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ABSTRACT: This study aimed at identifying different conditions of coffee plants after harvesting 

period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion 

image, with spatial resolution of 30 m, was acquired in August 28
th

, 2008, at the end of the coffee 

harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect 

corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) 

algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated 

from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-

Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was 

used to verify the similarity among the wavelength cluster means. The results demonstrated that it is 

possible to separate five different clusters, which were comprised by different coffee crop 

conditions making possible to improve future intervention actions. 
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DISCRIMINAÇÃO DE DIFERENTES ESTADOS DE PLANTIOS DE CAFÉ PÓS- 

-COLHEITA, POR MEIO DA TÉCNICA DE MINERAÇÃO DE DADOS E PERFIS 

ESPECTRAIS 

 

RESUMO: Este trabalho teve o objetivo de identificar diferentes condições na cultura do café, após 

a colheita, utilizando mineração de dados e curvas espectrais obtidas do sensor Hyperion/EO1.A 

imagem Hyperion, com resolução espacial de 30 m,foi obtida em 28 de agosto de 2008, fim de safra 

do café na área de estudo.Como pré-processamentos, foram realizadas a correção atmosférica 

através do algoritmo Flaash e a correção do sinal/ruído pelo algoritmo MNF (Minimum Noise 

Fraction Transform). Posteriormente, foram geradas curvas espectrais (38) de 150 comprimentos de 

onda, que foram analisadas através do algoritmo EM (Expectation-Maximization), considerando 

simulações de 2; 3; 4 e 5 clusters. Para verificar a igualdade das médias dos comprimentos de onda 

dos clusters, foi utilizado o teste t, com 5% de significância. Os resultados mostraram que foi 

possível separar os cafés em cinco diferentes grupos, segundo sua condição pós-colheita, 

possibilitando melhorar ações futuras de intervenção.  

 

PALAVRAS-CHAVE: monitoramento de cultura, comportamento espectral, manejo, 

sensoriamento remoto. 
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INTRODUCTION 

Spectral signatures describe the variation of the electromagnetic energy reflected by the 

targets along the electromagnetic spectrum, which behavior depends on optical characteristics that 

determine its capacity for absorption, transmission and reflection. In the case of plants, this spectral 

behavior is strongly influenced by the presence of leaf pigments, cell structure and presence of 

water in leaf tissues (GATES et al., 1965). 

Several studies describe the spectral behavior typical of some plant species and the 

phenomena that cause changing in this pattern (JENSEN, 2009). In general, these studies were 

conducted in the laboratory with equipment called spectroradiometer capable of recording the 

energy reflected by the targets in hundreds of different wavelengths, resulting in very high 

resolution spectral signatures. Other studies have been conducted with multispectral satellite images 

to determine spectral signatures of plant populations. However, due to the low resolution of these 

sensors, the spectral curves generated have low level of details, reducing the capacity to assess the 

spectral characteristics of the targets under analysis. 

Many studies show that certain wavelengths interact with plant pigments. The interaction in 

the visible wavelength, for example, is influenced by chlorophyll pigments (DENISE & 

BARANOSKI, 2007). Others have shown the relationship between pigment concentration and the 

optical properties of the leaf (PONZONI & SHIMABUKURO, 2007; PEÑA-BARRAGÁN et al., 

2011). Most of these studies used data from satellites with sensors that operate in wide bands of the 

electromagnetic spectrum (MOREIRA et al., 2007; MOREIRA et al., 2010). However, with the 

improvement of sensors that record more detailed information from the surface, there is the 

possibility of conducting new studies involving the analysis of the relationship between plant 

components and their spectral response. Such studies rely on the fact that there is an innovation of 

orbital characteristics of the spatial, temporal, spectral, and radiometric sensor resolution. 

Hyperspectral imager sensors have the advantage of instantly composing images acquired in 

hundreds of spectra with a level of resolution closer to that obtained with field or laboratory 

spectroradiometer (RUDORFF et al., 2007). The Hyperion, which was launched aboard the Earth 

Observing One satellite (EO-1) in November 2000, is the first orbital hyperspectral sensor that 

allows the acquisition of images in 220 spectral bands (10 nm wide each), with a spatial resolution 

of 30 m. Covering the spectrum from 400 nm to 2,500 nm, the bands are positioned in the visible, 

near infrared and short wave infrared, allowing more precise analyses of the relationships between 

plant components and spectral bands. 

