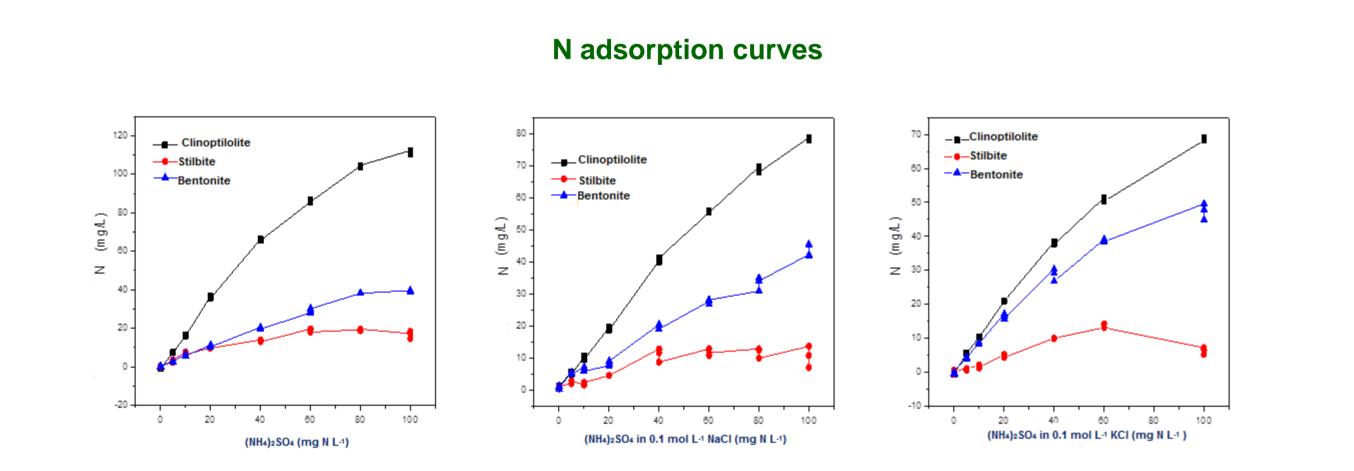
Pecuária Sudeste

Embrapa

Comparing aluminosilicates adsorption capacity of N, P and K

Alberto C. de Campos Bernardi^(1,4), Gilberto Batista de Souza⁽¹⁾, Larissa R.S.P. Silva⁽²⁾, Marta A. Fujita⁽²⁾, Elaine Inácio Pereira⁽²⁾, Caue Ribeiro de Oliveira^(3, 4)

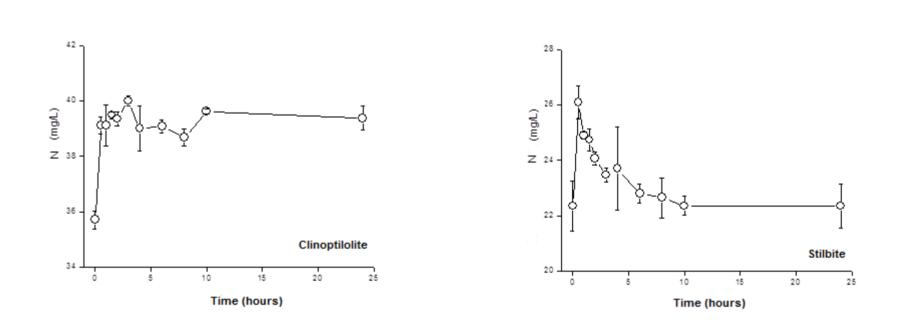

⁽¹⁾ Researcher – Embrapa Pecuária Sudeste, São Carlos, SP Brazil Cx.P. 339 CEP: 13560-970, alberto@cppse.embrapa.br ⁽²⁾ UFSCar, São Carlos, SP, Brazil.; ⁽³⁾ Embrapa Instrumentação Agropecuária, São Carlos, SP, Brazil; ⁽⁴⁾ CNPq fellow

