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Abstract

Nowadays, an important and interesting alternative in the control of tick-infestation in cattle is to select resistant ani-
mals, and identify the respective quantitative trait loci (QTLs) and DNA markers, for posterior use in breeding pro-
grams. The number of ticks/animal is characterized as a discrete-counting trait, which could potentially follow
Poisson distribution. However, in the case of an excess of zeros, due to the occurrence of several noninfected ani-
mals, zero-inflated Poisson and generalized zero-inflated distribution (GZIP) may provide a better description of the
data. Thus, the objective here was to compare through simulation, Poisson and ZIP models (simple and generalized)
with classical approaches, for QTL mapping with counting phenotypes under different scenarios, and to apply these
approaches to a QTL study of tick resistance in an F2 cattle (Gyr x Holstein) population. It was concluded that, when
working with zero-inflated data, it is recommendable to use the generalized and simple ZIP model for analysis. On
the other hand, when working with data with zeros, but not zero-inflated, the Poisson model or a data-transfor-
mation-approach, such as square-root or Box-Cox transformation, are applicable.
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Introduction

In the tropics, cattle can be afflicted by various tick

species and the diseases they transmit, possibly leading to

significant loss in production systems. Among these,

Rhipicephalus (Boophilus) microplus is outstanding. Apart

from the reduction in production, infection can even be

mortal to more susceptible animals.

Regarding losses caused by Boophilus microplus,

Frisch et al. (2000) estimated that an animal with an aver-

age of 40 ticks per day could lose weight equivalent to

20 kg/year, whereas Furlong et al. (1996) calculated a re-

duction of 23% in the daily milk yield, when crossbred Hol-

stein-Zebu cows were infested by 105 ticks, on an average.

Thus, the control of infestation is of extreme importance for

the dairy and beef industries.

An important and interesting alternative in the control

of tick infestation in cattle is to select resistant animals, and

identify those specific quantitative trait loci (QTLs) and

DNA markers, which could be useful in marker-assisted se-

lection (MAS) or introgressive strategies, as a part of in-

breeding programs. Although costly and time consuming,

this could be better than control by acaricides, in which

misuse has given rise to tick-resistance against pesticides,

as well as increased environmental contamination.

In the search for markers of tick-resistance in bo-

vines, Martinez et al. (2006) found associations between

certain BoLA class II microsatellite alleles and susceptibil-

ity to R. microplus. Furthermore, it was shown that B.

indicus cattle are generally more resistant to parasite chal-

lenges than B. Taurus. Wambura et al. (1998) found that

genetic variability among subspecies can be exploited

when mapping populations for QTL analysis, e.g. Taurus x

Indicus F2 animals.

The major concern regarding QTL mapping for tick-

resistance refers to its statistical analysis. As opposed to

most QTL studies, which consider continuous phenotypes

and normal assumptions, the number of ticks/animal is

characterized as a discrete trait, more specifically as a

counting variable, which could potentially follow Poisson

distribution. However, if there is an excess of zeros in em-
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pirical phenotype distribution, for example due to several

noninfected animals, zero-inflated Poisson distribution

(ZIP) (Lambert, 1992) may provide a better description of

the data.

Zero inflation of ticks on any specific animal may be

due to either animal resistance, or simply their absence.

Consequently, there are two different kinds of zeros, whose

probability of occurrence must be modeled separately in

QTL analysis. Although Poisson and ZIP models are poten-

tially more appropriate statistical alternatives for QTL de-

tection of the number of ticks per animal, it is, as yet, not

clear whether these strategies are better than certain classi-

cal alternatives in data transformation.

In agreement with Cui et al. (2006), Cui and Yang

(2009) and Erhardt et al. (2010), although the problem of

zero excess can be solved by ZIP modeling, when the as-

sumption that trait variance is equal to its mean is not

proved, i.e. in the presence of over/under dispersion, the

ZIP model can be further improved by the addition of a new

parameter, thereby characterizing the Generalized ZIP

(GZIP) model.

