Nicotiana alata,
NaD1 (BEER e VIVIER, 2008; WEERDEN e ANDERSON, 2008). Psd1, a defensin isolated from
pea seeds, was also able to decrease growth of the phytopathogen F. solani by interacting with
the fungus membrane, leading to cell death (MEDEIROS et al., 2010). Many other defensins
have been characterised as having antifungal activities, and these can be observed in Table 2.
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Studies on the expression of defensins in transgenic model plants are confirming the activity
of foreign peptides as an important tool against soybean pathogenic fungi. Hence, using
Arabidopsis thaliana as an expression system, defensins PDF1.1 and PDF1.3 were produced,
purified and analysed against several fungi species, showing activity against two soybean
pathogens, F. graminearum and F. oxysporum (SELS et al., 2007).

3.4 Using spider and scorpion venom toxins as novel insecticidal mediators

Scorpion and spider venoms are being studied for their several physiological and
pharmacological effects against pests and pathogens (ROCHAT et al., 1979; ZLOTKIN et al.,
1991).

Scorpion toxins seem to have specificity to some insects that cause economic crop losses
around the world, including soybean loss. Therefore, such toxins are being evaluated for use
in future development of recombinant biopesticides as an alternative strategy to control
insect-pests. Several insect-related toxins have been identified from scorpions, isolated from
diverse geographical locations (BECERRIL et al., 1995; CREST et al., 1992; NAKAGAWA et
al., 1997; ZLOTKIN et al., 1991). In this manner, toxins purified from the venom of the
spider Plectrurys tristis demonstrated insecticidal activity against H. virescens, an insect-pest
of soybean cultivars (QUISTAD and SKINNER, 1994). Moreover, a toxin identified from the
venom of Mesobuthus tumulus, called ButalT, showed high antagonistic activity towards the
insect H. virenscens (WUDAYAGIRI et al., 2001).

The interest in developing insecticidal compounds for field application in order to reduce
the use of chemical agrotoxics and decrease insect resistance has led to new biotechnology-
based approaches. Although not yet used in soybean plants, the insertion of a gene encoding
toxin into the genome of a plant or baculovirus is a potential alternative (KHAN et al., 2006;
LIMA et al., 2007; STEWART et al., 1991). The fusion of a toxin to the N-terminal of insect
lectins has also given successful results. Lectins can act as carrier proteins and direct the
fused toxins to the insect haemolymph, causing death (PHAM TRUNG et al., 2006).

3.5 Using gene silencing for nematode control

One of the techniques utilised in soybean biotechnological products is the genetic
transformation of cultivars expressing double strand RNAs (dsRNA) in order to drive gene
silencing in nematodes. The mechanism of pos-transcription gene silencing using dsRNA is
known as RNA-mediated interfering (RNAi), or gene silencing (BOSHER e LABOUESSE,
2000; HUNTER, 2000; KUWABARA e COULSON, 2000; SHARP, 1999). Gene silencing can
be either partial - called knckdown - or total - denominated knockout.

Briefly, the RNAi mechanism uses DICER complexes (dsRNA-specific RNase Ill-type
endonuclease), which recognise and digest the dsRNA into siRNAs (small interfering
RNAs) that ranges from 21-26 base pairs. These siRNAs flow through four possible
pathways. First, siRNAs bind to the RISC complex (RNA-induced silencing complex) to
search for and destroy complementary mRNA. Second, siRNAs bind to the RdRp complex
(RNA-dependent RNA polymerase), priming mRNAa to synthesise new dsRNAs, and
potentialising the entire RNAi process. Third, siRNAs bind to the membrane protein
complex SID (systemic RNAi), which spreads out siRNAs to neighbourhood cells and,
probably, to all cells, generating a systemic response of gene silencing. Fourth, siRNAs bind
to the RITS complex (RNA-induced transcriptional silencing), which drives heterochromatin
condensation of homologous regions, directing gene promoter turn-off and, consequently,
pre-transcriptional gene silencing.
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Researchers have applied RNAi technique in order to evaluate the effect of RNAi on
nematode development. This method was already widely used in the free-living nematode
Caenorhabditis elegans, and its effect is normally gene-specific, systemic, lasting, or even
hereditary (ALDER et al., 2003; BARGMANN, 2001; BARSTEAD, 2001).