Remote sensing applications in agriculture are related, for example, to monitoring the 

coverage, vigor and type of existing vegetation. However, it is necessary to know the spectral 

behavior of these surfaces. Moreover, the same crop may have variable spectral behavior at 

different stages of development (PONZONI & SHIMABUKURO, 2007). 

The evaluation of the spectral profile can allow not only crop differentiation (TISOT et al., 

2007), but also bring inferences about their conditions. At this point, the analysis of spectral profiles 

can identify differences in plants and provide important insights on the spatial distribution of post-

harvest damage, one of the critical steps of crop management. 

In this sense, data mining (DM) is placed as a tool to analyze large volumes of data. 

According to FAYYAD et al. (1996), DM can be defined as the extraction of knowledge from a 

database, by identifying standards that are valid, original, potentially useful and understandable. 

For LAXMAN & SASTRY (2006) and MILLER & HAN (2009), the DM process is focused 

on the interaction between the various classes of users (domain expert, analyst, end user) and 

involves knowledge of the domain, problem identification, pre-processing, pattern extraction, post-

processing, and use of the knowledge gained. During pre-processing, domain knowledge, and 

problem identification help select the data sets, to which treatment methods are applied, such as 

extraction, integration, processing, cleaning, selection of attributes, and data reduction, so that the 
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goals are achieved during the phase of standard extraction. In this phase, the choice of MD task, 

algorithm, and extraction of pattern to be used are defined. In the task choice, one must decide 

between a descriptive (association rules, summarization, clustering or grouping) and predictive 

(classification, regression) activity, according to the desired objectives and then define the 

algorithm to be used for this task. Finally, in post-processing, after selection of the most important 

or relevant patterns, the gained knowledge should be used to solve the identified problem. 

DM predictions involve the use of attributes of a data set to predict the future value of the 

variable target, i.e., aiming to decision-making process. Cluster generation is a descriptive task that 

seeks to target a data set in a number of classes which the intra-class similarities and between 

classes are respectively minimized and maximized (MILLER & HAN, 2009). 

RIE & OSAMU (2001) emphasized the importance of discovering new knowledge from large 

amounts of data, such as those derived from meteorological satellite images. These authors 

addressed the extraction of information on long time series of cloud images, which were analyzed in 

the form of clusters (groups) identification. Clusters were entered into a relational database that 

allowed queries to evaluate its usefulness. In the same line and corroborating the results found by 

RIE & OSAMU (2001), ZHANG et al. (2008) described almost the same procedures for analyzing 

time series of meteorological satellite images using DM to improve weather forecasting. 

Among the main clustering methods, it is highlighted the partition, the density and the 

probabilistic (GUIDINI & RIBEIRO, 2006). In the partitioning method, the algorithm that is the 

most widely used is the K-Means, which identifies classes of objects with similar characteristics 

that are closest to a given centroid, often determined by the Euclidean distance or Manhattan 

distance metrics. However, the number of clusters must be defined in advance by the analyst, who 

chooses the best set of clusters after the event, which is a disadvantage of the method. Furthermore, 

this method is sensitive to noise or outliers in the data set. 

Among the probabilistic methods, the EM (Expectation-Maximization) algorithm, also known 

as Gaussian Mixture, is more widely used in data clustering. It is based on the maximum likelihood 

statistics to estimate the parameters of normal distribution. The data are a mixture of n univariate 

normal distributions with the same variance σ
2
 and estimate the mean of each normal distribution, 

i.e., the hypothesis that maximizes the likelihood of these means and, through an iterative process, 

to form clusters. 

In this sense, considering the potential of DM tools, the objective of this study was to group 

profiles of hyperspectral sensor Hyperion/EO1 under several conditions during post-harvest phase 

of coffee plants in order to classify them according to their conditions. 

 

MATERIAL AND METHODS 

The Hyperion image was collected on August 28, 2008 in 220 spectral bands, each 10 nm 

wide, covering the wavelengths between 400 nm and 2,500 nm. However, only 198 tracks are 

provided with radiometric calibration. The spatial resolution of the sensor is 30 meters. 

The images were preprocessed using the MNF (Minimum Noise Fraction Transform) 

technique, which made it possible to eliminate bands with noise. Afterwards, the atmospheric 

correction of the image was performed. For this, was applied the Flaash algorithm that transforms 

gray level values to radiance, using scale factors, and later to the surface reflectance, which were 

established within the following parameters for the correction: spectral model of tropical type, 

aerosol model of rural type, option for "water retrieval" (estimative of water amount) and 1,135 nm 

value in the "water absorption" feature (electromagnetic spectrum characterized by absorption of 

water). After the pre-processing activities, only 150 of 220 bands were effectively used. 

