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Propositions 

1. Plant pathologists should use methods for rapid detection and assessment of the 
viability of plant pathogens in one and the same assay. 
This Thesis. 

2. It is difficult to define and to determine the viability of non-culturable bacteria. 
This Thesis. 
Van Vuurde, W. L., Kastelein, P. and Van der Wolf, J. M. (1995) Immunofluorescence colony-
staining (IFC) as a concept for bacterial detection in quality testing of plant materials and ecological 
research. EPPO Bulletin 25: 157-162. 
Barer, M., Bogosian, G., Kell, D. and Williams, H. (2000) Resuscitating a logical approach to 
viability in the face of an "Eastern Wind". ASM News 66 (7): 381-382. 

3. Understanding the viability of bacterial pathogens facilitates designing relevant risk 
assessment models. 
This Thesis. 

4. The Calcein AM or PI double-staining method is reliable for viability assessment of 
a variety of protozoans, however, this method does not provide the same viability 
information on yeasts and bacteria. 
Kaneshiro, E. S., Wyder, M. A., Wu, Y. P. and Cushion, M. T. (1993) Reliability of calcein acetoxy 
methyl ester and ethidium homodimer or propidium iodide for viability assessment of microbes. 
Journal of Microbiological Methods 17: 1-16. 

5. The tendency in flow cytometry towards multi-colour analysis ensures the 
companies producing instruments and fluorescent probes that there is a pot of gold 
at the end of the rainbow. 

6. Indistinctness about colour compensation in flow cytometry starts with the spelling 
of the word. 

7. Brazilians are able to adapt to different cultures, but they never lose their identity. 

8. The lack of sunshine in The Netherlands influences the behavior of the Dutch 
people. 

Propositions belonging to the Doctoral Thesis "Fluorescence techniques to detect and 
to assess viability of plant pathogenic bacteria" by Luiz G. Chitarra, Wageningen, 
March 28, 2001. 
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Outline 

Outline of this thesis 

The conventional methods to detect and to assess the viability of plant pathogenic 

bacteria are usually based on plating assays or on serological techniques. Plating 

assays provide information about the number of viable cells, however, are time-

consuming and laborious. Serological methods such as enzyme-linked immunosorbent 

assay (ELISA) and immunofluorescence microscopy (IF) can be performed in a 

shorter timespan than most plating assays, but they do not discriminate between live 

and dead cells, are dependent on the specificity of the antibodies, and are not sensitive 

enough. Flow cytometry (FCM) in combination with fluorescent probes technology is 

in principle a rapid, sensitive, quantitative and therefore, a promising technique to 

detect and to assess the viability of microorganisms. FCM has been applied 

successfully to detect and distinguish between viable and non-viable bacteria in the 

fields of food microbiology, veterinary science and medical research. The aim of this 

thesis was to explore the potential of FCM in the field of plant pathology. The work 

described in this thesis focuses on the development of FCM technique in combination 

with fluorescent probes and specific antibodies for a rapid, reliable, and accurate 

detection and assessment of the viability of plant pathogenic bacteria. 

Chapter 1 is a literature overview of a range of applications of flow cytometry 

as a new tool for a rapid detection and assessment of the viability of microorganisms. 

In Chapter 2 the viability of Clavibacter michiganensis subsp. michiganensis 

cells was determined by measuring the intracellular pH as a parameter for viability, 

applying the fluorescent probe 5(and 6-)-carboxyfluorescein succinimidyl ester 

(cFSE) in combination with fluorescence spectrofluorometry and flow cytometry. 

In Chapter 3 the viability of Clavibacter michiganensis subsp. michiganensis 

cells was assessed applying the enzyme activity probes carboxyfluorescein diacetate 

(cFDA), Calcein acetoxy methyl ester (Calcein AM), and the nucleic acid probe 

Propidium iodide (PI) in combination with flow cytometry. 

In Chapter 4 the flow cytometry technique was evaluated for a rapid detection 

of Xanthomonas campestris pv. campestris cells with fluorescein isothiocyanate 

(FITC)-labeled monoclonal antibodies in pure cultures and in suspensions containing 

both Xcc and the common saprophyte Pseudomonas fluorescens (Psf). 
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Chapter 5 describes the detection of Xanthomonas campestris pv. campestris 

in crude extracts of naturally contaminated seed lots applying FITC-labeled 

monoclonal antibodies and flow cytometry. Results were compared with those of the 

routinely used plating method and immunofluorescence microscopy. 

