

EFICÁCIA DE HERBICIDAS UTILIZADOS EM ALGODÃO PARA O CONTROLE DE COMMELINA BENGHALENSIS

Guilherme Braga Pereira Braz*1; Rubem Silvério de Oliveira Jr.2; Jamil Constantin2; João Guilherme Zanetti de Arantes1; Jethro Barros Osipe1; Alessandra Francischini Constantin1; Luiz Henrique Morais Franchini1; Alexandre Gemelli1; Talita Mayara Campos Jumes3

¹Aluno do Programa de Pós-Graduação em Agronomia da Universidade Estadual de Maringá (UEM/NAPD) <guilhermebrag@gmail.com>; ²Professores do Departamento de Agronomia da Universidade Estadual de Maringá (UEM);
³Acadêmica de Agronomia da Universidade Estadual de Maringá (UEM).

RESUMO – A trapoeraba (*Commelina benghalensis*) consiste em uma importante planta daninha em cultivos de algodão, sendo poucas as opções de herbicidas eficazes no controle em pós-emergência desta espécie. Assim, o presente trabalho teve por objetivo avaliar a eficiência de diferentes alternativas de controle químico de trapoeraba, mediante a utilização de herbicidas empregados na cultura do algodoeiro. Foram instalados dois experimentos em casa de vegetação, sendo um com plantas de trapoeraba em estádio de duas a quatro folhas e outro de quatro a seis folhas. Foram avaliados 21 tratamentos, sendo estes compostos pela aplicação isolada e em mistura dos herbicidas pyrithiobac-sodium, amonio-glufosinate, glyphosate e trifloxysulfuron-sodium em diferentes doses, além de uma testemunha sem herbicida. As variáveis analisadas foram controle aos 7 e 28 dias após a aplicação dos herbicidas (DAA). Os resultados obtidos permitiram constatar que a utilização do pyrithiobac-sodium não causou antagonismo em nenhum dos herbicidas avaliados no controle de trapoeraba. O pyrithiobac-sodium associado ao amonio-glufosinate reduziu a capacidade de rebrota desta espécie. Houve sinergismo na mistura entre pyrithiobac-sodium e glyphosate. A associação entre glyphosate e pyrithiobac-sodium, aplicado sobre plantas de trapoeraba em estádio de duas a quatro folhas, apresenta sinergismo no controle desta espécie.

Palavras-chave: Commelina benghalensis, manejo de herbicidas, Gossypium hirsutum

INTRODUÇÃO

A trapoeraba (*Commelina benghalensis* L.) é uma planta daninha perene, herbácea, ereta ou semi-prostrada, com reprodução por sementes e vegetativa. A espécie é bastante freqüente em lavouras anuais, apresentando nítida preferência por solos argilosos, úmidos e sombreados (LORENZI, 1991).

É uma das plantas daninhas mais importantes e das mais citadas na literatura brasileira, causando prejuízos econômicos às diversas lavouras (RODRIGUES et al., 2010). Sua importância se deve à eficiente reprodução, capacidade de sobreviver em condições adversas e dificuldade de controle.

O algodoeiro é muito susceptível à competição exercida pelas plantas daninhas, principalmente durante o seu desenvolvimento inicial. Esta grande suscetibilidade se deve ao seu porte, ao desenvolvimento inicial lento, à baixa capacidade fotossintética da planta e ao baixo nível populacional usado na sua semeadura (AZEVEDO et al., 1993).

A aplicação de herbicidas para controlar as diferentes espécies de trapoeraba pode não inibir o seu desenvolvimento ou inibi-lo parcialmente, o que poderá significar prejuízos ao agricultor, como elevação dos custos e redução da produção. É o que ocorre na cultura do algodão, pois há uma escassez de herbicidas que são eficientes no controle de trapoeraba em pós-emergência.

