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ABSTRACT: The objective of this study was to in-
vestigate the presence of genotype × environment in-
teractions (G×E) for long-yearling weight in Canchim 
cattle (5/8 Charolais + 3/8 zebu) in Brazil using reac-
tion norms (RN). The hierarchical RN model included 
the fixed effect of age of the animal (linear coefficient) 
and random effects of contemporary groups and addi-
tive animal genetic intercept and slope of the RN and 
contemporary group effects as random effects. Contem-
porary groups as the most elemental representation of 
management conditions in beef cattle were chosen to 
represent the environmental covariate of the RN. The 
deviance information criteria demonstrated that a ho-
moskedastic residual RN model provided a better data 
fit compared with a heteroskedastic counterpart and 
with a traditional animal model, which had the worst 
fit. The environmental gradient for long-yearling weight 

based on contemporary group effects ranged from −105 
to 150 kg. The additive direct variance and heritabil-
ity estimates increased with increasing environmental 
gradient from 74.33 ± 22.32 to 1,922.59 ± 258.99 kg2 
and from 0.08 ± 0.02 to 0.68 ± 0.03, respectively. The 
high genetic correlation (0.90 ± 0.03) between the in-
tercept and the slope of the RN shows that animals 
with the greatest breeding values best responded to en-
vironmental improvement, characterizing scale effect as 
the source of G×E for long-yearling weight. The pheno-
typic plasticity demonstrated by the slope of the RN of 
the animal indicates the possibility to change genotype 
expression along the environmental gradient through 
selection. The results demonstrate the importance of 
accounting for G×E in the genetic evaluation of this 
population.
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INTRODUCTION

Genotype × environment interaction (G×E) is char-
acterized by different responses of genotypes to envi-
ronmental variations (Falconer and Mackay, 1996). The 
G×E may lead to changes in phenotypes, as well as 
changes in the absolute and relative magnitude of ge-
netic and environmental variances. This implies that 
the performance of animals and their progeny can 
change according to the environmental conditions in 
which they are raised and selected. Therefore, dif-

ferent selection criteria may be chosen depending on 
the breeding environment, as suggested by Henderson 
(1984) and Alencar et al. (2005). In this context, the 
study of G×E is important to investigate whether it 
should be considered in genetic evaluations to increase 
the response to selection.

The presence of G×E can be investigated by de-
scribing the phenotype of an animal as a continuous 
function of the environment (Woltereck, 1909; Lynch 
and Walsh, 1998). This has been recently achieved in 
animal breeding by using reaction norm (RN) mod-
els to describe the gradual and continuous variation of 
economically important traits over an environmental 
gradient for dairy cattle (Kolmodin et al., 2002; Calus 
et al., 2006; Strandberg et al., 2009), beef cattle (Cor-
rêa et al., 2009; Pegolo et al., 2009), sheep (Pollott and 
Greeff, 2004), and swine (Knap and Su, 2008).

Reaction norms are obtained by means of covariance 
functions (Kirkpatrick et al., 1990), which are estimat-
ed by random regression and allow the performance of 
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genotypes at each level of the environmental gradient 
to be determined, and to evaluate the heterogeneity 
of genetic and residual variances in each environment. 
Reaction norms also allow distinguishing between geno-
types that are more or less sensitive to environmental 
changes, called phenotypic plasticity (Bradshaw, 1965). 
According to Falconer (1990), more sensitive animals 
are called plastic genotypes and less sensitive animals 
are called robust genotypes. Therefore, the presence of 
G×E may also be characterized as the difference in 
phenotypic plasticity among individuals (Falconer and 
Mackay, 1996).

The objective of the present study was to investigate 
the existence of G×E using a hierarchical RN model 
(HRNM) applied to long-yearling weight in Canchim 
cattle (5/8 Charolais + 3/8 zebu).

MATERIALS AND METHODS

Animal Care and Use Committee approval was not 
obtained for this study because the data were obtained 
from an existing database (Brazilian Canchim Breeders 
Association; ABCCAN).

Data Set Edition

The data set of the Brazilian Canchim (5/8 Charolais 
+ 3/8 zebu) beef cattle population, which participates 
in the Embrapa-Geneplus genetic evaluation program 
associated with the ABCCAN, was used. Contempo-
rary groups (CG) consisted of a combination of year 
and season of birth, sex, genetic group of dam, herd at 
weaning and long-yearling, and feeding regimen from 
birth to weaning and from weaning to long-yearling. 
The seasons of birth were 1) September to November, 
2) December to February, 3) March to May, and 4) 
June to August. Feeding regimens at weaning and long-
yearling were 1) pasture, 2) pasture plus a supplement, 
and 3) feedlot.

