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Ovarian physiology is controlled by endocrine and paracrine
signals, and the transforming growth factor b (TGFb) super-
family has a pivotal role in this control. The Bone morphoge-
netic protein 15 (BMP15) and Growth differentiation factor 9
(GDF9) genes are relevant members of the TGFb superfamily
that encode proteins secreted by the oocytes into the ovarian
follicles. Through a paracrine signalling pathway, these factors
induce the follicular somatic cells to undergo mitosis and
differentiation during follicular development. These events are
controlled by a mutually dependent and coordinated fashion
during the formation of the granulosa cell layers. Many studies
have contributed to our knowledge concerning the paracrine
factors acting within the follicular environment, especially
regarding GDF9 and BMP15. We aimed to review the relevant
contributions of these two genes to animal reproductive
physiology.

Introduction

The influence of endocrine and paracrine signalling over
follicular somatic cell growth and differentiation during
follicular development is not completely understood
(Adashi and Rohan 1992; Galloway et al. 2000). Recent
studies concerning intrafollicular communication be-
tween the oocyte and somatic cells reveal that the oocyte
secretes growth factors and directly induces follicular
development by a complex paracrine signalling process
(Li et al. 2000; Su et al. 2008; McLaughlin and McIver
2009). Among these growth factors, two members of
TGFb superfamily are noteworthy: the GDF9 and
BMP15 genes are both expressed by the oocyte during
follicular development (McGrath et al. 1995; Dube
et al. 1998; Bodensteiner et al. 1999; Galloway et al.
2000; Sendai et al. 2001; Juengel et al. 2002). These two
factors are fundamental to the activation of primordial
follicles and subsequently participate in all stages of
follicular development (Bodensteiner et al. 1999; Eppig
2001; Juengel et al. 2002; Mandon-Pepin et al. 2003).
They are also involved in the final events of maturation
and ovulation, such as the expansion of cumulus
oophorus cells (Lan et al. 2003; Su et al. 2004; Dragovic
et al. 2005, 2007). Although there has been an increase
in the number of growth factors characterized in the last
few years, the understanding of the complex signalling
network inside the follicle is still in process. In this
review, we screened the most recent research regarding
the roles of GDF9 and BMP15 in the genetic control of
mammalian reproductive physiology, paying special
attention to the livestock species.

Follicular Development and Crosstalk Between
Oocyte, cumulus oophorus and Granulosa Cells

Follicles, which are the functional units of the ovary, are
comprised of an oocyte surrounded by somatic cells.
Follicles are classified as either non-cavitary pre-antral
follicles (95% of the follicular population) or cavitary
antral follicles (5% of the follicular population)
(Figueiredo et al. 2007). Follicles are also classified into
four developmental stages (primordial, primary, sec-
ondary and tertiary), according to their size and their
responsiveness ⁄dependency on gonadotropins (McGee
and Hsueh 2000). In the antrum fluid of tertiary follicles,
there is an intense paracrine signalling promoted by
growth factors, many of which are members of the
TGFb superfamily and are directly involved in the
proliferation of somatic cells and steroidogenesis control
(Dong et al. 1996; Matzuk et al. 2002). In the third stage
of development, follicles are dependent on gonadotropin
to continue growing and ‘surviving’ (Vitt and Hsueh
2001). Follicles grow coordinately as a pool until the
tertiary stage. At this point, another important event
occurs: the follicle with the highest response to follicle
stimulating hormone (FSH) in the growing pool
becomes dominant. Concomitantly, granulosa cells start
to express luteinizing hormone (LH) receptors in the
mid to late follicular phase under the influence of FSH
(Erickson et al. 1979). At this moment, the increasing
production of estradiol (E2) by antral follicles acts as an
inhibitor of FSH release by the hypophysis gland, so
FSH and LH act in synergy to support follicular
development (Erickson et al. 1979). As a form of
negative feedback, that decrease in FSH availability
induces the subordinate follicles (those more dependent
on FSH) to undergo atresia and degenerate. Therefore,
only one dominant follicle in mono-ovulatory mam-
mals, or a few dominants in poly-ovulatory species,
continue to grow and will be able to undergo maturation
and ovulation (McGee and Hsueh 2000).