Desta forma, passa a ser extremamente necessário a associação entre herbicidas, visando otimizar o controle sobre esta espécie; entretanto é imprescindível a busca por informações precisas dos efeitos das misturas sobre esta espécie (CONSTANTIN; OLIVEIRA JUNIOR., 2009).

Diante deste contexto, o presente trabalho teve por objetivo avaliar a eficiência de herbicidas pós-emergentes registrados para o algodão convencional e transgênico no controle de trapoeraba em diferentes estádios.

METODOLOGIA

Os experimentos foram conduzidos em casa-de-vegetação no Centro de Treinamento em Irrigação (CTI) da Universidade Estadual de Maringá (UEM) (23°24'12"S e 51°56'24"W e altitude de 560 m). O período de condução dos ensaios foi de 10/05/2010 a 18/06/2010.

Foram avaliados 22 tratamentos herbicidas aplicados em pós-emergência, incluindo uma testemunha sem herbicida (Tabela 1 e Tabela 2). Os estádios de aplicação foram quando as plantas de trapoeraba se encontravam com duas a quatro folhas (E1) e de quatro a seis folhas (E2). O delineamento experimental utilizado foi inteiramente casualizado, com quatro repetições.

As unidades experimentais eram compostas por vasos de 3 dm³, os quais foram preenchidos com solo que apresentava valores de pH em água de 6,3; 2,94 cmol_c de H+ + Al+³ dm-³ de solo; 5,3 cmol_c dm-³ de Ca+²; 1,56 cmol_c dm-³ de Mg+²; 0,37 cmol_c dm-³ de K+; 4,40 mg dm-³ de P; 7,90 g dm-³ de C; 250 g kg-¹ de areia grossa; 260 g kg-¹ de areia fina; 20 g kg-¹ de silte e 470 g kg-¹ de argila. Após o umedecimento do solo contido nos vasos, foram semeadas quantidades iguais de sementes de trapoeraba por vaso. Após a emergência das plântulas, efetuou-se o desbaste nas unidades deixando sete plantas por vaso.

Para todas as aplicações foi utilizado um pulverizador costal de pressão constante à base de CO₂, equipado com barra munida de três pontas tipo jato leque XR-110.02, espaçadas de 50 cm entre si, sob pressão de 2,0 kgf cm⁻². Estas condições de aplicação proporcionaram o equivalente a 200 L ha⁻¹ de calda. No momento da aplicação, as condições climáticas encontradas foram: Temp. = 24,0 °C; UR = 65,0%; velocidade do vento = 1,3 km h⁻¹.

As avaliações realizadas foram: porcentagem de controle aos 7 e 28 dias após a aplicação (DAA), usando uma escala de 0%, representando efeito nulo dos herbicidas sobre as plantas, a 100% que representa a morte total das plantas.

Após serem tabulados, os dados foram submetidos à análise de variância pelo teste F, e quando se verificou efeito significativo para alguma variável-resposta, as médias foram comparadas pelo teste de Scott Knott a 5% de probabilidade.

RESULTADOS E DISCUSSÃO

O controle de trapoeraba (*Commelina benghalensis*), em estádio de duas a quatro folhas, por meio da aplicação de pyrithiobac-sodium melhorou com o incremento da dose deste herbicida (Tabela 1). Entretanto, apenas a maior dose de pyrithiobac-sodium (84 g ha-1) foi capaz de exercer níveis de controle mais elevados (79,5%).

A utilização de amonio-glufosinate para o controle de trapoeraba (2 a 4 folhas) apresentou grande eficiência apenas para a maior dose (500 g ha-1). Verifica-se que inicialmente, as três doses de amonio-glufosinate exerceram altos níveis de controle, entretanto, na avaliação final de controle, as plantas que receberam a aplicação das menores doses deste herbicida (300 e 400 g ha-1), apresentaram rebrote. O fato desta espécie possuir grande capacidade de rebrotar está relacionado à presença de amidos nas suas folhas e caule, que servem de reserva para as plantas quando estas são submetidas a condições de estresses (SANTOS et al., 2002).

