ACUMULAÇÃO DURANTE O CICLO E EFICIÊNCIA DE USO DE NUTRIENTES PELO FEIJOEIRO EM SOLO DE VÁRZEA

NAND KUMAR FAGERIA¹, LUÍS FERNANDO STONE²

INTRODUÇÃO: O feijoeiro é importante fonte de proteína para a população da América Latina, inclusive do Brasil. A produtividade dessa cultura é baixa na América do Sul devido aos estresses bióticos e abióticos. Por exemplo, a produtividade média do feijoeiro no Brasil é menor que 900 kg ha⁻¹. Porém, em nível de experimento, produtividades maiores que 3000 kg ha⁻¹ são muito comuns (FAGERIA, 2008; FAGERIA, 2009). O conhecimento da acumulação de nutrientes e seu uso durante o ciclo da cultura são importantes para o manejo da fertilidade do solo. O cultivo de feijão em solo de várzeas, com subirrigação, está aumentado nos anos recentes. Os dados sobre acumulação durante o ciclo de macro e micronutrientes na cultura do feijoeiro cultivado em solo de várzea são escassos. O objetivo deste estudo foi determinar a acumulação e eficiência de uso de macro e micronutrientes pela cultura do feijoeiro durante o seu ciclo.

MATERIAL E MÉTODOS: Foi conduzido um ensaio em casa de vegetação da Embrapa Arroz e Feijão para determinar a acumulação e eficiência de uso de macro e micronutrientes na cultura do feijoeiro. O solo utilizado no ensaio foi Gley Húmico de várzea. Os resultados das análises química e granulométrica antes da instalação do experimento foram: pH 5,1, P 43,2 mg kg⁻¹, K 120 mg kg⁻¹, Ca 6,5 cmol_c kg⁻¹, Mg 1,8 cmol_c kg⁻¹, Al 0,5 cmol_c kg⁻¹, Cu 1,2 mg kg⁻¹, Zn 3,2 mg kg⁻¹, Fe 220 mg kg⁻¹, Mn 36 mg kg⁻¹ e matéria orgânica 27 g kg⁻¹ do solo. A análise granulométrica foi de 329 g kg⁻¹ argila, 200 g kg⁻¹ silte e 471 g kg⁻¹ areia. O experimento foi conduzido em vasos plástico com 6 kg de solo. Cada vaso recebeu, por ocasião da semeadura, 200 mg N kg⁻¹, 200 mg P kg⁻¹ e 200 mg K kg⁻¹. As fontes de fertilizantes foram ureia, supertriplo e cloreto de potássio, respectivamente. Foram aplicados 200 mg N kg⁻¹ aos 40 dias após a semeadura. Cada vaso também recebeu 10 g de calcário dolomítico seis semanas antes da semeadura. O delineamento experimental foi o inteiramente casualizado com quatro repetições. As plantas foram coletadas aos 15, 30, 45, 60, 74 e 94 dias após a semeadura. Após a colheita, as raízes foram retiradas manualmente de cada vaso e lavadas várias vezes, com água e água destilada. O material foi seco em estufa, pesado e moído para análise química. Os dados foram submetidos às análises de variância e regressão para avaliar o efeito do estádio de crescimento em variáveis da planta.

RESULTADOS E DISCUSSÃO: A massa seca da parte aérea, número de trifólios, massa seca das raízes e comprimento máximo das raízes aumentou significativamente de maneira quadrática com o aumento da idade da planta (Tabela 1). A variabilidade em relação à idade da planta foi de 94% para massa seca da parte aérea, 92% para número de trifólios, 85% para massa seca das raízes e 84% para comprimento máximo das raízes. O aumento na massa seca da parte aérea das raízes com o aumento da idade da planta está relacionado com o aumento da capacidade fotossintética da planta com o aumento da área foliar. O aumento na massa seca da parte aérea foi maior do que na massa seca das raízes durante o ciclo da cultura. Fageria (1992) relatou que a translocação de fotossintatos na parte aérea das culturas anuais, inclusive no feijão, é maior em comparação às raízes. Wilson (1988) também relatou que a relação parte aérea-raízes nas culturas anuais aumenta com o aumento da idade da planta até certa idade e depois diminuí ou fica constante. A acumulação (teor x massa seca da parte aérea ou grãos) de macro e micronutrientes aumentou significativamente com o aumento da idade da planta (Tabelas 2 e 3). A acumulação foi na ordem de N > K > Ca > Mg > P > Fe > Mn > Zn > Cu. Fageria e Baligar (1996) e Fageria et al. (2006) relataram a mesma ordem de acumulação de macro e micronutrientes no feijoeiro. A eficiência de uso de nutrientes varia dependendo do nutriente e órgão