In Chapter 6 the findings of this research and the perspectives of applying 

FCM in combination with fluorescent probes in the field of plant pathology are 

discussed. 
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Chapter 
New and current techniques to detect 

and to assess viability of plant pathogenic bacteria. 1 
L.G.Chitarra1'2 and R.W. van den Bulk1 

'Plant Research International B.V., P.O. Box 16, 6700 AA, Wageningen, The 

Netherlands, and 2Department of Food Technology and Nutritional Sciences, 

Wageningen University and Research Center, Wageningen, The Netherlands 

1 Introduction 

Plant bacteriology became a science in the second half of the 19 century. In 1878, 

Burrill in Illinois, USA, showed that fire blight disease of pear and apple was caused 

by a bacterium. Shortly afterwards, Erwin F. Smith from the U.S Department of 

Agriculture (USDA), showed that several other plant diseases were also caused by 

bacteria (Agrios 1997). Advances in the field of plant pathogenic bacteria in particular 

took place during the last four decades. 

Nowadays it is known that about 100 species of bacteria are able to cause 

diseases in plants (Agrios 1997). Plant pathogenic bacteria may develop in the host 

plant as parasites, on the plant surface as epiphytes, or in plant debris or in the soil as 

saprophytes. 

The dissemination of plant pathogenic bacteria primarily occurs by water, 

insects, animals, humans, and seeds. In cases in which bacteria infect or infest the 

seeds of their host plants, they can be carried for short or long distance by any means 

of seed dispersal. When seeds are infected or infested with bacteria, they can cause 

major economic losses in crop production. To avoid this, seeds and plants must be 

free of pathogens. 

Microbial testing for the presence of harmful bacteria is commonly done by 

isolation and culturing on artificial growth media followed by identification. 

Depending on the organism, this is a very time-consuming process, taking from 2 

days up to one or more weeks. In spite of using semi-selective culture media, other 
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microorganisms and product components may interfere by overgrowing or 

suppressing outgrowth of the target microorganism. 

Current methods that are also routinely used for bacterial detection include 

immunological and DNA techniques. Both techniques can be performed in a shorter 

timespan than most plating assays. However, these techniques are considered to 

provide the user only with semi-quantitative information, which for various tests is 

not satisfactory. Moreover, both techniques do not distinguish between viable and 

dead cells of the target organism, whereas such information is essential for an 

effective decision-making, e.g. on allowing import and export or on treatments of seed 

lots. Both quantitative data and information about viability provide the basis for risk 

assessment of disease development. 

This review will focus on new techniques for detection and for the assessment 

of viability of plant pathogenic bacteria, based on flow cytometry (FCM) and 

fluorescent probe technology, and the existing methods, such as the plate count 

technique, immunofluorescence (IF), enzyme-linked imunosorbent assay (ELISA), 

immunofluorescence colony-staining (IFC), and the polymerase chain reaction (PCR). 

2 Flow Cytometry 

Flow cytometry is a process in which physical and / or chemical characteristics of 

biological particles are measured while passing through a measuring apparatus in a 

fluid stream (Shapiro 1988). It is a technique that has the ability to measure several 

parameters on thousands of individual cells within a few minutes (Muirhead et a\. 

1985). The parameters measured by a flow cytometer are fluorescence and light 

scattering. The filter configuration of a typical flow cytometer is shown in Fig. 1. This 

configuration is for instance used in an Epics XL - MCL (Coulter Corporation, 

Miami, Florida - USA). As the cells pass through the sensing area of the flow cell, the 

laser beam illuminates the fluorescent dyes attached to or contained in the cells. 

Various parameters can be measured. Forward scatter (FS) is the amount of laser light 

scattered at narrow angles to the axis of the laser beam, and it is proportional to the 

size of the cell. The amount of laser light scattered at approximately 90° angle to the 

axis of the laser beam is called side scatter (SS), which is related to the granularity of 

the cell that scattered the laser light. In order for the sensors to measure SS and the 

Fluorescent Light of the dyes used (FL), the light must be collected and the SS and FL 
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must be separated. SS is separated first from the output of the pickup lens/spatial filter 

assembly using a 488 nm dichroic long-pass (DL) filter at a 45° angle to the light 

path. The 488 DL filter reflects the SS to the SS sensor, but transmits fluorescent light 

of longer wavelenghts. The light that the 488 DL filter transmits goes to a 488 nm 

laser-blocking (BK) filter. The 488 BK filter blocks any remaining laser light, 

transmitting only the fluorescent light, and the optical filters separate the light for the 

three sensors. A 550 DL filter reflects light less than 550 nm to a 525 nm band-pass 

(BP) filter that transmits light between 505 nm and 545 nm to the FL1 Sensor (green 

fluorescence). A 600 DL filter reflects light between 555 nm and 600 nm to a 575 BP 

filter, which transmits light between 560 nm to 590 nm to the FL2 sensor (orange 

fluorescence). The light between 605 nm and 725 nm is transmited to a 620 BP filter, 

which transmits light between 605 nm and 635 nm to the FL3 sensor (red 

fluorescence). With this configuration it is possible to distinguish and measure green, 

orange, and red fluorescent probes. 
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Fig. 1. Schematic representation of an Epics XL - MCL (Coulter Corporation, Miami, 
Florida - USA) flow cytometer showing filter configuration and fluorescence sensors 
(FL1, FL2, and FL3). The green, orange, and red fluorescence are measured by FL1, 
FL2, and FL3 sensors respectively. 
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3 Fluorescent Probe Technology 

Fluorescence can be defined as the emission of radiation that occurs in certain 

molecules called fluorophores or fluorescent dyes. A fluorescent probe is a 

fluorophore designed to localize a specific region of a biological specimen or to 

respond to a specific stimulus (Haugland 1996). 