Granulosa cells are also divided into anatomically and
functionally distinct types during follicular growth and
antrum formation: the cumulus cells, which have direct
metabolic contact with the oocyte and the mural
granulosa cells (the somatic lineage of the follicle’s
internal wall), which form a stratified epithelium along-
side the basal lamina (Latham et al. 1999). In specialized
cumulus cells, which are juxtaposed to the oocyte, there
are cytoplasmic projections, such as desmosomes and
gap junctions, which penetrate into the oocyte mem-
brane through the zona pellucida. Through these
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cytoplasmic connections, the oocyte and cumulus cells
share micronutrients and form a functional syncytium
(Albertini et al. 2001; Makabe et al. 2006).

Historically, folliculogenesis control was attributed
only to endocrine factors, acting directly in the ovary
through the hypothalamic-pituitary-gonadal axis. Endo-
crine control is mediated by tissue-specific protein
hormones: steroid hormones, cytokines and prostanoid
hormones. The biology of the bovine oestrous cycle and
the role of these hormones have been exhaustively
described (for detail see Moore and Thatcher 2006). The
events that occur during the oestrous cycle are regulated
basically by a hormonal interaction of gonadotropin-
releasing hormone (GnRH), FSH, LH, E2, progesterone
(P4) and prostaglandins. However, new research has
arisen focusing on intrafollicular signal-regulatory pro-
teins that have a decisive role during early-to-late
follicular development and coordinate the crosstalk
between the oocyte and the follicular somatic cells
(Webb et al. 2003). Therefore, oocyte-secreted factors
can regulate folliculogenesis by modulating the growth
and differentiation of granulosa cells. This regulation
has an effect on FSH and LH through the expression of
their receptors on target cells (Halvorson and Chin
1999; Findlay et al. 2002) and the expression of other
modulators, such as, insulin growth factor 1 (IGF-1),
inhibin, activin and androgens (Hickey et al. 2004). In
general, the oocyte signalling factors induce the expres-
sion of genes associated with cumulus cell differentiation
and mitosis. Moreover, these genes induce follicle
growth and assist oocyte maturation through a positive
feed-back mechanism. However, the precise role of each
element in this intricate and complex signalling network
is still under study.

TGFb Superfamily Members GDF9 and
BMP15
The TGFb superfamily is divided into two subgroups:
BMP and TGFb. This division was established accord-
ing to the origin of the gene and its genetic structure
(Chang et al. 2002). The involvement of this superfamily
in ovarian physiology, cellular differentiation and fertil-
ity is propelling many research studies. The molecular
structure of TGFb superfamily proteins is quaternary,
containing two b-strands and one a-helix. The a-helix is
stabilized by three intermolecular disulphide bonds,
which forms dimers between two identical protein
monomers (homodimers) or between distinct TGFb
superfamily factors (heterodimers) (Vitt and Hsueh
2001).

The GDF9 and BMP15 genes contain two exons
separated by a single intron that encode a rough
endoplasmic reticulum (RER) signal peptide, a prore-
gion and a mature peptide. The signal peptide region is
encoded by the first exon, the proregion by segments of
both exons and the mature peptide region by the second
exon (McGrath et al. 1995). GDF9 and BMP15 are
synthesized in the RER as pre-proproteins, constituted
by a proregion and a mature carboxy-terminal domain
(Chang et al. 2002). Post-translational processing is
important for the secretion of biologically active
GDF9 and BMP15 molecules (McMahon et al. 2008;

Mottershead et al. 2008; Li et al. 2009). In this process,
the signal peptide is removed and the proproteins
undergo dimerization. As processing proceeds, specific
proteolytic enzymes cleave the dimerized proproteins at
the conserved furin cleavage sites (RHRR). The furin
cleavage liberates the biologically active dimeric mature
protein to be secreted by the cell (Liao et al. 2003).
GDF9 and BMP15 are the closest paralogues of the
TGFb superfamily, and the mature regions of GDF9
and BMP15 can dimerize with themselves (homodimer),
or with the mature regions of each other (heterodimer)
when produced within the same cell. As they lack the
seventh cysteine present in all other members of the
TGFb superfamily (Vitt and Hsueh 2001), they are
unable to establish covalent interactions between their
monomers. Therefore, GDF9 and BMP15 dimerize only
by electrostatic and hydrophobic interactions, which
presumably confer them to be more labile for their
interactions (Chang et al. 2002).