Several reports use the methodology of in vitro dsRNA production and administration of
nematodes by incubation (soaking), followed by plant infection for the determination of
parasitism, such as the levels of reproduction and survival. Some silenced target genes showed
high potential for use in parasitism control, such as: (i) proteinase genes in cyst nematodes
Heterodera glycines and Globodera pallida (URWIN et al., 2002), and root-knot nematode M.
incognita (SHINGLES et al., 2007); (ii) chitin synthase in M. artiellian (FANELLI et al., 2005); (iii)
aminopeptidase in H. glycines (LILLEY et al., 2005); (iv) cellulases in G. rostochiensis (CHEN et
al., 2005) and H. glycines (BAKHETIA et al.,, 2007); (v) amphideal secretion protein in G.
rostochiensis (CHEN et al., 2005); (vi) FMREF-like peptides in G. pallida (KIMBER et al., 2007);
(vii) pectate lyase, corismato mutase and secretion peptide SYV46 in H. glycines (BAKHETIA et
al., 2007); and (viii) double oxidase in M. incognita (BAKHETIA et al., 2005).

Another strategy commonly applied is the use of transformed plants that express nematode
target-gene dsRNAs and their evaluation in the presence of nematode infection. In this way,
some plants showed partial-to-complete nematode resistance, as observed for the peptide
16D10 dsRNA expressed in Arabisopsis thaliana increasing resistance against M. incognita, M.
javanica, M. arenaria and M. hapla (HUANG et al., 2006). Moreover, the major sperm protein
dsRNA showed increase of soybean resistance towards H. glycines in soybean (STEEVES et al.,
2006). Reports also describe the successful use of this technique, such as in the silencing of M.
incognita genes that encode a splicing factor and an integrase. After nematodes were fed with
RNAIi transformed tobacco roots, they showed smaller and fewer healthy females when
compared to those that were fed the control plants (YADAV et al., 2006). Later, it was
demonstrated that the exposure of nematodes to RNAi fragments increased their susceptibility
to RNAI delivery, confirming the importance of gene silencing techniques as biotechnological
tools to improve plant resistance to pathogenic nematodes (LILLEY et al., 2007). Earlier studies
also reported that the silencing of a gene encoding cathepsin L-cysteine (mi-cpl-1) from M.
incognita was able to decrease the number of fertile females. In this case, the production of eggs
was reduced to 40% using only a small fragment of the respective gene (800 bp) (SHINGLES et
al., 2007). Moreover, studies of the transcription factor of M. javanica in tobacco plants
produced satisfactory results, showing that the RNAi technique is an excellent strategy to
study plant resistance to phytopathogenic nematodes (FAIRBAIRN et al., 2007).

Recently, it was reported that the use of four different RNAi gene-silencing constructs was
able to decrease cyst nematodes in transformed soybean roots (KLINK et al., 2005; KLINK et
al.,, 2009). Furthermore, another study showed that silencing of a tyrosine phosphatise gene
and a mitochondrial stress-70 protein precursor from M. incognita provided the reduction of
gall formation in transformed soybean. It also revealed that nematode development was
affected by RNAi constructs (IBRAHIM et al., 2010).

Target-specific RNAi of the H. schachti gene Hg4F01, a related species of H. glycines,
expressing an annexin-like protein was also studied in order to identify its function on
nematode resistance. H. schachti was used in this work because of its effect on Arabidopsis
thaliana, which could not be performed with H. glycines. Hence, using plant-host derived
RNAI and the Arabidopsis-cyst nematode system, it was demonstrated that the annexin-like
protein had a significant effect on plant-nematode interactions. In addition, it was concluded
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that the expressed protein, which is also produced in Arabidopsis, may mimic plant annexin
function (PATEL et al., 2010).