¹Engenheiro Agrônomo, Pesquisador, Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, fageria@cnpaf.embrapa.br

²Engenheiro Agrônomo, Pesquisador, Embrapa Arroz e Feijão, Santo Antônio de Goiás, GO, stone@cnpaf.embrapa.br

da planta. Na parte aérea, raízes e grãos a eficiência de uso de macronutrientes foi na ordem de P > Mg > K > Ca > N e para micronutrientes a ordem de eficiência foi Cu > Zn > Mn > Fe. Entre os macronutrientes, o P apresentou a maior eficiência de uso e o N a menor. No caso dos micronutrientes, o Cu foi mais eficiente e o Fe menos eficiente na produção de matéria seca da planta. A maior eficiência na produção de matéria seca pelo P e Cu é relatada por Fageria et al. (2011) em culturas anuais, inclusive no feijão.

Tabela 1. Massa seca da parte aérea (MSPA), número de trifólios, massa seca das raízes (MSR) e comprimento máximo das raízes (CMR) durante o ciclo da cultura do feijoeiro.

comprimento maximo das raizes (civirt) darante o eleio da cartara do reijoeno.				
Idade da planta em	MSPA	Trifólios	MSR	CMR
dias (IPD)	(g planta ⁻¹)	(nº planta ⁻¹)	(g planta ⁻¹)	(cm)
15	0,13	1,75	0,05	16,25
30	1,00	3,00	0,58	25,25
45	1,25	6,50	0,57	33,50
60	5,02	10,75	1,04	35,25
73	7,75	19,00	1,39	35,75
94	14,77	17,75	5,13	37,75

Análise de regressão

IPD (X) vs. MSPA (Y) = $0.0297 \exp(0.1161 \text{X} - 0.00054 \text{X}^2)$, $R^2 = 0.9430 **$

IPD (X) vs. n°. de trifólios (Y) = $0.4461 \exp(0.0787 \text{X} - 0.00041 \text{X}^2)$, $R^2 = 0.9216 **$

IPD (X) vs. MSR (Y) = $0.0267 \exp(0.0824 \text{X} - 0.00032 \text{X}^2)$, R² = 0.8545 ** IPD (X) vs. CMR (Y) = $6.0778 + 0.7862 \text{X} - 0.0049 \text{X}^2$, R² = 0.8353 **

Tabela 2. Acumulação de macronutrientes na parte aérea (PA) e grãos de feijão durante o ciclo da cultura

cuitura.					
Idade da planta em	N	P	K	Ca	Mg
dias (IPD)	(mg planta ⁻¹)				
15	8	0,2	3	2	0,6
30	58	1,1	19	15	5,3
45	67	1,3	23	25	8,0
60	197	3,9	89	72	23,8
73	282	5,4	116	92	34,6
94	327	10,6	192	168	62,1
Grãos	176	6,2	56	8	6,5

Análise de regressão

Idade da planta (X) vs acumulação de N na PA (Y) = $1,6141 \exp(0,1228X - 0,00072X^2, R^2 = 0,9204**$

IPD (X) vs acumulação de P na PA (Y) = $0.0539 \exp(0.0976 \text{X} - 0.00045 \text{X}^2)$, $R^2 = 0.9289 **$

IPD (X) vs acumulação de K na PA (Y) = $0.6756\exp(0.1117X - 0.00055X^2, R^2 = 0.9242**$

IPD (X) vs acumulação de Ca na PA (Y) = $0.3061\exp(0.1349X - 0.00074X^2, R^2 = 0.9453**$

IPD (X) vs acumulação de Mg na PA (Y) = $0.1268 \exp(0.1268 \text{X} - 0.00066 \text{X}^2)$, $R^2 = 0.9502 **$

Tabela 3. Acumulação de micronutrientes na parte aérea e grãos de feijão durante o ciclo da cultura.