In view of the above mentioned issues, the aim was to

compare, by way of simulation studies, Poisson and ZIP

models (simple and generalized) with classical approaches,

as applied to QTL mapping, with counting phenotypes un-

der different scenarios, and to apply these approaches to a

QTL study of tick-resistance in F2 cattle (Gyr x Holstein)

population.

Materials and Methods

The QTL mapping methodologies discussed here, be-

sides being based on the regression approach described by

Haley et al. (1994), were further extended to the context of

generalized linear models (GLM) for count data

(McCullagh and Nelder, 1989), more specifically to Pois-

son, Zero-Inflated Poisson (ZIP) and Generalized ZIP

(GZIP) regression models. In the next few sections, the im-

plementation of QTL regression interval mapping for ap-

proaches presenting normally distributed traits is

presented, together with data transformation strategies that

will be compared to the GLM methods. In addition, the

simulation study and motivating data-set of tick counting in

Gyr x Holstein cows are described.

QTL mapping approaches

The classical regression approach for interval map-

ping in outbred F2 populations (Haley et al., 1994) can be

described as:

yi = � + �qi + ei (1)

where yi is the observed trait (phenotype) relative to the ith

F2 individual, � a general mean, qi the additive QTL coeffi-

cient for the ith individual, � the additive effect of putative

QTL, and ei a residual term, assumed as normally distrib-

uted with mean 0 and variance �2, i.e., ei ~ N(0, �2). The co-

efficient qi is given in terms of the probability of line-origin

combination, conditional on the marker’s genotypes (Haley

et al., 1994), whose values were obtained by QXPAK soft-

ware (Pérez-Enciso and Misztal, 2004).

The likelihood ratio test (LRT) is usually employed

(Baret et al., 1998) for evaluating the significance of the ad-

ditive QTL effect. Here, for every 1 cM on the chromo-

some, maximum likelihood (ML) estimates were obtained

using the simplex method proposed by Nelder and Mead

(1965), whereby LRT was applied to compare the full

model (1) against a reduced model with no QTL.

Given the normality assumption in model (1), it is ev-

idently not optimal for analyzing counting data, such as the

number of ticks per cow. Tilquin et al. (2001) proposed that

appropriate data transformation should be used. Their re-

sults showed that, on analyzing nontransformed data,

Gaussian-based methods can lose around 50% of QTL de-

tection potential.

A flexible methodology for data transformation,

when the phenotypic data is not normally distributed, as

proposed by Box and Cox (1964), is given by:
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where zi is the transformed variable, yi the original variable,

and � the transformation factor, which can be inferred us-

ing, for example, maximum likelihood techniques.

Box-Cox transformation has already been successful ap-

plied to QTL mapping with continuous data traits and

skewed distribution (Yang et al., 2006).

In addition to the Box-Cox transformation, which in-

cludes searching for the value of � which best approximates

the data to a normal distribution, here we used also the clas-

sical square root transformation, this being traditionally

considered as a suitable transformation when the data fol-

low a Poisson distribution. The square root is equivalent to

a specific type of the Box-Cox transformation, where

� = 1/2, given by:

z y , where y
i i i

�  0 (3)

However, according to Yamamura (1999), the Box-

Cox transformation has serious limitations, when the re-

sponse-variable contains zeros. In such cases, the addition

of a small constant ‘c’ to each observation is generally rec-

ommended, to so assure the most nearly constant variance

possible. Specifically for Poisson data, the value c = 3/8 is

optimal, in the sense that variance converges more rapidly

as the mean increases (Ascombe, 1948). Thus, this constant

was adopted for both transformation procedures presented

by Eqs. (2) and (3).

Here, the analysis using data transformations were

performed using TRANSREG procedure of SAS® 9.1.3.
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This procedure was chosen especially for the Box-Cox

transformation, as it allows simultaneous estimation of �
and model fitting.