All members of the TGFb superfamily have glycosyl-
ation target sites in their polypeptide sequences, and for
most of them this post-translational modification is
important for recognition by their receptors (Yoshino
et al. 2006). The GDF9 amino acid sequence has four
putative glycosylation sites, three in the proregion and
one in the mature peptide. The BMP15 sequence has five
putative glycosylation sites, three in the proregion and
two in the mature peptide (Dube et al. 1998). In vitro
studies show that, like any TGFb member, glycosyla-
tions are required for the receptor to recognize the
GDF9 and BMP15 factors, thus guaranteeing their
bioactivity (McMahon et al. 2008). Therefore, the GDF9
and BMP15 expressed in bacterial-based systems do not
retain full bioactivity (Eppig 2001).

Bone Morphogenetic Proteins (BMPs)

The term BMP was coined in 1965 to designate the
active components in bone demineralization (Urist
1965). These proteins were classified as members of the
TGFb superfamily in 1986 (Wozney et al. 1988). Later,
the presence of a functional BMP system in mammalian
ovaries was described (Shimasaki et al. 1999). Currently,
12 different types of BMPs and eight GDFs are known
in the BMP subfamily (Lehmann et al. 2003). Many
proteins of this subfamily are expressed by oocytes,
granulosa and theca cells. These factors act as intra-
ovarian regulators of primordial follicle activation,
somatic cell proliferation, steroidogenesis and oocyte
maturation (Knight and Glister 2003). BMP6, GDF9
and BMP15 mRNAs were observed in the oocytes of
mouse (McGrath et al. 1995; Dong et al. 1996), rat
(Hayashi et al. 1999), and human (Fitzpatrick et al.
1998; Aaltonen et al. 1999), ovine and bovine (Boden-
steiner et al. 1999; Galloway et al. 2000), brushtail
possum (Eckery et al. 2002), and porcine (Brankin et al.
2005). Expression of BMP2 and BMP6 mRNA was
observed in granulosa cells, and the expression of
BMP3b, BMP4, BMP6 and BMP7 mRNA was detected
in theca cells. This indicates that these factors partici-
pate in the bidirectional communication system between
the follicular somatic cells and the oocyte (Gilchrist
et al. 2006).
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GDF9
In ovine species, the GDF9 gene is located on chromo-
some 5 and, within the ovary, is expressed exclusively by
the oocyte (Sadighi et al. 2002). Although GDF9 is
occasionally referred to as an oocyte-specific factor, it is
also expressed outside the ovary, most notably in the
testis of mouse, rat, cow and human; in the pituitary
gland of sheep and human; adrenal derived cell lines of
mouse and human; and in foetal and neonatal mouse
adrenal gland (Fitzpatrick et al. 1998; Pennetier et al.
2004; Faure et al. 2005; Farnworth et al. 2006; Nicholls
et al. 2009; Wang et al. 2009). The GDF9 sequence is
conserved among mammals and is also very similar to
BMP15; consequently, it was classified as a BMP
subfamily member (Vitt et al. 2002). The knockout of
GDF9 can block the development of pre-antral follicles
and cause infertility in female transgenic mice (Dong
et al. 1996; Elvin et al. 1999). However, GDF9 and
BMP15 knockout male mice are fertile with normal testis
morphology and physiology and, besides GDF9 and
BMP15 expression in extraovarian sites, no other effect
of GDF9 and BMP15 knockout is observed (Dong et al.
1996; Elvin et al. 1999; Yan et al. 2001). The oocytes of
knockout mice show absence and abnormal disposition
of organelles, and the granulosa cells lack the capacity to
undergo apoptosis. As apoptosis has been confirmed to
be the mechanism of germ cell atresia in animals (Pesce
and De Felici 1994; Ratts et al. 1995; Morita et al. 1999),
this provides considerable insight into the role of GDF9
in early folliculogenesis in vivo (Dong et al. 1996). The
GDF9 is necessary to optimize oocyte microenviron-
ment, ovarian follicles growth and atresia, ovulation,
fertilization and normal reproduction (Orisaka et al.
2009). Also, it induces the expression of the genes
hyaluronic synthase 2 (Has2), cyclooxygenase 2 (COX2),
pentraxin 3 (Ptx3), prostaglandin (Ptgs2) and gremlin
(GREM1) in cumulus cells, which are essential for their
expansion during oocyte maturation and before ovula-
tion (Pangas and Matzuk 2005). Previous studies dem-
onstrated the ability of recombinant GDF9 to induce the
expansion of cumulus cells in mice and secretion of an
extracellular matrix. This matrix is composed mainly of
hyaluronic acid, synthesized by Has2, which assists the
cumulus-oocyte complex capture by the oviduct cells and
enables proper fertilization (Elvin et al. 1999). More-
over, the GDF9 knockdown by RNAi (RNA interfer-
ence) injection into the oocyte eliminates the expansion
of the cumulus cells, which corroborates the data
supporting the essential role of this factor in cumulus
cell expansion in mice (Gui and Joyce 2005).

