Antioxidant defenses and biochemical changes in pacu in response to single and combined copper and hypercapnia exposure

Fernanda Garcia Sampaio*, Cheila de Lima Bojink1, Eliane Tie Oba1, Laila Romagueira Bichara dos Santos3, Ana Lúcia Kalinin4, Alfredo José Barreto Luiz3 and Francisco Tadeu Rantin4

*Pesquisadora, Empresa Brasileira de Pesquisa Agropecuária – Embrapa; Rod. SP 340, km 127.5; cep: 13820-000; Jaguariúna, SP; fesampaio@cpma.embrapa.br; 1Embrapa, Manaus, AM; 2Embrapa - Macapá, AP; 3Departamento de Fisiologia e Biofísica; Instituto de Ciências Bioquímicas; Universidade de São Paulo, SP; 4Laboratório de Zoofisiologia e Bioquímica Comparativa, Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP - Instituto Nacional de Ciência e Tecnologia – Fisiologia Comparada; 5Embrapa - Jaguariúna, SP.

A range of compounds and environmental changes can influence fish welfare e.g. copper compounds and carbon dioxide concentration. Copper sulfate is a compound widely used in aquaculture as algaecide and high CO$_2$ concentration (hypercapnia) frequently occurs in aquaculture systems as a result of high fish density and low water exchange rates. Exposure to copper and/or to environmental hypercapnia can be stressful for certain fish species. This study investigated the potentially detrimental effects of CO$_2$ and its combination with copper on pacu. Fish (Wt = 40.20 ± 1.05 g) were distributed in experimental glass aquaria (n = 10; 180 L static system, 2 - 6 replicates for each group) and exposed for 48 h to control (without copper supply; normocapnic medium) (0Cu), 0.4 mg Cu$^{2+}$ L$^{-1}$ (0.4Cu), to hypercapnic medium (Hyp) (0CuHyp) and to 0.4 mg Cu$^{2+}$ L$^{-1}$ + Hypercapnic medium (Hyp) (0.4CuHyp). Results were tested by analysis of variance in a General Linear Model (GLM). If interaction effects were significant (p < 0.05), an F test was applied. The t test was performed to determine which individual groups differed from the control (p < 0.05). The results are presented as mean ± standard deviation. Mortality was not observed in any experimental group. Pacu was resistant to the exposure to both isolated and associated conditions. In liver the effect of the increase in lipid hydroperoxide concentration in response to the 0.4Cu and 0CuHyp was abolished in 0.4CuHyp. The response pattern of the superoxide dismutase (SOD) hepatic activity in response to 0.4Cu was the same from that of 0.4CuHyp. The increased SOD hepatic activity in response to copper exposure was independent on the aquatic CO$_2$ level. The decrease in glutathione peroxidase hepatic activity in response to the exposure of 0.4Cu and 0CuHyp was abolished in the 0.4CuHyp. Catalase (CAT) hepatic activity decreased in response to 0.4Cu and 0CuHyp, but did not change in response to 0.4CuHyp. This indicates that the combined effects of copper and hypercapnia exposure do not change the CAT hepatic activity. In relation to 0Cu the exposure to 0.4Cu did not change the plasmatic glucose concentration (Gluc), and the exposure of fish to 0CuHyp decreased the Gluc. However, fish exposed to 0.4CuHyp increased the Gluc. This suggests that the effect of the decrease in Gluc in response to the hypercapnic water is abolished in higher water copper concentration. The plasmatic lactate levels (Lact) did not change in response to the 0.4Cu, decreased in fish exposed to 0CuHyp and increased in fish exposed to 0.4CuHyp. There was no interaction between copper and CO$_2$ levels on the plasmatic concentration of pyruvate, ammonia and protein. These plasmatic variables displayed the same pattern to copper exposure in both normocapnic and hypercapnia waters. In pacu, regardless of the water CO$_2$, the exposure to copper decreased the branchial Na$^+/K^+$-ATPase (Na/Kb) activity in fish from group 0.4Cu and 0.4CuHyp. This suggests that the Na/Kb activity in response to aquatic copper is independent of the CO$_2$ water. Fish exposed to 0.4Cu and 0.4CuHyp increased the branchial metallothionein (MTb) concentration and when exposed to 0CuHyp there was no difference from 0Cu. As a consequence, the increase in MTb concentration occurs exclusively in response to water copper enhancement, regardless of the water CO$_2$. MTb and Na/Kb were effective biomarkers, responding to copper in different CO$_2$ levels. Combined-factors, copper + hypercapnia, caused more effective disturbance in the biomarkers than single factors alone.