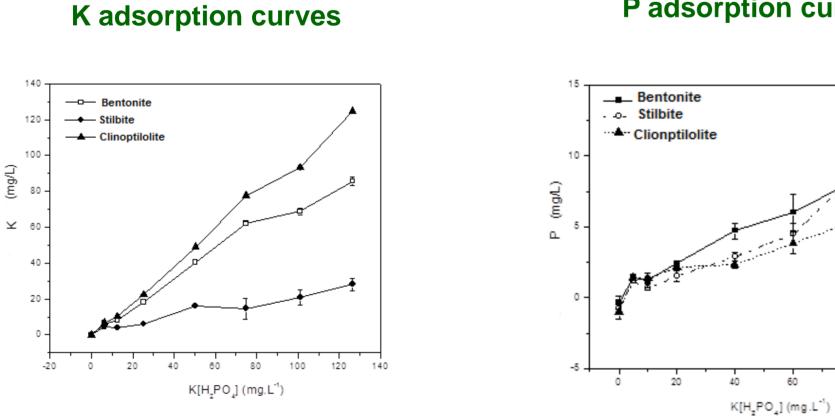
INTRODUCTION

- ✓ Aluminosilicates with negative charges provide an exchangeable site for positive cations such as K, Ca and Mg, and positively charged groups such as water and ammonia.
- ✓ Due the weak attraction absorbed cations can be easily replaced using the standard ion exchange techniques, making these natural minerals good ion exchangers.
- Aluminosilicates use may improve the fertilizers use efficiency by controlling nutrient retention and release.

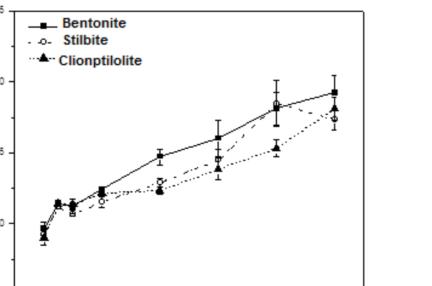
OBJECTIVE

Determine the adsorption capacity of N, P and K by the three natural aluminosilicates.

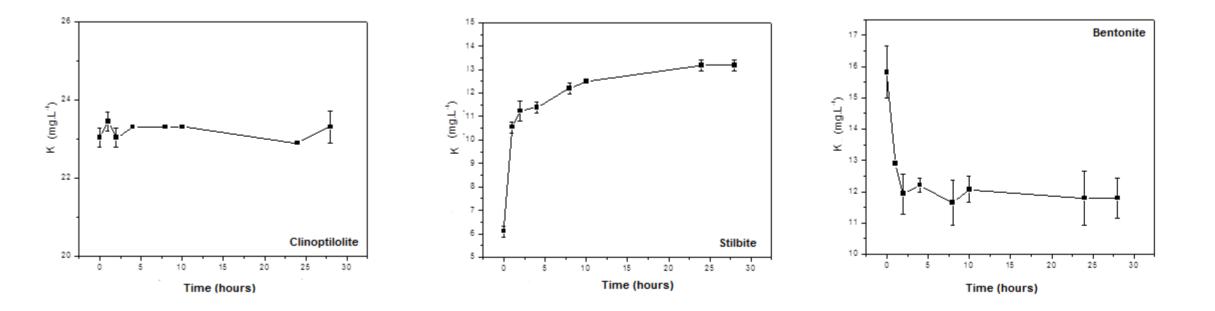

✓ Four experiments were carried out in laboratory.


- Experimental design: totally randomized experimental design with three replications.
- ✓ Aluminosilicates: clinoptilolite, stilbite and bentonite
- ✓ Adequate period for adsorption :
 - N = 1 g of clinoptilolite and stilbite was shacked in 50 mL solution of 0.001 mol L^{-1} (NH₄)₂SO₄ for 0, 0.5, 1, 2, 4, 5, 8, 10 and 24 hours;
 - K = 1 g of clinoptilolite and stilbite was shaken in 50 mL solution of 0.001 mol L⁻¹ K(H₂PO₄) for 0, 0.5, 1, 2, 4, 5, 8, 10 and 24 hours;
- ✓ N adsorption :
 - I g of clinoptilolite, , zeolite and bentonite were shaken in 50 mL solution of (NH₄)₂SO₄ at 0, 5, 10, 20, 40, 60, 80 and 100 mg N L⁻¹ diluted in water, 0.1 mol L⁻¹ NaCl and 0.1 mol L⁻¹ KCl, respectively, for 30 min;

✓ P and K adsorption :


- I g of clinoptilolite, , zeolite and bentonite were shaken in 50 mL solution of K(H₂PO₄) at 0, 5, 10, 20, 40, 60, 80 and 100 mg L⁻¹ of P and K, for 30 min;
- ✓ After centrifugation N and P concentrations in supernatants were measured by spectrophotometry with flow injection analysis (FIA), and K concentrations with flame photometry.

Adequate period for adsorption of N



60

80

100

Adequate period for adsorption of K

CONCLUSIONS

Results showed N and K adsorption order was clinoptilolite, bentonite and stilbite.

There was no difference on P adsorption, which was lower than 10% of total P in solution for all aluminosilicates.

☐ These results also indicate that aluminosilicates minerals probably are able to improve the efficiency of N and K through the control of retention of NH4 and K ions and, therefore, enhancing plants absorption ability.

INSTITUTE COORDINATION LATIN AMERICA

Ministério da Agricultura, Pecuária e Abastecimento