To perform the task, it was built a database with information on the plots studied, such as 

plant variety, age, area, slope and spacing. The database was structured in a Geographic Information 

System (GIS). 
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The area under study is located on a farm in the municipality of Montes Claros, in the south 

of the state of Minas Gerais, as shown in the map in Figure 1. The region lacks a detailed survey of 

the soil classes, although there is predominance of more sandy types (<15% clay). The figure also 

illustrates the location of sampling points used to generate the spectral curves. 

 

               
 

FIGURE 1. Study area showing plots and locations of sampled spectral profiles. 

 

The farm is located on a plateau between 1,000 and 1,110 meters of altitude. Since eight 

varieties of coffee (Catuaí Amarelo and Vermelho, Catucaí Amarelo, Icatú Amarelo and Vermelho, 

Mundo Novo, Obatã andTupi) are found in the study area, and this simplification was considered in 

the analysis. First, all varieties have approximately the same spacing (1 x 4 m) and number of plants 

per hectare (3,200); the analysis was conducted considering the spectral image for crops or sections 

with more foliage, and another for crops or sections with less foliage. In case there was no way to 

identify differences in the image, the plot was considered homogeneous and a single sample was 

collected. It must consider that the age of the plants, which varies widely in the areas studied (2 to 

10 years), influenced the spectral response. Figure 2 shows these variations in the image (a) and 

field (b), and the differentiation was carried out visually, by analyzing the Hyperion image in color 

composition (R 833 nm - 1,215 nm G - B 2,304 nm). 
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FIGURE 2. Color composite of a Hyperion image from August 28
th

, 2008 (a) and panoramic field 

photo (b) highlighting different coffee foliage conditions in the same parcel (Ex. 

parcel 211).  1 = coffee plantation with low density foliage; 2 = coffee plantation with 

high density foliage. 

 

Table 1 presents a description of some after-harvest characteristics of coffee plants that were 

considered for cluster analysis. It should be noted that the descriptive characteristics were indicative 

of the condition of the plant, and the information was the result of harvest (management), which 

varied from plot to plot, depending on the type of harvesting, mechanized or manual, and in more 

detail, manpower ability or machine settings. This assessment was carried out in the field and 

during technical meetings with the producer and technicians at the Regional Cooperative of Coffee 

Growers in Cooxupé (“Cooperativa Regional de Cafeicultores de Guaxupé Ltda.”) 

 

TABLE 1. Plots and its characteristics. 

Plots sample 

number 
Variety Age (years) 

Height 

(m) 

Prod.  

(sc ha
-1

) 
Description 

329_0 Bourbon 4 1.8 56.8 
(a)

 By the image had little leaf. 

212_1 Icatu Vermelho 8 1.8 47.8 
(m)

 Less leaf 

372_2 Icatu Vermelho 3 1.8 61.5 
(a)

 

Seated in a sandy soil with irrigation 

finalized in May, harvest in June, image 

in August. Malnourished plant with no 

rain in the period.          100% 

harvested.  

428_3 Mundo Novo 3 1.8 8.1 
(b)

 

Seated in a sandy soil with irrigation 

finalized in May, harvest in June,  

image in August. Malnourished plant 

with no rain in the period.           100% 

harvested.  

458_4 Mundo Novo 2 - - No production. Practically soil. 

1381_5 Mundo Novo 13 4.0 97.5 
(a)

 Tip cutting. No rain. 

164_6 Catuaí Vermelho 12 2.3 a 2.4 90.0 
(a)

 Tip cutting. By the image had little leaf. 

315_7 Catuaí 9 2.1 a 2.2 81.1 
(a)

 
 By the image had little leaf.100% 

harvested.  

354_8 Catuaí Vermelho 5 1.8 a 1.9 73.7 
(a)

 
Low height. Relatively new crop. 100% 

harvested.  

364_9 Catuaí Vermelho 7 1.8 a 2.0 63.7 
(a)

 
By the image had little leaf. 

 100% harvested.  

443_10 Catuaí Amarelo 2 - - Soil 100%. 

1104_11 Catuaí Vermelho 10 - 60.5 
(a)

 Less leaves.77% harvested.  

355_12 Catucaí 5 1.8 66.6 
(a)

 
Usually lose leaves after harvest. 100% 

harvested.  

2651_13 Catucaí 4 1.7 82.8 
(a)

 
Less leaves. Stain with less leaves. 0% 

harvested. 