Idade da planta em	Zn	Cu	Mn	Fe
dias (IPD)	(µg planta ⁻¹)			
15	3	1.6	22	59
30	37	21.3	228	404
45	44	20.8	314	367
60	122	42.6	1132	1780
73	146	31.5	1220	1675
94	333	78.9	2040	6999
Grãos	111	40.3	180	485

Análise de regressão

IPD (X) vs acumulação de Zn na PA (Y) = $0.9089 \exp(0.1193 \text{X} - 0.00063 \text{X}^2)$, $R^2 = 0.8962 **$

IPD (X) vs acumulação de Cu na PA (Y) = $0.5528 \exp(0.1123 \text{X} - 0.00067 \text{X}^2)$, $R^2 = 0.7928 **$

IPD (X) vs acumulação de Mn na PA (Y) = $3.9400 \exp(0.1399X - 0.00079X^2)$, $R^2 = 0.9395**$

IPD (X) vs acumulação de Fe na PA (Y) = $23.6242 \exp(0.0807X - 0.00024X^2)$, $R^2 = 0.9011**$

^{**}Significativo a 1% de probabilidade.

^{**}Significativo a 1% de probabilidade.

^{**}Significativo a 1% de probabilidade.

Tabela 4. Eficiência de uso de nutrientes nas raízes, parte aérea e grãos de feijão na colheita.

Nutriente	Eficiência de uso nas	Eficiência de uso na parte	Eficiência de uso nos
	raízes ¹	aérea ¹	grãos¹
N (mg mg ⁻¹)	33	45	24
P (mg mg ⁻¹)	1319	1393	671
K (mg mg ⁻¹)	159	77	74
Ca (mg mg ⁻¹)	127	88	520
$Mg (mg mg^{-1})$	347	238	640
$Zn (mg \mu g^{-1})$	14	44	37
Cu (mg µg ⁻¹)	41	187	103
$Mn (mg \mu g^{-1})$	5	7	23
Fe (mg μ g ⁻¹)	0.07	2	9

¹Eficiência de uso de nutrientes = (Massa seca das raízes, parte aérea e grãos em mg/acumulação de nutrientes nas raízes, parte aérea e grãos em mg or μg).

CONCLUSÕES: As respostas da parte aérea e raízes foram semelhantes com o aumento da idade da planta, mas a magnitude da resposta foi maior na parte aérea do que nas raízes. A acumulação de nutrientes na planta é um processo metabólico e é influenciado pela idade da planta. A acumulação de macronutrientes nos grãos foi na ordem de N > K > Ca > Mg > P e nos micronutrientes na ordem de Fe > Mn > Zn > Cu. A eficiência de produção foi maior para P entre os macronutrientes e P cu para os micronutrientes.

REFERÊNCIAS

FAGERIA, N. K. Maximizing crop yields. New York: Marcel Dekker, 1992. 274 p.

FAGERIA, N. K. Nutrient management for sustainable dry bean production in the tropics. **Communications in Soil Science and Plant Analysis**, New York, v. 33, p. 1537-1575, 2002.

FAGERIA, N. K. Optimum soil acidity indices for dry bean production on an Oxisol in no-tillage system. **Communications in soil Science and Plant Analysis**, New York, v. 39, p. 845-857, 2008.

FAGERIA, N. K.; BALIGAR, V. C.; CLARK, R. B. **Physiology of crop production**. New York: Haworth Press, 2006. 345 p.

FAGERIA, N. K., BALIGAR, V. C; JONES, C. A. **Growth and mineral nutrition of field crops**. Boca Raton: CRC Press, 2011. 560 p.

FAGERIA, N. K.; BALIGAR, V. C. Response of lowland rice and common bean grown in rotation to soil fertility levels on a várzea soil. **Fertilizer Research**, Dordrecht, v. 45, p. 13-20, 1996.

WILSON, J. B. A review of evidence on the control of shoot: root ratio in relation to models. **Annals of Botany**, Oxford, v. 61, p. 433-439, 1988.