4. Directing transgene expression to attacked tissues

4.1 Promoter isolation and characterisation

Once the Cauliflower Mosaic Virus (CaMV) 355 promoter was isolated and characterised
(ODELL et al., 1985), it became the major general-purpose and most widely-used promoter
in GM plants (HERNANDEZ-GARCIA et al., 2009). CaMV 355 is the promoter of choice in
more than 80% of GM plants (HULL et al., 2002), because it drives constitutive high levels of
transgene expression (VENTER, 2007).

Despite the great success of the 355 promoter, there is a scientific interest in discovering new
promoters with differentiated and specialised functions. Moreover, the stability and
expression pattern of foreign genes driven by the 35S promoter has been tested and
questioned (BAKHSH et al., 2009; WESSEL et al., 2001). Therefore, the discovery of plant
promoters was essential to drive predictable temporal and tissue-specific expression
patterns and high levels of protein production (LU et al., 2008). When evaluating transgenic
strategies for nematode control, although widely used, the 35S promoter has certain
limitations, such as its poor performance in monocots, and its suppression when feeding
nematodes (URWIN et al., 1997c).

Plant promoters used in biotechnology are divided into three categories based on gene
expression pattern: constitutive (almost everywhere, every time); spatiotemporal (tissue-
specific and/ or stage-specific); and inducible (regulated by some specific signal) (POTENZA
et al., 2004). Inducible promoters can fit into three categories: endogenous-signal responsive
(plant hormones); external, physical-stimuli responsive (abiotic and biotic stresses); and
external, chemical-stimuli responsive (PEREMARTI et al., 2010).

Plants have evolved defence mechanisms to combat pests and pathogens. Some defence
mechanisms are innate, others are only active when and where there is an attack. These
mechanisms, therefore, are dependent on biotic-interaction detection, functionality of
signalling pathways, defence-gene expression, cellular- and tissue-defence activation. The
expression of defence genes is driven by chemical-inducible promoters, when elicitors
produced by pests and pathogens are recognised by plants (PEREMARTI et al., 2010).
Similarly, pest wounding generates physical signals which direct expression of defence
genes. Both elicitor-inducible and wound-inducible promoters are relatively well-conserved
across taxonomic groups, implying wide plant species spectra in transgenic strategies
(PEREMARTI et al., 2010).

Plant cellular response to biotic stress - initiated by biochemical signalling cascades that
detect pest injury or pathogen invasion - can be carried out by activation and/or inhibition
of transcription factors (trans-elements). In turn, they bind to specific DNA sequences (cis-
elements) to regulate gene expression. In this way, resistance mechanisms are activated
only, or mainly, when and where there is an attack, and achieve a lethal dose. Besides
identifying genes to control pests and diseases, the use of such biotic-stress induced
promoters could ensure transgene expression primarily in affected tissues, specific to a
specific targeted pest or pathogen.

Root-knot and cyst nematodes induce plant cell differentiation to generate nematode
feeding sites, giant cells and syncytia, respectively, which act as nutrient sinks. Such cellular
modification, coordinated by a complex gene-regulation network, is under examination in
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several studies in order to find key transcription factors. Some nematode-induced promoters
could represent excellent vectors for the administration of lethal doses to nematode feeding
sites in infected roots.