2652_14 Catucaí 4 1.7 81.7 
(a)

 
Less leaves. Stain with less leaves. 0% 

harvested. 

(a) (b) 
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Plots sample 

number 
Variety Age (years) 

Height 

(m) 

Prod.  

(sc ha
-1

) 
Description 

121_15 Icatu Amarelo 7 3.0 72.9 
(a)

 
Soil completely closed.  

100% harvested. 

152_16 Icatu Vermelho 8 3.5 61.7 
(a)

 96% harvested.  

211_17 Icatu Amarelo 8 - 77.9 
(a)

 More leaves. 80% harvested.  

212_18 Icatu Vermelho 8 - 47.8 
(m)

 More leaves. 70% harvested.  

248_19 Mundo Novo 13 - 22.9 
(b)

 22% harvested.  

338_20 Mundo Novo 9 - 80.6 
(a)

 45% harvested.  

468_21 Mundo Novo 14 3.4 102.9 
(a)

 
More leaves by the image. 

 100% harvested.   

1381_22 Mundo Novo 3 - 97.5 
(a)

 More leaves. 98% harvested.  

144_23 Catuaí Vermelho 9 2.0 a 2.4 29.7 
(b)

 100% harvested.  

233_24 Catuaí Amarelo/Vermelho 11 - 91.0 
(a)

 More leaves. 5% harvested.  

315_25 Catuaí 9 - 81.3 
(a)

 More leaves. 100% harvested.  

348_26 Catuaí Mundo Novo 11 - 60.0 
(a)

 More leaves. 100% harvested.  

1104_27 Catuaí Vermelho 10 - 60.3 
(a)

 More leaves. 77% harvested.  

1382_28 Catuaí Vermelho 13 2.0 a 2.4 73.8 
(a)

 With leaves.  100% harvested.  

116_29 Obatã 6 2.0 a 2.3 61.4 
(a)

 With leaves. 35% harvested.  

196_30 Obatã 10 - 63.9 
(a)

 With leaves. 0% harvested.  

177_31 Tupi 10 - 52.6 
(a)

 More leaves. 100% harvested.  

257_32 Tupi 6 - 78.9 
(a)

 More leaves. 100% harvested.  

257_33 Tupi 6 - 78.9 
(a)

 Less leaves. 100% harvested.   

2651_34 Catucai Amarelo 4 - 82.8 
(a)

 0% harvested.  

211_35 Icatu Amarelo 8 - 77.9 
(a)

 Less leaves. 80% harvested.  

183_36 Catuaí Amarelo 10 2.0 a 2.4 52.6 
(a)

 100% soil.  
Note: in the first column Plots sample numbers, the first number is the plot and the second is the place where the sample was 

removed for generating the spectral profile: (a) - high; (m) - medium and (b) - low productivity. 

 

For cluster generation, based on behavior of the spectral profile of each plot, the software 

WEKA (Waikato Environment for Knowledge Analysis) was used (WITTEN&FRANK, 2005). 

This software aggregates algorithms from different paradigm methods, and carries out statistical 

and computational analyses of the data provided by using data mining techniques in order to acquire 

new knowledge, either inductively or deductively. Thus, for the generation of clusters, it was used 

the EM algorithm, which allowed more user interaction. 

Aiming at differentiating coffee crop conditions after harvest, a spectral profile for each plot 

was generated by selecting a point close to the center of the field in order to avoid the influence of 

adjacent targets. To group the 37 plot profiles according to the spectral profile, simulations were 

performed considering two, three, four and five clusters. 

Student’s t-test with a significance level of 5% was applied to check the equality of the means 

of wavelengths in all groups performed. 

 

RESULTS AND DISCUSSION 

Cluster categorization is relative, that is, for every set number of classes, grading was 

performed using spectral curves as basis. The worst the coffee in terms of structure and biomass of 

the plant, the more the spectral curve tends to approximate to the soil relative curve, otherwise the 

spectral curve approximated to the vegetation curve pattern. Therefore, categorization changes from 

grouping to grouping. Because of this, categories were created for each cluster division, as shown in 

Table 2. 
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TABLE 2. Spectral profiles characterization by clustering. 