An alternative to data transformation is direct model-

ing of the data in its original scale using a more general

model. Under this approach, we considered a Poisson re-

gression as an extension of model (1). In this case, it is as-

sumed that each observation yi is drawn from a Poisson

distribution, whose probability function is given by:

P(Y y )
1

y !
m exp( m )

i

i

i

y

i
i� � � (4)

where mi is the mean of this distribution, i.e., E(Y) = mi,

which, according to GLM theory (McCullagh and Nelder,

1989), can be related to model (1) by a linear predictor

given, in this case, by �i = � + �qi. The relationship be-

tween the linear predictor (�i) and the mean (mi) is provided

by a link function. In the case of a Poisson distribution, the

link function is logarithmic, i.e., �i = log(mi). Thus, to en-

able use of the Poisson means with the linear predict of

model (1) it is necessary to obtain the inverse of the link

function; i.e., mi = exp(�i) = exp(� + �qi).

As mentioned earlier, tick-counting data can present

an excess of zeros, since a cow may have no ticks, either

through being resistant (so called “true zero”), or, although

susceptible, for any other reason, e.g. by chance or because

no tick has touched her). To accommodate such a scenario,

a Zero-Inflated Poisson (ZIP) model was also considered

and compared to the previously desired modeling ap-

proach. The ZIP model can be formulated as a mixture of

probability � of ‘true zero’ (tick-resistance) and a probabil-

ity distribution of the number of ticks (which would also in-

clude zero), according to a Poisson process (Lambert,

1992). In order to define the ZIP probability density func-

tion, wi = 1 if the cow is resistant and wi = 0 if the cow is

susceptible. Thus, considering wi as a latent variable,

P(wi = 1) = �i and P(wi = 0) = 1 - �i, whereby:

P(Y y )

m y 0

m mi i

i i i

i i i

y� �

� � � �

� �

� �

�

( )exp( ),

( )exp( )

1

1 i

y
y 0

i
!

, �

�

	



�



(5)

where 0 = �i = 1 and mi is the expected number of ticks on

cow i, given this cow is susceptible.

In agreement with Cui et al. (2006), Cui and Yang

(2009) and Erhardt et al. (2010), the ZIP model can be im-

proved by the addition of a new parameter (�), to so de-

scribe the occurrence of under (if 0 < � < 1) or over (if � > 1)

dispersion. This model is denominated Generalized ZIP

(GZIP), which is given by:
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Poisson regression was implemented using the

GENMOD procedure of SAS, using the log link-function.

The ZIP model was fitted using the NLMIXED procedure,

according to syntax described by Liu and Cela (2008), and

the GZIP using countreg SAS Macro (Chow and

Steenhard, 2009) with the statement method = 2 (General-

ized Poisson) and zindep = (Name of the independent vari-

ables used in the zero-inflated model). All the SAS codes

used are available, direct from the authors.

Monte Carlo study

Monte Carlo simulations were applied to investigat-

ing statistical behavior of the proposed methods. Simula-

tions consisted of a single 45 cM long chromosome based

on real data, with 5 non-evenly spaced markers (0, 14.8,

29.9, 37.4, 43.3 cM), for an F2 population with a sam-

ple-size equal to 263, mean (�) equal to 2, and QTL addi-

tive effect given by � = 0.05, 0.1, 0.2. Although the putative

QTL that affects the phenotype of interest is located at

20 cM from the first marker on the linkage group, a data set

with no QTL was also simulated to account for false posi-

tive and negative rates.

Simulation settings were chosen to mimic real data

sets, while real pedigree structure was used to calculate the

probability of line-origin combination, conditional on

marker genotypes. Phenotypic data from Poisson and

Zero-Inflated Poisson were generated, with two different

“true-zeros” probability (0.2, 0.5), using SAS® IML.