Hence, a soybean heat shock protein 90-like promoter (GmHSPI0L) and a soybean
polyubiquitin promoter (Gmubi) have shown higher expression levels of the gfp gene than the
cauliflower mosaic virus 355 promoter (CaMV35S), when transformed in cotyledons of
germinating lima bean (Phaseolus lunatus) seeds (CHIERA, 2007). An intronic region (Gumpri)
from the Gmubi promoter seems to be essential for increasing gene expression levels. It was
demonstrated that the activity of Gmubi promoter was two times higher than CaMV35S
promoter when the intron was removed, compared to a five times higher when the intronic
region was present. Similar results were also obtained for ubiquitin promoters from other
sources. The ubiquitin promoter from rice showed no activity when the intronic region was
removed (WANG e OARD, 2003). Also, The expression of the same promoter in tobacco was
not only reduced when the intron was not present, but the tissue-specific expression was
altered (PLESSE et al., 2001). Moreover, the GmHSPI0L promoter showed stronger expression
levels than CaMV35S, but the expression level decreased after promoter truncation, revealing
that this region might be related to GmHSPI0L promoter regulatory elements (CHIERA, 2007).
Detailed studies of gene expression at nematode feeding sites have been performed by
several research groups, and some nematode-induced promoters have been identified and
characterised. The TobRB7 gene (enconding a water channel protein - OPPERMAN et al.,
1994), the Hahsp17.7G4 gene - which encodes a heat shock protein (ESCOBAR et al., 2003) -
and the E2 gene (enconding the ubiquitin conjugation factor 2 - BIRD, 1996), are al highly
expressed in the giant cells of M. incognita.

Ubiquitination plays important roles, such as on mediating lipidation, protein activity
regulation, protein-protein interaction control, subcellular localisation (MUKHOPADHYAY e
RIEZMAN, 2007), transcription control through histone ubiquitination, translation control,
DNA repair, regulation of endocytosis and protein trafficking (MURATANI e TANSEY, 2003).
Indeed, ubiquitination regulates various aspects of plant life, including disease resistance
(ZENG et al., 2006), hormone signalling (ITOH et al., 2003), many developmental processes
and cell cycle control (MOON et al., 2004). Thus, the E2 enzyme, a member of the Leubc4
family, has a major role in cellular metabolism and giant cell formation. Because of this, its
promoter region was suggested for promoter characterization and use as biotechnological tool
for root-nematode control (BIRD, 1996). Therefore, the soybean E2 gene promoter, named
UceS8.3, was isolated and characterised for further use in soybean genetic transformation
(GROSSI-DE-SA et al., 2008). In the same way, the soybean polyubiquitin gene promoter was
isolated and characterised (HERNANDEZ-GARCIA et al., 2009).

Functional genomic studies have been applied to study plant-nematode interactions, in
order to identify genes that were up-regulated and down-regulated at nematode feeding
sites. The use of microarray hybridisation, serial analysis of gene expression (SAGE) and
proteomic methodologies (FRANCO et al., 2010; MEHTA et al., 2008) achieved gene
expression analyses at genomic scale, while quantitative real time PCR, in situ hybridisation
and Laser Capture Microdissection techniques provided more accuracy in comparing
differences in promoter expression.

The use of novel promoters for gene expression control can be widely used in genetically
modified soybean in order to direct the foreign gene to a specific tissue attacked by a certain
pest or pathogen. In this way, some promoters identified in soybean have been studied in
model plants and compared with other existing promoters from other sources.
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Hence Khan and colleagues (2004) made comparisons of 1,300 cDNAs from soybean
infested with H. glycines at 2 dpi (Table 4). Klink and colleagues (2005) used laser capture
microdissection to collect syncytia of soybean under 8-dpi infestation with H. glycines. A
total of 800 cDNAs were sequenced, assembled as 174 consensus sequences, where 6 were
up-regulated, 1 was down-regulated and 5 were both activated or inhibited, as confirmed by
qRT-PCR. Later, Aklharouf and colleagues (2006), using microarray chips with more than
6,000 cDNA spots, detected hundreds of differentially expressed genes at from 6 hours (hpi)
to 8 days post-infection (dpi). ITHAL and colleagues (2007a) simultaneously compared
infested and non-infested soybean roots and different development stages of H. glycines at 2,
5 and 10 dpi. The microarray analysis of 35,611 soybean genes and 7,431 nematode genes
detected 429 plant genes and 1,850 nematode genes with differential gene expression.
ITHAL and colleagues (2007b) made microarray hybridisations to study syncytia
development from 0 to 10 dpi. Using chips with 35,611 soybean genes, they observed 1,765
genes with changes in expression pattern until 2 dpi, when 1,116 genes were up-regulated,
while 649 genes were down-regulated.