Plots / sample  

number 

2 clusters 

division: 

C1>C0 

C0 – worse 

C1 - better 

3 clusters 

division: 

C2>C0>C1 

C1 – wosre 

C2 - better 

4 clusters division: 

C2>C1>C3>C0 

C0 – wosre 

C2 -better 

5 clusters division: 

C4>C0>C2>C3>C1 

C1 – wosre 

C4 - better 

329_0 C0  C0      C3    C3  

212_1 less leaves C0  C0      C3    C3  

372_2 C0  C0      C3    C3  

428_3 C0  C0      C3    C3  

458_4 C0   C1  C0     C1    

1381_5 C0  C0      C3    C3  

164_6 C0  C0      C3    C3  

315_7 C0   C1  C0     C1    

354_8 C0   C1  C0     C1    

364_9 C0  C0      C0    C3  

443_10 C0  C0   C0       C3  

1104_11 less leaves C0  C0      C3    C3  

355_12 C0   C1  C0     C1    

2651_13 less leaves C0    C2    C3    C3  

2652_14 C0    C2    C3    C3  

121_15  C1   C2  C1     C2   

152_16  C1   C2   C2  C0     

211_17 more leaves  C1   C2  C1   C0     

212_18 more leaves  C1   C2   C2  C0     

248_19  C1   C2  C1   C0     

338_20  C1   C2  C1   C0     

468_21  C1   C2   C2  C0     

1381_22 more leaves  C1   C2   C2  C0     

144_23  C1   C2  C1   C0     

233_24  C1   C2   C2      C4 

315_25  C1   C2   C2      C4 

348_26  C1   C2  C1   C0     

1104_27 more leaves  C1   C2   C2      C4 

1382_28  C1   C2  C1   C0     

116_29  C1   C2  C1     C2   

196_30  C1   C2   C2      C4 

177_31  C1   C2  C1     C2   

257_32 more leaves  C1   C2   C2  C0     

257_33 less leaves  C1   C2  C1     C2   

2651_34  C1   C2   C2      C4 

211_35 less leaves  C1   C2  C1     C2   

183_36  C1   C2  C1   C0     
Note: C0 - cluster0; C1 - cluster1; C2 - cluster2; C3 - cluster3; C4 - cluster4; C5 - cluster5 

 

Figure 3 shows spectral profiles of the division into two clusters (C0 and C1). It can be clearly 

seen that the spectral behavior placed into cluster zero (C0), which describes the worst coffee crop 

condition, has fundamental differences from those presented in Cluster 1 (C1), which describes the 

best condition. The differentiation occurs in the visible range (400-720 nm) where the peaks of 

radiation for blue (440-485 nm), green (500-565 nm) and red (625-740 nm) are more pronounced in 

C1, as did the water absorption peaks that are more pronounced than those observed in the spectral 

curves for the coffee plants with more leaves. Figure 3c shows more clearly this condition through 

the mean curves and standard deviations for each of the clusters generated. In general, the standard 

deviation of the spectral profile of the cluster 0 (worst crop) was greater than that of Cluster 1 (best 

crop), showing the worse condition of cluster 0 in terms of variability, which was expected. The 

application of Student's t-test showed that there was a 5% difference between the average spectral 

profiles (compared to all wavelengths) in cluster 0 (15 varieties) and cluster 1 (22 varieties). In 

order to verify that the variances between these two clusters were significant at 5%, the Snedecor’s 
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F hypothesis test was also applied for comparison of variances, and found that there was significant 

difference between the average spectral profile of the cluster 0 and 1 in the following wavelengths 

(671-742 nm; 905-932 nm; 1,305-1,336 nm and 1,749-1,780 nm), as identified in yellow in Figure 

3. 

 

 

 

 
 

FIGURE 3. Grouping of parcels spectral profile in 2 clusters, a) C0 (worse), b) C1 (better) and c) 

mean and standard deviation of each cluster. 

 

To the extent that defined most of the clusters (3; 4 and 5), there was a new subdivision of the 

spectral profiles between those for the best and worst coffee. This can be seen in Figures 4a, 4b and 

4c with the average curves of these new groupings. It can be observed in all three cases, that the 

greatest differences occurred at the mid-infrared wavelength (>1,300 nm) in water absorption 

peaks. This was because the coffee fields in this case are all irrigated, and irrigation was terminated 

in May, before the harvest. The curves showed the plant conditions not only with regard to its 

structure and amount of photosynthetic pigments, but also in relation to its water content. Thus, the 

most disturbed plants are those with less intense water absorption peaks. Since these plants are in 

sandy soils following the withdrawal of irrigation, the results suggest that the greater the water 

absorption peaks, the better the conditions of plant hydration. 