In each simulation scenario, 1000 Monte Carlo repe-

titions are performed, and five different models of analysis

were tested for each Monte Carlo sample. The original

count data and two different transformation approaches

(Box-Cox and Square-root) were analyzed with the Gaussi-

an model (1), whereas for the GLM approach, the Poisson

(4), Zero-Inflated Poisson (5) and Generalized Zero-In-

flated Poisson (6) were considered.

The following measures were used for evaluating the

performance of each model: variance (VAR) of the additive

effect (�) calculated from 1000 repetitions; bias of � esti-

mates, calculated as the sum of the difference between esti-

mated and true values divided by 1000; the mean of

absolute distances (MAD), defined as the absolute values

of the difference between true and estimated QTL position
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(the position with the highest log-likelihood); false positive

rates (FPR), given by the percentage that a QTL was con-

sidered significant (p < 0.05) in any position, when the sim-

ulation did not include the additive QTL effect; and false

negative rate (FNR), defined as the percentage ofa QTL not

presenting a significant (p < 0.05) effect, when considered

in the simulation.

Motivating data set

A population was developed by EMBRAPA – Dairy

Cattle Research Center, from four Holstein sires x 28 Gyr

dams to obtain F1 animals, among which five sires and 68

dams were intercrossed to form an F2 population. This pop-

ulation was challenged for tick infestation with no tick con-

trol until 10-14 months of age.

These infestations were carried out by placing tick

larvae on the dorsal-lumbar region of the animals. Counting

took place on the morning of the 21st day after infestation,

before detachment of mature female ticks. Counting was

restricted to three different regions on one side of the ani-

mal. Details regarding population and experiment design

can be found in Gasparin et al. (2007).

Results and Discussion

Monte Carlo study

FNRs and FPRs obtained from the simulation study

are respectively presented in Tables 1 and 2.

In the case of the probability of zeros being equal to

zero (Poisson distribution), the percentage of false negative

rate (FNR) would be around 74% and 25%, if the QTL ef-

fect were 0.05 and 0.1, respectively, and almost none when

0.2 (Table 1). The Box-Cox transformation performed

better with a slightly smaller FNR than the other approa-

ches, although interestingly, the ZIP and GZIP models pre-

sented the best results. Thus, it seems that inclusion of the

extra parameters � and �, respectively relative to perfect

zero occurrence probability and under/over dispersion,

bears a small penalty, if the data has Poisson distribution

with no inflation, and in the absence of under/over disper-

sion, especially in situations with reduced QTL effect.

With moderate zero inflation, and only slight QTL ef-

fect, the ZIP and GZIP models presented slightly higher

FNRs than the Poisson, and almost twice as high as the

Gaussian approach, with or without data transformation.

However, with greater QTL effects (0.1 and 0.2), the ZIP

and GZIP models performed much better than all the other

approaches.

Finally, with extreme zero inflation (P(0) = 0.5), the

Poisson model performed the best in situations with small

to moderate QTL effects, and the ZIP second best. None-

theless, with greater QTL effects, the ZIP and GZIP models

surpassed all the other methods.

In terms of FPR (Table 2), since defined by any sig-

nificant statistical test for QTL effects, without any addi-

tion, all the models presented roughly the same rates in the

absence of zero inflation. However, even with moderate

zero inflation, the Poisson model presented almost three

times FPR than the remainder, thus indicating it to be the

less conservative. Interestingly, either with or without data

transformation, the Gaussian model presented very similar

results to the ZIP and GZIP.

In general, the Gaussian models had higher FNRs and

were even in the FPRs. The Poisson model showed the

same FPRs when compared to the ZIP and GZIP models

and performed a little better than this one in terms of FNRs,

when the QTL effects were small. However, when the QTL

effect was moderate to high, the ZIP and GZIP models

overall FNRs and FPRs were smaller than with the other

approaches.