Genetic connectedness among CG was evaluated us-
ing the AMC software (Roso and Schenkel, 2006), with 
a minimum of 10 genetic connections being required. 
The final data set used included 14,078 records for 
long-yearling (about 420 d of age) weight of animals 
born between 1989 and 2000, 1,398 CG, and 21,788 
animals in the pedigree.

Statistical Models

The HRNM were implemented based on the unknown 
covariate proposition of Su et al. (2006). The covariate 
was characterized by the CG effects that were jointly 
estimated with the RN of the animals. In beef cattle, 
CG combines location, climate, management, and sex 
and is the most basic environmental entity to which the 
performance of the animals is the subject and, there-
fore, a natural candidate RN covariate. This methodol-
ogy is an alternative to classical modeling of the RN 
that uses a proxy for the unknown covariate based on 

phenotypic means or subclass deviations (Kolmodin et 
al., 2002; Calus and Veerkamp, 2003) and is employed 
to minimize possible predicted genetic values bias due 
to different genetic merit across herds and due to ge-
netic trends (Su et al., 2006).

The HRNM used in the analyses is described as fol-
lows:

y = Xβ + Eh + Za + Hb + e,

where y = the vector of long-yearling weights; β = the 
vector of fixed effects (overall mean and linear coeffi-
cient for long-yearling age); h = the vector of random 
CG effects; a and b = the vectors of random intercept 
and slope coefficients of animal additive genetic RN, 
respectively; e = the random error vectors; and X, E, 
Z, and H = the incidence matrices. Once covariates 
associated with the RN are treated as unknown, each 
row of H has one nonzero element that is equal to the 
element h (contemporary group effect) associated with 
the corresponding record on y, and all other elements 
of this row are equal to zero (Su et al., 2006).

Two alternative assumptions on residuals were used: 
a homogeneous error model (HRNM1), where 
e 0 I~ ,N e

2σ( ) (i.e., all error terms are associated with a 

common residual variance σe
2 through an identity ma-

trix I) and a heterogeneous error model (HRNM2), 

where e 0~ ,
ˆ

N diag σ ηe
hj2 ×{ }






 (i.e., each error term has 

its specific residual variance as a function of the associ-
ated environmental covariate ˆ ).hj  This exponential 
function on a residual heteroskedasticity parameter, η, 
was based on the structural model proposed by Cardo-
so et al. (2005) and posterior means of hj by the HRNM1 
model, ˆ ,hj  were used in the function to facilitate recog-
nizable fully conditional posterior densities.

The priori assumptions for the unknown parameters 
of the model were uniform density for fixed effects and 
for the residual heteroskedasticity parameter, whereas 
normal distributions with a mean of zero were assigned 
for random effects of CG and for the RN parameters of 
animals. The covariance matrix was diagonal for the 
effect of CG (i.e., Var h I  = σh

2, where σh
2 is the CG vari-

ance). For genetic effects the covariance matrix was
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where σa
2 and σb

2 = the additive genetic variances of the 
RN intercept and slope, respectively; σab = the genetic 
covariance between the intercept and the slope of RN, 
and A = the numerator relationship matrix. An inverse 
Wishart distribution prior with v = 2 df and scale ma-

trix T =










v

590 2
2 0 02.

 was adopted for the covariance 

matrix of RN, whereas inverse gamma distributions 
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were used for residual variance with shape parameter 
αe = 2 and scale parameter βe = 3,000, and for CG 
variance with respective parameters, αe = 2 and βe = 
3,000.

Model Comparison

The deviance information criterion (DIC) proposed 
by Spiegelhalter et al. (2002) was used to chose the 
model that fit the data best. The DIC was calculated 
by

 DIC D pr r Dr= ( ) +θ , 

where D p Mr m
g

rg
mθ θ( ) = − ( )=∑1

1
2 log | ,( )y  = the poste-

rior mean of the deviance; θ = the unknown parameters 
of the model; Mr = model r; p Mry | ,θ( ) = the condi-
tional data sampling distribution; p D DDr r r

= ( ) − ( )θ θ  
= effective number of parameters or complexity of 
model r; D p M

r rθ θ( ) = − ( )2 log | , ;y  and θ = the poste-
rior mean of all parameters. Thus, a smaller value of 
DIC indicates a better fit of the model. An animal 
model (AM) including fixed effects of CG and long-
yearling age (linear covariate) and additive direct and 
residual random effects, which assumed homogeneity of 
variance, was used for comparison of model fit and CG 
effects estimated by the HRNM.

Genetic Parameters

Using the environmental gradient information, the 
breeding value (BV) of animal i was estimated for each 
environmental level using the following formula:

 BV h a b hi i i= + , 

where h = the environmental covariate value, ai and bi 
are, respectively, the RN intercept and slope of animal 
i. Spearman rank correlations were computed between 
BV obtained by the AM and calculated for HRNM1 at 
the 5th, 50th, and 95th environmental percentiles.