 

 

(b

) 

(c) 

(a) 

Cluster 0 (EM-1) – 15 varieties Cluster 0 (EM-1) – 22 varieties 

Average behavior of clusters(EM-1) 
___ CO Coffee with less leaves ___ C1 Coffee with more leaves 

 



Rubens A. C. Lamparelli, Jerry A. Johann, Éder R. dos Santos et al. 

Eng. Agríc., Jaboticabal, v.32, n.1, p.184-196, jan./fev. 2012 

192 

 
  

                     
 

FIGURE 4.  Grouping of mean spectral profile of the parcels in: a) 3 clusters, 4 clusters, 5 clusters. 

 

Figure 5 (a, b, c) shows the division of the various spectral curves into three classes, where 

Cluster 0 represents spectral profiles of blocks with coffee in an intermediate situation, the coffee 

plants in Cluster 1 was worse and coffee plants in the Cluster 2 were in better condition. It may be 

noticed in C1 (Figure 5b) the spectral profile in blue (indicated by an arrow), which corresponds to 

a coffee plot of two years old with the Mundo Novo variety, indicating that the spectral curve refers 

to almost uncovered soil. The other curves within this class denote, from the spectral behavior, that 

the plots are under the same conditions, i.e., with a high degree of soil exposure. On the other hand, 

the curves shown in Cluster 2 (Figure 5c) are from plots where there coffee plants were better, 

which is explained well by the peaks of absorption and reflection of the visible, near infrared and 

mid-infrared. 

The same happens when the varieties are grouped into clusters 4 and 5. To confirm this, it was 

followed each stand in relation to its position in the division by 2; 3; 4 and 5 clusters (Table 2). It 

can illustrate this analysis by monitoring of field 458 (two year-old plot with Novo Mundo variety), 

which in all divisions performed it is found in the vegetation behavior in the worst condition. The 

other extreme can be illustrated by the data of field 233 (Table 1), representing an eleven-year old 

plot with the Catuaí variety, which only 5% of its area had been harvested, therefore, presenting a 

better condition, with plants well covered with leaves. In this case, it always remained in the cluster 

with best plant conditions in all divisions performed, that is, C1 (2 classes), C2 (3 classes), C2 (4 

classes) and C4 (5 classes). 

 

(a) (b) 

(c) 

Average behavior of clusters(EM-3) 
____ Coffee in intermediate condition  ___ CO Coffee with less leaves ___ C1 Coffee with more leaves 
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FIGURE 5. Grouping of spectral profile of parcels in 3 clusters, a) C0 (intermediate condition), b) 

C1 (less leaves) and c) C2 (more leaves. 

 

To illustrate and corroborate the reasoning of analysis of the conditions of coffee plants, for 

each plot, the following two examples are shown: one with plot 329 and another with plot 121. Plot 

329 consists of a 4 year Bourbon variety crop, that is tall, approximate height of 1.80 m, good 

foliage, high productivity (56.75 bags ha
-1

) and low biomass, as seen in the scene of the satellite 

Hyperion (Table 2). In this case, it was entered in C0 (worse) when the curves were divided into 

two classes. Later, with the division of three classes, it took the position C0 (intermediate). In the 

division into four classes, it took the position C3 (intermediate for worse). When considering the 

division into five classes, this plot was considered also in Class C3 (intermediate for worse) (Figure 

6a). 

On the other hand, plot 121 is a seven year old Icatu variety crop, 100% harvested, of 

approximate 3 meters height, with high percentage of ground coverage, and high yield 

(72.85 bags ha
-1

) (Table 2 and Figure 6b). This analysis was performed for all plots (Table 2) and 

found a strong relationship between plant condition, spectral response and the grouping of the plots. 

Thus, the DM technique was able to identify these variations, as can be seen on the spatial 

distribution of plots in each simulation (two, three, four and five clusters) (Figure 7 a, b, c, d) . In 

these spatializations, spectral behavior was not considered in the plots with sections with less 

foliage and another section with more foliage. 

 

(c) 

(a) (b) 

Cluster 0 (EM-3) – 11varieties Cluster 1 (EM-3) – 5 varieties 

Cluster 2(EM-3) – 22 varieties 
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a) Plot 329 b) Plot 121 

FIGURE 6. Images highlighting different coffee foliage conditions. 

 

  

  
FIGURE 7. Spatial distribution of the parcels considering 2(a), 3(b), 4(c) and 5(d) clusters 

format. 

(a) (b) 

(d) (c) 
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CONCLUSION 

Data mining technique, by applying grouping (clustering) in the spectral profiles, was able to 

distinguish plots of coffee crops under different conditions, showing that this technique can assist in 

agricultural planning of coffee plantations. 
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