Recent studies with immunization against the mature
region, or different peptide sequences of GDF9 and
BMP15, show an abnormal follicular development,
perturbation of the oestrous cycle and altered ovulation
rate in distinct ways in sheep and cattle (Juengel et al.
2002, 2004a, 2009; McNatty et al. 2007). The active
long-term immunization against peptide sequences of
mature regions of GDF9 and BMP15 provoke abnormal
oestrous behaviour and arrest follicular development
in ewes (Juengel et al. 2002). However, short-term
immunization against different peptides (at the most
N-terminal portion of the mature region of GDF9 and

BMP15), using DEAE dextran adjuvant, increases the
ovulation rate in the immunized ewes (Juengel et al.
2004a). Moreover, distinct peptides based on the GDF9
or BMP15 mature region sequence can induce anovu-
lation or increase the ovulation rate, depending on their
position. The peptides against the most N-terminal
portion of the mature region are more effective in
inducing anovulation, while peptides representing the
central portion of the mature region can increase
ovulation in immunized ewes (McNatty et al. 2007).
However, the same peptides are not effective in inducing
anovulation or inducing a consistent increase in the
ovulation rate in cows (Juengel et al. 2009). These
results demonstrate the relevant role of BMP15 and
GDF9 in the oestrous cycle control and normal follicular
development in mammals, but their actions are distinct
among different species.

BMP15
BMP15 (also known as GDF9B) was first described in
1998. It is highly homologous toGDF9 and is expressed in
the oocytes of primary follicles in sheep, human and
rodent (Dube et al. 1998; Laitinen et al. 1998). Similar to
GDF9, the mRNA and protein of BMP15 are found in
oocytes during all stages of folliculogenesis. Its expression
is high between the primary to pre-ovulatory follicle
stages in rodent species. However, in mice, BMP15
protein expression does not occur until ovulation (Otsuka
and Shimasaki 2002). Unlike GDF9, BMP15 protein is
found in the pituitary gland, testis and in several other
tissues from many species, suggesting that BMP15 activ-
ity is not exclusive to the ovary (Otsuka and Shimasaki
2002). BMP15 mRNA was not detected in oocytes of
primordial stage follicles and is only detected in growing
follicles. However, similar to GDF9, it has a fundamental
role in the regulation of follicular development in mam-
mals (Galloway et al. 2000; Sendai et al. 2001).

The BMP15 targets granulosa cells, which stimulates
them to proliferate, and also modulates the expression of
steroid hormones (Otsuka and Shimasaki 2002). There is
a peak of BMP15 expression during the moment of
cumulus cells expansion, which occurs after oocyte
maturation. This allows BMP15 to interact with GDF9
and coordinate the expression of the genes involved in
cumulus cells expansion (Lan et al. 2003). In vitro experi-
ments show that GDF9 and BMP15 have distinct effects
on reproductive physiology in a specie-specific manner
(Vitt et al. 2002). However, both genes are essential for
proper follicular development, and natural mutations in
these genes can provoke infertility in homozygous ewes
(Hanrahan et al. 2004). Therefore, it seems that the
maintenance of the precise expression level ofBMP15 and
GDF9 in oocytes is essential for efficient female fertility
and proper follicular development (Liao et al. 2003). The
presence of a regulatory feedback system between oocyte
BMP15 ⁄GDF9 and granulosa cell kit ligand could main-
tain the appropriate expression level of BMP15 and
GDF9 in the oocyte, which is essential for their physio-
logical functions (Otsuka and Shimasaki 2002).