Table 1. Fluorescent probes3 commonly used to detect and to assess viability by flow cytometry. 

Characteristics Probes Reference 
Enzyme activity FDA Diaper and Edwards 1994; Diaper, Tither, 

and Edwards 1992 
cFDA Diaper and Edwards 1994; Porter et al. 

1997; Caron and Badley 1995 
cFSE Ueckert et al. 1997; Chitarra et al. 2000 
Calcein AM Diaper and Edwards 1994; Kaneshiro et al. 

1993 
cF Bunthofe/a/. 1999 
ChemChrome B Diaper and Edwards 1994; Porter et al. 

1997 
BCECF-AM Diaper and Edwards 1994; Porter et al. 

1997 
DiOC6(3) Diaper, Tither, and Edwards 1992; Mason 

etal. 1995 
Membrane potential Rh 123 

BOX 
DiBAC4(3) 

Langsrud and Sundheim 1996; Kaprelyants 
and Kell 1992; Diaper, Tither, and 
Edwards 1992; Magarinos et al. 1997; 
Porter et al. 1997; Caron and Badley 1995 
Caron and Badley 1995 
Mason et al. 1995; Willians etal. 1999 

Nucleic acid PI 

DAPI 
Sytox Green 

EB 

Bunthof et al. 1999; Kaneshiro et al. 1993; 
Magarinos et al. 1997; Sgorbati et al. 1996; 
Miller and Quarles 1990; Ueckert et al. 
1997; Caron and Badley 1995 
Sgorbati et al. 1996 
S. Langsrud and G. Sundheim 1996; Roth 
etal. 1997 
Caron and Badley 1995; McClelland and 
Pinder 1994a, 1994b 

Immunoreagent FITC McClelland and 
Chapters 4, 5 

Pinder 1994a, 1994b; 

"abbreviations: FDA, fluorescein diacetate; cFDA, 5-(and 6-) carboxyfluorescein diacetate; 
cFSE, 5-(and 6-)-carboxyfluorescein succinimidyl ester; Calcein AM, calcein acetoxy methyl 
ester; cF, carboxyfluorescein; BCECF-AM, 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein 
acetoxymethyl ester; DiOC6(3), 3,3'-dihexyloxacarbocyanine iodide; Rh 123, rhodamine 123; 
BOX, bis-oxonol; DiBAQP) bis-(l,3-dibutylbarbituric acid) trimethine oxonol; PI, 
propidium iodide; DAPI, 4',6-diamidino-2-phenylindole; Sytox Green; EB, ethidium bromide; 
FITC, fluorescein isothiocyanate. 
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The fluorescent probes can be divided into two broad categories, those that are 

used to label other probes (often antibodies) covalently and those whose fluorescence 

is related to particular properties of the cells. Over the past two decades, the 

development of these fluorescent probes has led to new techniques to detect and to 

assess the viability of microorganisms. Fluorescein isothiocyanate (FITC) is a probe 

often used for labeling antibodies and has been used for a rapid and specific detection 

of microorganisms. Fluorescent probes have also been developed to explore different 

properties of the cell, such as enzyme activity (Kaneshiro et al. 1993; Diaper and 

Edwards 1994; Endo et al. 1997; Ueckert et al. 1997; Bunthof et al. 1999); 

cytoplasmic membrane permeability (Magariflos et al. 1997; Porter et al. 1997; Roth 

et al. 1997; Williams et al. 1998), membrane potential (Kaprelyants and Kell 1992; 

Mason et al. 1995; Langsrud and Sundheim 1996), respiratory activity (Kaprelyants 

and Kell 1993a, 1993b); relative DNA content (Allman et al. 1992; Christensen et al. 

1993; Sgorbati et al. 1996; Bernander et al. 1998) and pH gradients (Breeuwer et al. 

1996; Chitarra et al. 2000). A large number of fluorescent probes are available for 

labeling microorganisms, and the most used fluorescent probes to detect and to assess 

viability of bacteria, protozoa, mammalian cells, yeast and some fungi are shown in 

Table 1. Basic information on such probes can be found in McFeters et al. (1995), 

Lloyd and Hayes (1995), and Haugland (1996). 