O glyphosate, nas doses de 648 ou 972 g ha-1 apresentou níveis de controle insatisfatórios, apesar de o aumento da dose ter proporcionado melhoria no controle da trapoeraba. Esta tolerância apresentada pela *C. benghalensis* ao glyphosate já foi relatada em outros trabalhos, e as causas podem ser explicadas tanto pela insensibilidade da enzima desta espécie a este herbicida, quanto pela sua anatomia foliar (SANTOS et al., 2001; RONCHIET et al., 2001). A aplicação do trifloxysulfuronsodium não apresentou controle sobre a trapoeraba em nenhum dos dois estádios de aplicação.

Com relação à associação de amonio-glufosinate e pyrithiobac-sodium para o controle de *Commelina benghalensis* em estádio de duas a quatro folhas, destaca-se que esta mistura foi benéfica em algum dos tratamentos avaliados, sendo que nos outros onde não foi constatado este sinergismo, também não foi verificado qualquer efeito antagônico desta mistura. O benefício principal da associação destes herbicidas para o controle de trapoeraba está relacionado à capacidade de rebrote que esta planta daninha apresenta, sendo que nos tratamentos com amonio-glufosinate isolado foram verificados altos índices de rebrote nas plantas, e quando se adicionou o pyrithiobac-sodium, o percentual de rebrote foi reduzido. Pondera-se que o aumento de dose de amonio-glufosinate para 500 g ha-1 teve desempenho melhor que todas as misturas deste herbicida com pyrithiobac-sodium.

Quando se empregou a mistura de glyphosate ao pyrithiobac-sodium visando o controle de trapoeraba verificou-se sinergismo para a associação destes herbicidas (2 a 4 folhas). O benefício para esta associação no controle desta espécie foi tamanho que seria mais interessante a aplicação da mistura entre estes herbicidas que o aumento de dose do glyphosate isolado. As associações entre os herbicidas trifloxysulfuron-sodium e pyrithiobac-sodium apresentaram melhorias no controle de trapoeraba, quando comparadas ao efeito do trifloxysulfuron-sodium isolado.

Os resultados do controle de trapoeraba em estádio de quatro a seis folhas estão apresentados na Tabela 2. O desempenho do pyrithiobac-sodium foi semelhante ao observado quando a aplicação foi realizada em estádio de duas a quatro folhas. Os herbicidas glyphosate e trifloxysulfuron-sodium exerceram controle semelhante para os dois estádios. A indiferença no desempenho destes dois herbicidas no controle de trapoeraba com a mudança no estádio pode ser relacionada ao fato da alta translocação que estes produtos possuem nas plantas.

O amonio-glufosinate teve grande redução na sua eficiência quando a aplicação foi realizada na trapoeraba em estádio mais avançado, quando nem a maior dose foi capaz de exercer níveis de controle satisfatório sobre esta espécie. Verifica-se que para este herbicida os níveis de controle neste estádio, em geral, foram menores que os observados quando a aplicação foi realizada sobre as plantas de trapoeraba com duas a quatro folhas. A maior tolerância de algumas plantas em estádios mais avançados de desenvolvimento já foi relatada em outros trabalhos (DAN et al., 2010).

A adição de pyrithiobac-sodium ao amonio-glufosinate para o controle de *C. benghalensis* em aplicações realizadas mais tardiamente (quatro a seis folhas), apresenta sinergismo, verificando-se um desempenho melhor em todas as misturas que qualquer dose de amonio-glufosinate isolado (Tabela 2).

Em aplicações realizadas em estádios mais avançados nas plantas de trapoeraba, não foram verificados os mesmos benefícios da associação entre os herbicidas glyphosate e pyrithiobac-sodium. Ressalta-se, porém, que esta mistura não apresentou antagonismo, assegurando sua utilização para o controle desta espécie, com o benefício do controle residual que o pyrithiobac-sodium pode exercer, em função da sua persistência no solo (GUERRA et al., 2011).