Additive genetic variance, heritability, and genetic 
correlations between ai and bi were obtained using the 
following formulas, respectively:

 σ σ σ σA a b abh h h2 2 2 2 2= + ± , 

 h h
h

hA
A

A
h

e

2
2

2 2
=

+ ×

σ

σ σ η
,  and 

 rab
ab

a b
=
σ
σ σ( )

. 

Note that in the heritability formula above, η = 1 for 
the homoskedastic HRNM1.

The phenotypic plasticity of the individuals was clas-
sified according to the absolute value of bi: bi b< σ  = 
robust genotype; σ σb i bb≤ < 2  = plastic genotype; and 
bi b≥ 2σ  = extremely plastic genotype.

Bayesian Inference

A Bayesian approach was used for inference using 
the Intergen software (Cardoso, 2008). For HRNM1, 
the fully conditional posterior densities and Gibbs sam-
pling strategy used were those presented by Su et al. 
(2006). Additionally, a random walk Metropolis-Hast-
ings step was introduced in HRNM2 to sample η from 
its nonrecognizable posterior density (Cardoso et al., 
2005), which can be represented by the following for-
mula when records are ordered by CG:
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Here, nh is the number of CG, nj is the number of re-
cords in the jth CG, and ej are the residuals of its 
records.

The chain length was 210,000 iterations, and the ini-
tial burn-in period was set to 10,000 iterations, generat-
ing posterior samples every 10 cycles. The convergence 
of the chains was evaluated by trace plot analysis of the 
values of the samples for all (co)variance components 
vs. the chain cycle (Figure 1).

RESULTS AND DISCUSSION

The observed means ± SD (range) of long-yearling 
weight and long-yearling age were 267 ± 56 kg (100 to 
480 kg) and 420 ± 24 d (375 to 465 d), respectively. 
The DIC indicates that HRNM1 was the model that 
best fit the data (Table 1) and was chosen for detailed 
analysis in this study. A similar result was reported by 
Corrêa et al. (2009) for postweaning BW gain in Devon 
cattle. The poorer fit of the heteroskedastic model de-
serves further research to identify structural functions 
other than the one specified in HRNM2 because other 
investigators have found heteroskedastic residual vari-
ances with RN applications (Calus et al., 2002; Pol-
lott and Greeff, 2004; Knap and Su, 2008) and there is 
evidence that residual variances show a linear increase 
with increasing herd production levels (Kolmodin et 
al., 2002). Moreover, DIC comparison between models 
is based on model fit, but for genetic evaluation purpos-
es it would be more relevant to compare models based 
on their prediction ability, which may not be trivial 
with field data. Provided sufficient information is avail-
able, one possible alternative would be to contrast the 
RN of the sire obtained by different models with their 
future progeny performance in different environmental 

2351Genotype × environment interaction in Canchim cattle

 by Mauricio Mello De Alencar on August 2, 2011jas.fass.orgDownloaded from 

http://jas.fass.org/


levels, excluding the records of this offspring from the 
analyses.

Closely similar solutions for CG were obtained with 
HRNM1, HRNM2, and the AM, with a correlation of 
0.99. Similarity between true and estimates of environ-
ment values (r = 0.97) was observed by Su et al. (2006) 
in a simulation study. However, the same authors found 
a correlation between true herd-year effect and herd-
year observed mean of only 0.90 and argued that usage 
of phenotypic means as proxies for environmental val-
ues results in poor inferences.

For the HRNM1, the estimated environmental gradi-
ent ranged from −105 to 150 kg, with a mean ± SD of 
0.80 ± 41 kg. The additive genetic variance and, con-
sequently, the heritability shown in Figure 2 increased 
along the environmental gradient. For example, the 

Figure 1. Posterior means and SD and trace plots of (co)variance component vs. Markov chain cycles. σh
2 = contemporary group variance; σa b,  

= covariance between level and slope of reaction norms; σa
2 = intercept variance; σb

2 = reaction norm slope variance; and σe
2 = error variance.