5. Perspectives on GM soybean for insect-pests and diseases control

The glyphosate-tolerant GM soybean alone corresponds to 52% of all biotech crops planted
world area. Indeed, considering soybean, herbicide tolerance has still been the major aimed
trait, with around ten novel varieties showing tolerance to different chemical compounds in
their final steps of R & D pipeline to commercial events.

However, there is an obvious need and seed market demand for insect-pests and plant-
pathogens resistance traits. In a very near future, the first GM soybean resistant to insect-
pests and nematode will be available as single traits or together with herbicide tolerance
(stacked traits).

In that way, several biotechnological strategies and their candidate genes have been tested
in order to induce resistance to various pests and diseases, including the tissue over-
expression of genes driven by specific plant promoters. Hence, it is expected to observe, in a
near future, the production of soybean and its processed products with less or none
agrotoxic residues or micotoxins from opportunistic fungi, as it has been already seen by the
GM maize containing a Bt toxin. Consequently, it is also expected that further GM soybean
traits enable a relevant decrease of costs with chemical pesticides, the enhancement of
soybean quality and crop production, as well as the maintenance of a non-poluted and
biodiverse environment.

Recenlty, the Academy of Science from the Vatican announced their support on the
production of transgenic plants. The report was published in an International Scientific
Journal and signed by 40 specialists - including 7 from the Vatican itself. Among other
things, the report described the need for development of new agricultural technologies in
order to decrease malnutrition and starvation that surrounds 1 billion people of the world
(Potrykus et al., 2010). This announcement brought new perspectives for biotechnology,
once that now religion and science are walking together for the improvement of food supply
and the development of new techniques into plant transformation. Therefore, it is expected
that, in future, more advanced strategies provide the cultivation of several transgenic crops
with diverse resistances towards pests, pathogens and environment conditions, with the
approval for consumption not only from Inspection Organizations, but from the entire
society.
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Biologic process
or predict gene function (Protein)

Time pos infestation

(analysis technique) Reference

A Defence

A Stress response (peroxidase; SAM22)
A Carbohydrate metabolism

A Cellular signalling

A Unknown

2 dpi
(Microarray)

(KHAN et al., 2004)

A Defence (SRG2)

A Water channel (GmPIP2,2)

A Cell skeletal (GmTubA1; GmTubB4)
A DNA binding (MYB-related protein)
V¥ Protein catabolism (ubiquitin)

8 dpi
(EST library)

(KLINK et al., 2005)

A Defence

A Wounding response

A Transcription factor (WRKY)
A DNA duplication

A RNA transcription

A Protein translation

A Unknown

6 hpi, 12 hpi
1,2,4, 6 and 8 dpi
(Microarray)

(ALKHAROUF et al., 2006)

A Defence

A Stress response (peroxidase)

A Primary and secondary metabolism
AV Cell wall modification

A Plant development

A Cellular signalling

A Transcription factor (WRKY; bZIP;
ERF; MYB)

2,5 and 10 dpi
(Microarray)

(ITHAL et al., 2007a)

A Disease related

A Primary and secondary metabolism
A V Cell wall modification

A Lignin and suberin biosynthesis
AV Transporter of sugar, metal ion
and amino acid

A V Auxin related

AV Ethylene related

V¥ Cytokinin related

V Gibberellin related

V¥ Jasmonic acid biosynthesis

A Development related (PHAP2A)

V¥ Water channel (Rb7)

2,5 and 10 dpi)
(Microarray)

(ITHAL et al., 2007b)

Differential expression of individual genes, relative to non-infested plants, at different times was
associated to predicted gene function and biologic process. The arrows represent predicted biological
process activation (A), inhibition (V) or undetermined (A V), considering the results of individual up-

or down-regulated genes.

Table 4. Biologic process modification during infestation of G. max plants by H. glycines.
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