Diferentemente do primeiro estádio, o controle de *C. benghalensis* foi incrementado quando se adotou a associação dos herbicidas trifloxysulfuron-sodium e pyrithiobac-sodium, quando comparado ao trifloxysulfuron-sodium isolado.

CONCLUSÕES

A utilização do pyrithiobac-sodium não causou antagonismo com nenhum dos herbicidas avaliados no controle de trapoeraba. O pyrithiobac-sodium associado ao amonio-glufosinate reduziu a capacidade desta espécie em rebrotar. A associação entre glyphosate e pyrithiobac-sodium, aplicado sobre plantas de trapoeraba em estádio de duas a quatro folhas, apresenta sinergismo no controle desta espécie.

REFERÊNCIAS BIBLIOGRÁFICAS

AZEVÊDO, D. M. P. et al. Estudos da eficiência da mistura alachlor/diuron no controle de plantas daninhas em algodoeiro anual irrigado. **Pesquisa Agropecuária Brasileira**, v. 28, n. 7, p. 779-785, 1993.

CONSTANTIN, J.; OLIVEIRA JUNIOR, R. S. Misturas de herbicidas contendo glyphosate: situação atual, perspectivas e possibilidades. In: VELINI, E. D.; MESCHEDE, D. K.; CARBONARI, C. A.; TRINDADE, M. L. B. **Glyphosate**. Botucatu: Unesp, 2009. p. 211-255.

DAN, H. A. et al. Tolerância do sorgo granífero ao herbicida tembotrione. **Planta Daninha**, v. 28, n. 3, p. 615-620, 2010.

GUERRA, N. et al. Seleção de espécies bioindicadoras para os herbicidas trifloxysulfuron-sodium e pyrithiobac-sodium. **Revista Brasileira de Herbicidas**, v. 10, n. 1, p. 37-48, 2011.

LORENZI, H. **Plantas daninhas do Brasil:** terrestres, aquáticas, parasitas, tóxicas e medicinais. 2. ed. Nova Odessa: Ed. Plantarum, 1991. 440 p.

RODRIGUES, A. C. P. et al. Avaliação qualitativa e quantitativa na deposição de calda de pulverização em *Commelina benghalensis*. **Planta Daninha**, v. 28, n. 2, p. 421-428, 2010.

RONCHIET, C. P.; SILVA, A. A.; FERREIRA, L. R. **Manejo de plantas daninhas em lavouras de café**. Viçosa: Universidade Federal de Viçosa, 2001. 94 p

SANTOS, I. C. et al. Caracteres anatômicos de duas espécies de trapoeraba e eficiência do glyphosate. **Planta Daninha**, v. 20, n. 1, p. 1-8, 2002.

SANTOS, I. C. et al. Eficiência do herbicida glyphosate no controle de *Commelina benghalensis* e *Commelina diffusa*. **Planta Daninha**, v. 19, n. 1, p. 135-143, 2001.

Tabela 1 – Porcentagens de controle de *C. benghalensis* (E1) em função da aplicação de diferentes tratamentos herbicidas em pós-emergência. Maringá-PR, 2010.