Finally, when working with count-data, a previous

descriptive-data analysis is always advisable. In the case of

zero inflation, the ZIP and GZIP models are indicated, the

latter being an alternative, when solving the problem of un-

der/over dispersion as called for. With zero inflation, either

the Poisson model or a transformation approach is the most

indicated. The advantage of the latter is that one can use any

available software. The disadvantage is that when using

data transformation, interpretation of the results is not

straightforward.
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Table 1 - The false negative rate for each model in the different simulated

scenarios.

Model 1� = 0.05 � = 0.1 � = 0.2

2P(0) = 0

Gaussian 74.3 25.1 0

Box-Cox 70.2 25.0 1

SQRT 74.4 25.6 1

Poisson 74.6 25.2 0

ZIP 77.2 25.9 0

GZIP 77.6 26.1 0

P(0) = 0.2

Gaussian 38.8 70.2 18.5

Box-Cox 32.3 75.4 30.2

SQRT 44.7 81.3 43.0

Poisson 69.4 44.4 4.4

ZIP 78.0 37.1 2.0

GZIP 78.8 38.7 2.3

P(0) = 0.5

Gaussian 91.1 87.0 61.6

Box-Cox 93.7 94.6 92.0

SQRT 92.4 90.7 80.3

Poisson 60.0 48.9 21.5

ZIP 86.4 57.1 4.3

GZIP 87.3 58.2 4.7

1The � represents the simulated additive QTL effect. 2P(.) stands for the

probability of zeros in the simulated count data.



The well-known results of SQRT transformation

working fine with Poisson distribution data, are here con-

firmed. However, in the event of not wishing to rely on a

Poisson assumption, a more general data transformation

(Box-Cox, for example) is advised.

VAR, bias and MAD values (Table 3) indicate that,

notwithstanding the scenario, the Gaussian model without

transformation presented the worst results for VAR and

bias, with transformations, more precisely by Box-Cox and

SQRT, assuming a better stance, whereas with assumed

normal SQRT transformation, the simplest and most used

for count data, performance was the best. As expected, the

superiority of GLM approaches was eminently clear, espe-

cially of ZIP and GZIP models, whose performances, al-

though practically the same as Poisson when P(0) = 0, were

far superior when P(0) = 0.2 and P(0) = 0.5.

As to MAD with a small additive QTL effect

(� = 0.05), values were very similar for all the models.

However, with an increase in QTL effect, ZIP and GZIP

performances improved substantially compared to the other

models. Generally speaking, all presented good values for

MAD when � = 0.2, explainable by the higher the QTL ef-

fect the higher the probability for detecting this QTL in the

right position.

In summary, in view of the results (Tables 1, 2 and 3),

it is possible to conclude that when there is moderate or ex-

treme inflation of zeros, the best option is to adopt either the

ZIP or GZIP models, since both are appropriate when reck-

oning with the simultaneous occurrence of true zeros and

zeros from Poisson distribution. Furthermore, with both, fi-

nal results were very similar in all scenarios, since in the

simulation studies under/over dispersion was disregarded,

i.e. � = 1. Thus, as could be expected, GZIP can be charac-

terized as a ZIP model. In any case, SQRT transformation
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Table 2 - The false positive discovery rate for each model in the different

percentage of zero inflation.

Model 1P(0) = 0 P(0) = 0.2 P(0) = 0.5

Normal 18.7 15.9 17.9

Box-Cox 17.5 15.1 16.3

SQRT 18.6 15.9 16.2

Poisson 17.6 54.7 79.6

ZIP 17.5 17.3 17.6

GZIP 17.2 16.9 17.2

1P(.) stands for the probability of zeros in the simulated count data.

Table 3 - The variance, bias and mean of absolute distance for each model in the different simulated scenarios.