To present full bioactivity, the BMP15 protein
undergoes three types of post-translational modifica-
tions in five distinct sites: N-glycosylation (Dube et al.
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1998; Hashimoto et al. 2005; Li et al. 2009), O-glyco-
sylation (Saito et al. 2008) and C-phosphorylation
(McMahon et al. 2008). The amino acid sequence of
mouse GDF9 contains four putative N-linked glycosyl-
ation sites, one of which is located in the mature region
(McPherron and Lee 1993; Gilchrist et al. 2004a).
Inadequate post-translational modifications, also
known as inadequate protein maturation, can create
aberrations with direct consequences on female repro-
ductive physiology (Saito et al. 2008). These abnormal-
ities provide molecular evidence of intracellular
interactions between BMP15 and GDF9.

As opposed to GDF9, BMP15 knockout female mice
present only a slight decrease in fertility, characterizing a
subfertility phenotype (Yan et al. 2001). However, when
the BMP15) ⁄ ) genotype is introduced into a GDF9+ ⁄ )

background, the females (BMP15) ⁄ ) GDF9+ ⁄ )) show
severe defects in ovary morphology and are sterile (Yan
et al. 2001). These results show a synergic effect between
GDF9 andBMP15, corroborating the idea of a functional
interaction between these two genes in vivo. However, the
absence of GDF9 and BMP15 has distinct phenotypes
among different species, because these naturally occur-
ring mutations that nullify BMP15 activity lead to
infertility in homozygous ewes (Galloway et al. 2000).

As the GDF9 and BMP15 are the only members of the
TGFb superfamily that do not contain the fourth
cysteine of the cysteine knot structure, their subunits
are not covalently linked and can form homo and
heterodimers in vivo (McIntosh et al. 2008). It is possible
that the secreted GDF9 ⁄BMP15 heterodimer is impor-
tant for follicle somatic cell mitosis promoted by the
oocyte through the use of the same receptors used by the
GDF9 and BMP15 homodimers (Gilchrist et al. 2004b).
The post-translational processing of BMP15 and GDF9
present differences in distinct species; recombinant
mouse BMP15 is less efficiently processed in mouse
cells than in human and sheep counterparts. However,
human, mouse and sheep recombinant GDF9 are easily
processed (Liao et al. 2003). Consequently, differences
between the structures of the mouse and human genes
could be expected and have important consequences on
the function of BMP15.

TGFb Superfamily GDF9 and BMP15
Signalling Pathways

The signalling pathway of TGFb superfamily members
begins when the ligands are recognized by their specific
heterotetrameric receptor complex. This complex is
formed by one homodimer of serine-threonine kinase
type I and one homodimer of serine-threonine kinase
type II (Souza et al. 2007). In the presence of the ligands,
the type I dimer recruits the type II dimer, forming the
heterotetrameric complex. This union induces the trans-
phosphorylation of serine residues of the type I receptor
by the kinase activity of the type II receptor. This
phosphorylation activates the intracellular kinase of the
type I homodimer, which in turn phosphorylates its
intracellular signallizing substrates named responsive
Smads (for details see Moustakas and Heldin 2009).
Responsive Smad proteins (R-Smads) are a family of
transcription factors found in all vertebrates, insects and

nematodes and are the only substrate for the TGFb
superfamily receptors (Massagué 1998). However, there
are approximately 27 TGFb superfamily ligands for five
type I receptors, seven for type II and a repertoire of five
different intracellular target R-Smads, making this one of
the most complex signalling networks in mammals
(Kang et al. 2009; Moustakas and Heldin 2009).

Once activated by phosphorylation, the R-Smad
molecules interact with a common Smad (Co-Smad),
also named Smad 4, which binds to all phosphorylated
R-Smads. Subsequently, the R-Smad ⁄Co-Smad com-
plex translocates to the nucleus, where it interacts with
specific transcription factors that regulate the expression
of several target genes (Massagué 1998). The TGFb-
activin receptors remain active for at least 3–4 h after
ligand binding. During this time, the R-Smad ⁄Co-Smad
complex was maintained in the nucleus either activating
or repressing transcription, which depends on their
association and context with others transcription factors
(Derynck and Zhang 2003). Aside from R-Smads and
Co-Smad, there are the inhibitory Smads (I-Smads 6
and 7), which are a distinct subclass of Smads that
antagonize TGFb signalling transduction. I-Smad 7
interacts with all activated type I receptors to inhibit
R-Smad phosphorylation and transcriptional regula-
tion. I-Smad 6 competes with activated R-Smads to
form a complex with Smad4, inhibiting the normal path
of signalling in a competitive way (Souchelnytskyi et al.
1998). The classic BMP and TGFb-activin pathways can
also be inhibited by a dominant-negative antagonist
named BAMBI. This antagonist has structural features
that resemble type I receptors, except that it lacks the
intracellular serine-threonine kinase domain. Therefore,
BAMBI can compete with receptors type I to bind the
ligands and inhibit the signalling to the TGFb-activins
and BMPs (Grotewold et al. 2001).