Tratamentos (g ha ⁻¹)	% de controle	
	7 DAA	28 DAA
01. pyrithiobac-sodium (16,8)	32,5 d	14,8 e
02. pyrithiobac-sodium (28)	36,3 d	23,8 e
03. pyrithiobac-sodium (56)	31,3 d	26,3 e
04. amonio-glufosinate (300)	79,3 b	67,5 c
05. amonio-glufosinate + pyrithiobac-sodium(300 + 16,8)	82,3 a	70,0 c
06. amonio-glufosinate + pyrithiobac-sodium (300 + 28)	77,8 b	52,5 d
07. amonio-glufosinate + pyrithiobac-sodium (300 + 56)	77,5 b	70,0 c
08. amonio-glufosinate (400)	77,3 b	57,5 c
09. amonio-glufosinate + pyrithiobac-sodium (400 + 16,8)	85,0 a	80,5 b
10. amonio-glufosinate + pyrithiobac-sodium (400 + 28)	85,0 a	82,5 b
11. amonio-glufosinate + pyrithiobac-sodium (400 + 56)	77,8 b	69,5 c
12. glyphosate (648)	35,0 d	60,0 c
13. glyphosate + pyrithiobac-sodium (648 + 16,8)	36,3 d	89,5 a
14. glyphosate + pyrithiobac-sodium (648 + 28)	21,3 e	95,0 a
15. glyphosate + pyrithiobac-sodium (648 + 56)	43,8 c	96,0 a
16. amonio-glufosinate (500)	73,8 b	94,5 a
17. glyphosate (972)	71,3 b	78,8 b
18. pyrithiobac-sodium (84)	27,5 e	79,5 b
19. trifloxysulfuron-sodium (3)	27,5 e	35,0 d
20. trifloxysulfuron-sodium + pyrithiobac-sodium (2,25 + 16,8)	23,8 e	40,0 d
21. trifloxysulfuron-sodium + pyrithiobac-sodium (2,25 + 42)	27,5 e	45,0 d
22. Test. sem herbicida	0,0 f	0,0 f
CV (%)	9,79	14,67

Médias seguidas de mesmas letras na coluna não diferem entre si pelo teste de Scott knott ($p \le 0.05$).

Tabela 2 – Porcentagens de controle de *C. benghalensis* (E2) em função da aplicação de diferentes tratamentos herbicidas em pós-emergência. Maringá-PR, 2010.

Tratamentos (g ha ⁻¹)	% de controle	
	7 DAA	28 DAA
01. pyrithiobac-sodium (16,8)	52,5 b	30,0 c
02. pyrithiobac-sodium (28)	50,0 b	25,0 c
03. pyrithiobac-sodium (56)	42,5 c	22,5 c
04. amonio-glufosinate (300)	50,0 b	37,5 b
05. amonio-glufosinate + pyrithiobac-sodium(300 + 16,8)	60,0 b	45,0 b
06. amonio-glufosinate + pyrithiobac-sodium (300 + 28)	70,0 a	55,0 a
07. amonio-glufosinate + pyrithiobac-sodium (300 + 56)	66,8 a	65,0 a
08. amonio-glufosinate (400)	67,5 a	42,5 b
09. amonio-glufosinate + pyrithiobac-sodium (400 + 16,8)	72,5 a	61,3 a
10. amonio-glufosinate + pyrithiobac-sodium (400 + 28)	74,0 a	65,0 a
11. amonio-glufosinate + pyrithiobac-sodium (400 + 56)	66,3 a	56,3 a
12. glyphosate (648)	53,8 b	66,8 a
13. glyphosate + pyrithiobac-sodium (648 + 16,8)	42,5 c	63,0 a
14. glyphosate + pyrithiobac-sodium (648 + 28)	38,8 c	61,3 a
15. glyphosate + pyrithiobac-sodium (648 + 56)	35,0 c	70,5 a
16. amonio-glufosinate (500)	62,5 a	65,0 a
17. glyphosate (972)	50,0 b	72,0 a
18. pyrithiobac-sodium (84)	35,0 c	64,3 a
19. trifloxysulfuron-sodium (3)	38,8 c	41,3 b
20. trifloxysulfuron-sodium + pyrithiobac-sodium (2,25 + 16,8)	57,5 b	58,8 a
21. trifloxysulfuron-sodium + pyrithiobac-sodium (2,25 + 42)	62,5 a	66,0 a
22. Test. sem herbicida	0,0 d	0,0 d
CV (%)	15,72	19,85

Médias seguidas de mesmas letras na coluna não diferem entre si pelo teste de Scott knott ($p \le 0.05$).