P(0) = 0 P(0) = 0.2 P(0) = 0.5

Models VAR Bias MAD VAR Bias MAD VAR Bias MAD

� = 0.05

Gaussian 0.120 0.347 12.764 0.358 0.303 14.153 0.358 0.175 14.599

Box-Cox 0.034 0.148 12.687 0.044 0.161 14.396 0.044 -0.018 14.985

SQRT 0.004 0.023 12.746 0.026 0.014 14.495 0.026 -0.008 14.756

Poisson 0.002 0.004 12.779 0.027 0.002 14.387 0.027 0.011 14.615

ZIP 0.003 -0.003 12.894 0.005 0.008 13.349 0.005 0.006 14.000

GZIP 0.002 -0.002 12.711 0.004 0.007 13.301 0.005 0.005 13.723

� = 0.1

Gaussian 0.083 0.687 8.165 0.296 0.550 12.152 0.296 0.319 14.125

Box-Cox 0.029 0.273 9.097 0.041 0.276 13.222 0.041 -0.048 15.179

SQRT 0.003 0.055 8.253 0.024 0.022 13.510 0.024 -0.024 14.690

Poisson 0.002 0.030 8.194 0.022 0.010 12.184 0.022 0.014 14.151

ZIP 0.002 0.030 8.180 0.003 0.005 9.620 0.003 0.007 11.102

GZIP 0.001 0.027 8.003 0.002 0.005 9.412 0.003 0.007 10.899

� = 0.2

Gaussian 0.073 1.311 3.634 0.156 1.040 7.061 0.228 0.613 11.359

Box-Cox 0.047 0.452 6.234 0.085 0.446 10.329 0.039 -0.102 14.757

SQRT 0.002 0.074 3.672 0.011 0.032 9.546 0.019 -0.047 13.319

Poisson 0.001 0.002 3.671 0.004 0.008 7.107 0.016 0.017 11.380

ZIP 0.001 0.002 3.686 0.002 0.002 3.948 0.003 0.005 6.130

GZIP 0.001 0.002 3.566 0.002 0.002 3.785 0.003 0.005 5.967
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Figure 1 - QTL-profile plots from Gaussian (a, b), Box-Cox (c, d), SQRT (e, f), Poisson (g, h), ZIP (i, j) and GZIP (k,l) models. The letters inside brackets

denote first and second tick-count phenotypes, respectively. The line above the graph shows the 5% threshold.



proved to be an interesting and easy alternative to QTL de-

tection in the presence of count data.

Motivating data set

QTL profile-plots from five different models applied

to first and second tick-count phenotypes in Holstein x Gyr

cows, appear in Figure 1.

As there were less zeros in the data used for the first

count than for the second, this could be used as a parameter

for checking how the different models perform in the pres-

ence of zero-counts and real zero-inflated counts. From the

set of graphs related to the first count, it can be inferred that

only simple (Figure 1 i) and generalized (Figure 1 k) ZIP

models had come close to the 0.5% threshold, and that this

was the only model that presented a “qtl” like curve. For the

second set of graphs, except for that of Box-Cox transforma-

tion, all the curves looked the same. As there apparently was

a QTL around 21 cM, the ZIP models (Figure 1 j and l)

showed that the curve had reached close to the 0.5% thresh-

old. Through being compatible with those obtained with the

simulated data set, the results revealed the superior perfor-

mance of ZIP models when working with counting data in

the high presence of zeros. Furthermore, the ZIP and GZIP

models presented similar results in both tick counts, since in

the GZIP fit, the estimated � parameter came close to one,

thereby indicating the absence of under/over dispersion.

In summary, we conclude that when working with

nonormal distribution data, such as count data, prior de-

scriptive analysis is always advisable. If working with

zero-inflated data, it is recommended to use both simple

and generalized ZIP models for data analysis. If working

with data with zeros, but not zero inflated, either the Pois-

son model or a data transformation approach, such as

square-root transformation, can be employed. Square-root

transformation can be used for Poisson distribution data, al-

though in the case of uncertainty as to this being the case, a

more general transformation, as Box-Cox, should be used

instead.
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