BMP15 uses a classic path of BMP signal transduc-
tion, binding to type II receptor BMPRIIB and to a
specific type I receptor ALK6 (BMPRIB) that results in
the activation of R-Smads 1, 5 and 8 (ten Dijke et al.
2002). GDF9 uses the TGFb-activin signalling pathway,
binding to the same type II receptor, BMPRIIB and a
specific type I receptor, ALK5 (TbRI), which results in
the activation of R-Smads 2 and 3 (Vitt et al. 2002;
Mazerbourg et al. 2004). The mRNA of ALK5 was
detected in oocytes at all follicle stages of humans, sheep
and mice. In granulosa cells, ALK5 expression was
detected in follicles of the primordial stage in mice, in
the primordial to primary stage in humans and in the
pre-antral follicles of all species (Juengel et al. 2004b).
ALK6 is expressed in granulosa cells from the primary
through late pre-antral follicle stages in a lower exten-
sion by the theca cells in ovine species and in antral
follicles in bovines (Glister et al. 2004). The BMPRIIB
receptor is expressed in the granulosa cells of primordial
follicles in ruminants and in pre-antral follicles in
rodents, and it continues to be expressed in all
subsequent stages of folliculogenesis (Edwards et al.
2008). BMPRII receptor is essential for GDF9 signalling
in granulosa cells (Mazerbourg et al. 2004) and the
cooperative effects of GDF9 and BMP15 on granulosa
cell proliferation are blocked by the extracellular
domain of BMPRII in sheep (Edwards et al. 2008).
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Natural Mutations in GDF9 and BMP15 Genes
and their Effect on Reproduction

Research studies of natural prolific sheep lineages have
shown that characteristics such as smaller body size and
high ovulation rates are frequently determined by major
genes. When these genes are able to determine repro-
ductive phenotypes, they are called fecundity genes
(Fec) (Davis 2005). The first description of mutations in
a major gene that increase prolificacy in two lineages of
Romney sheep (Hanna and Inverdale) were mapped in
the centre of the X chromosome in a locus named FecX
(Davis et al. 1991). This region is orthologous to the
human Xp11.2–11.4 chromosome region, and DNA
sequencing analysis identified two distinct single nucle-
otide polymorphisms (SNPs) in the BMP15 gene named
FecXH (Hanna allele) and FecXI (Inverdale allele)
(Galloway et al. 2000). Subsequently, a third polymor-
phism was identified in a distinct locus, and this new
mutation was described independently by three groups
in the Booroola lineage of Merino sheep. The new SNP
was found in the coding sequence of the ALK6
(BMPRIB) receptor gene located on chromosome 6,
and this locus ⁄allele was named FecBB (Mulsant et al.
2001; Souza et al. 2001; Wilson et al. 2001). The last
gene to be associated with prolific phenotypes in sheep
was GDF9, where a SNP was identified in the Belclare
and Cambridge breeds, and this new allele was named
FecGH (Hight Fertility) (Hanrahan et al. 2004). In the
same work, two new SNPs in the BMP15 sequence
were identified: FexXG (Galway) and FecXB (Belclare).
Since then, three additional alleles associated with
prolificacy were identified in the BMP15 gene: FecXL,
which was found in Lacaune sheep (Bodin et al. 2007),
and one 17bp deletion (FecXR), which was found in
Aragonesa sheep (Martinez-Royo et al. 2008; Monte-
agudo et al. 2009). A novel mutation in the mature
region of the GDF9 protein was also reported in Thoka-
Cheviot sheep (FecT allele). Heterozygous ewes have
increased fertility, but homozygous ewes are infertile
because of a complete absence of follicular develop-
ment, in spite of apparently normal activation of the
oocyte and expression of a number of oocyte-specific
genes (Nicol et al. 2009). All of the BMP15 and GDF9
variants that have been described have the same
phenotype: the heterozygote animals are prolific, with
an increase in the ovulation rate ranging from 35% to
95% (McNatty et al. 2005), whereas the homozygote
animals are sterile because of a failure of ovarian
follicles to progress beyond the primary stage of
development (Davis et al. 1992; Galloway et al. 2000;
Hanrahan et al. 2004; Bodin et al. 2007; Martinez-
Royo et al. 2008; Monteagudo et al. 2009; Nicol et al.
2009). The data suggest that all mutations described in
the pre-propeptide of BMP15 (FecXR, FecXG) or in the
mature peptide of GDF9 (FecGH, FecT) and BMP15
(FecXH, FecXI, FecXL, FecXB) are associated with a loss
of function in gene activity. In this case, the BMP15 and
GDF9 mutations result in either the reduction of mature
protein levels or an altered bond between ligands and
receptors found in the granulosa and cumulus cells
surface (Liao et al. 2003). Recently, our group has
identified a new polymorphism in the mature peptide of