Table 1. Summary of the comparison between the hi-
erarchical reaction norm models and the animal model 
based on the deviance information criterion 

Model Deviance PD1 DIC2

HRNM13 135,827.03 2,305.83 138,132.86
HRNM24 136,139.76 2,050.16 138,189.92
AM5 136,710.82 3,432.29 140,143.11

1Effective number of parameters.
2Deviance information criterion.
3Homoskedastic reaction norms model.
4Heteroskedastic reaction norms model.
5Animal model.
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posterior mean heritability ± SD was 0.089 ± 0.015 and 
0.511 ± 0.035, respectively, for the 5th and 95th per-
centiles. This indicates that a larger phenotypic varia-
tion proportion is due to additive genetic factors as the 
environmental conditions improve, which is in agree-
ment with results of other RN studies for growth and 
production traits in cattle (Cromie, 1999; Kolmodin et 
al., 2002; Fikse et al., 2003; Shariati et al., 2007; Corrêa 
et al., 2009). Therefore, a better response to selection is 
achieved at greater levels of the environmental gradient 
(Figure 2). On the other hand, the posterior mean heri-
tability ± SD obtained with the AM was 0.20 ± 0.02, 
a value that is less than the estimate with HRNM1 for 
the average and positive environments.

The posterior mean correlation between ai and bi was 
high (0.90 ± 0.03). This finding indicates that animals 
with greater BV for long-yearling weight responded 
better to environmental improvement, characterizing 
scale effect (Falconer and Mackay, 1996) as the form of 
G×E for long-yearling weight. This is also supported by 
the high (>0.90) Spearman rank correlations observed 
between BV obtained by the AM and calculate for ho-
moskedastic RN model (HRNM1) at the 5th, 50th, and 
95th environmental gradient percentiles (Table 2). Fig-
ure 3 illustrates predicted RN for a random sample 
of 7 animals of the studied population, demonstrating 
G×E by the variation in BV of the animals along the 

environmental gradient and some reordering of geno-
type ranks. Similar results were observed for Brazilian 
Angus postweaning BW gain (Cardoso et al., 2010). 
When compared with the traditional AM, genetic eval-
uations based on the RN model are expected to result 
in greater response to selection, especially in the best 
environments (Kolmodin et al., 2003).

The observed frequencies of robust, plastic, and ex-
tremely plastic genotypes were 20,288, 1,446, and 54, 
respectively. This result indicates genetic variability in 
phenotypic plasticity. Moreover, the minimum estimat-
ed animal RN slope of −0.448 indicates that all animals 
increase their performance with the environmental im-
provement. This is evident because hj + ai + bihj part 
RN model for a single animal i can be written as ai + (1 
+ bi) hj (Su et al., 2006), and as long as bi > −1, perfor-
mance increases with increasing hj. However, because 
different individuals have different slopes, reranking 
can happen under different environments. These adap-
tive variations might be included in selection indices to 
select more robust genotypes or to favor more plastic 
genotypes that respond to environmental improvement 
of a given trait. Therefore, this breed and other simi-
lar populations could benefit from implementing RN 
predictions to optimize breeding programs that select 
seedstock for multiple environments (de Jong and Bi-
jma, 2002; Kolmodin and Bijma, 2004).

Figure 2. Heritability estimates for long-yearling weight along the environmental gradient in Canchim cattle.

Table 2. Spearman rank correlation between breeding values obtained by the animal 
model (AM) and calculated for homoskedastic reaction norms model (HRNM1) at the 
5th, 50th, and 95th environmental gradient percentiles 

Model  
(environmental level) HRNM1 (low)1 HRNM1 (median)2 HRNM1 (high)3

AM (overall) 0.933 0.925 0.910
HRNM1 (low)1  0.978 0.958
HRNM1 (median)2   0.996

1Environmental gradient 5th percentile = −59.9 kg.
2Environmental gradient 5th percentile = −3.1 kg.
3Environmental gradient 5th percentile = +77.0 kg.
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High correlations among BV are observed along most 
of the environmental gradient, with these correlations 
only decreasing in extremely unfavorable environments 
(Figure 4). This reordering of BV at decreased levels 
of the environmental gradient confirmed the existence 
of G×E. Other studies with beef breeds under grazing 
conditions in Brazil (Alencar et al., 2005; Corrêa et al., 
2009; Cardoso et al., 2010) also demonstrate that ge-
netics suitable for harsh environments is generally quite 
different from that for average or superior conditions.

Implications

The RN models are a promising tool to jointly take 
genotype by environment interaction and heterogene-
ity of genetic variances in different environments into 
account in genetic evaluation programs. This could in-
crease selection efficiency and genetic progress in each 
specific environment. Nevertheless, the practical usage 
of RN in the choice of superior livestock may impose 

a change of paradigm and the selection strategies of 
the breeders, because for each environment a different 
genetic value will be obtained for the selection candi-
date. Moreover, required environmental characteriza-
tion is frequently a challenging task. In this beef cattle 
study, CG effects were regarded as environmental co-
variates, because they represented the most elemental 
set of management conditions in data in the current 
study. However, small subclass size could be an issue 
and bias environmental level estimation with this defi-
nition. Therefore, further studies on the definition of 
production and selection environments considering; for 
example, climate, geographical and herd management 
and structure variables are warranted before industry 
application of the RN methodology.
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