GDF9 gene in a prolific flock of Brazilian Santa Inês
sheep. This allele was named FecGE (Embrapa) and
presents a distinct phenotype related to the other FecX
and FecG alleles (here we suggest that the Thoka
polymorphism should be renamed to FecGT allele to be
in conformity with the former nomenclature of the FecG
locus; Hanrahan et al. 2004). The FecGE heterozygote
ewes are 27% more prolific than the wild-type ewes; the
homozygote ewes show an even greater increase in
prolificacy (58%), and there are no records of sterility
among the FecGE ⁄ E animals (Silva et al. 2010). This
alternative phenotype brings a new perspective for the
study and better understanding of the paracrine control
of ovulation quota in mammals.

GDF9 and BMP15 mutations have been recently
associated with various human reproductive abnormal-
ities. Heterozygous, non-conservative substitutions in
BMP15 were associated with premature ovarian failure
because of ovarian dysgenesis in women (Di Pasquale
et al. 2004, 2006; Laissue et al. 2008). The altered
protein lacks the C-terminal region, which contains the
mature region of BMP15 (Dixit et al. 2006). Moreover,
non-conservative substitutions and abnormal expres-
sion of GDF9 were also associated with polycystic
ovarian syndrome and premature ovarian failure (Dixit
et al. 2005; Laissue et al. 2006). Normal ovulation in
human species requires two functional BMP15 copies,
considering that the presence of one heterozygous
mutation is sufficient to cause premature ovarian
failure, hypergonadotropic ovarian failure and dizy-
gotic twins (Di Pasquale et al. 2004; Laissue et al. 2006;
Zhao et al. 2008). It is possible that the misfolding of
BMP15 and GDF9 proregions in the muted variants
could affect the normal proteolytic processing and
consequently inhibit the release of the mature region.
This may lead to the production of abnormal dimers or
inhibition of the dimerization process (Laissue et al.
2006). In addition, three markers linked to the BMP15
gene were associated with high follicle production in
women submitted to recombinant FSH stimulation
(González et al. 2008).

Therefore, the relative importance of BMP15 and
GDF9 during folliculogenesis regulation can be differ-
ent between sheep, mice and humans. These differences
may be attributed to the mono versus polyovulatory
behaviour of these animals (Galloway et al. 2000;
Moore et al. 2004). It is also possible that the
observable differences are attributable to the nature
of the mutations in the BMP15 gene; a single point
mutation in sheep versus a deletion of the entire second
exon in mice (Liao et al. 2003). However, based on the
present data, the comprehension of molecular events
that modulate reproductive physiology is still insuffi-
cient to explain why different mammal species show a
broad variety in allelic interactions of BMP15 and
GDF9 variants.

Conclusion

In the last few years, the comprehension of reproductive
physiology in mammals is showing an impressive
advance. This increased understanding is propelled by
research studies focused on growth and differentiation
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factors, mainly the members of TGFb superfamily,
which are expressed by follicular somatic cells and
oocytes. These factors establish a complex intrafollicular
gradient that activates an intricate signalling network,
which mediates the cellular growth and differentiation of
follicle cells. The paracrine factors produced inside the
follicle also modulate the effects of the pituitary
hormones (LH and FSH) on estradiol and progesterone
production. Therefore, these factors mediate the con-
nections between the hypothalamic-gonadal axis and the
ovaries and determine the ovulation quota in different
mammalian species.
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