4 Assessment of the viability of bacteria 

Viability can be defined as the capability of a cell to perform all the necessary 

functions for its survival under given conditions. For viable microorganisms to 

survive, it is necessary to have an intact cytoplasmic membrane, DNA transcription, 

RNA translation, enzyme activity, and the capability to reproduce and to grow. 

Methods for assessment of viability of microorganisms are based on these 

requirements. 

4.1 Plating assays 

In plant pathology, several methods are used to test plants and seeds for 

contamination with plant pathogenic bacteria. Plating assays are the most traditional 

techniques, and are used routinely for detection and assessment of the viability of 

microorganisms. The conventional plate count method allows isolation of the 
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pathogen by plating plant material, seeds or seed extracts on selective or semi-

selective agar media (Schaad and Donaldson 1980; Randhawa and Schaad 1984; 

Chang et ah 1990; Chang et ah 1991; Shirakawa et al. 1991; De la Cruz et al. 1992; 

Goszczynska and Serfontein 1998). Subsequently, the isolated organisms are 

identified by a range of biochemical or serological tests. However, this method is time 

consuming (Lange et ah 1993; Plihon et ah 1995) and skilled technicians are needed 

to identify each pathogen correctly (Stevens et ah 1997). In addition, the results are 

sometimes difficult to interpret due to cell concentration effects, interference by other 

microorganisms or presence of inhibitory components in the extract. Semi-selective 

media may reduce the interference of saprophytes, but it can also affect the recovery 

of the target bacterium (Chun and Alvarez 1983). Furthermore, cells which are 

dormant, non-culturable or sub-lethally damaged are not detected. In spite of the 

disadvantages of the conventional plate count assays, they are still used in many tests 

due to their simplicity. 

4.2 Viability probes 

Today, promising tools to assess microbial viability are fluorescent probes. The 

probes have to be chosen based on their properties, fluorescence spectrum, and target 

microorganism. 

Fluorescein diacetate (FDA) is one of the enzyme activity probes that has been 

used as a cell viability indicator. FDA is a non-fluorescent polar ester compound that 

can permeate intact cell membranes. Once inside the cell it is cleaved (hydrolysed) by 

non-specific esterases to release fluorescein, a polar compound, which is retained 

inside the cells. Thus, the viability can be correlated with the ability of the cell to 

accumulate fluorescein (Widholm 1972; Gahan 1984). However, fluorescein is poorly 

retained by viable cells (Fry 1990; Edwards et ah 1993), and the FDA method can be 

easily frustated due to an active efflux of fluorescein to the extracellular environment. 

This problem can be minimized by using, for instance, carboxyfluorescein diacetate 

(cFDA) (Chapter 3) or 5 (and 6-)-carboxyfluorescein succinimidyl ester (cFSE) 

(Breeuwer et al. 1996). The latter, fluorescein derivative binds covalently, and is, 

therefore, better retained inside the cells. When observed in fluorescence microscopy, 

cFSE fluoresces bright green when excited by blue light of 450 - 490 nm. 

Propidium iodide (PI) is a nucleic acid probe that has been used to assess 

viability of microorganisms. PI is a dye that is not supposed to cross intact cell 
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membranes (Alvarado-Aleman et al. 1996). It passes through damaged cell 

membranes and intercalates into the RNA and DNA backbone independently of base 

pair ratio (Hudson et al. 1969; Taylor and Milthorpe 1980) and AT-rich regions 

(Crissman et al. 1979). This is in contrast to DNA dyes such as 4',6-diamino-2-

phenylindole (DAPI) or Hoechst 33342, which bind preferentially to AT rich regions 

(Muller and Gautier 1975). PI fluoresces red when excited by green light of 515-560 

nm. 

Rhodamine 123 (Rh 123) is a membrane potential dye that has been used to 

assess viability of microorganisms. Most cells maintain a significant electrical 

potential difference across their membranes at the expense of metabolic energy. 

Indirect estimates of membrane potential can be obtained by monitoring the 

distribution of lipophilic cationic indicators or dyes between cells and the suspending 

medium. Lipophilic indicators are used, because this characteristic enables indicator 

molecules to pass freely through the lipid portion of the membrane; thus the 

concentration gradient of an indicator across the membrane is determinated by the 

potential difference across the membrane according to the Nernst equation (Shapiro 

1988). Rhodamine 123 is such a lipophilic cationic membrane potential dye, which 

enters the cell directly without passing through endocytotic vesicles and lysosomes 

(accumulated cytosolically by cells showing inside a negative transmembrane 

electrochemical potential). It has been used to study mitochondria in eukaryotic cells 

(Skowronek et al. 1990; Rhan et al. 1991) as well as to assess viability of bacteria 

(Diaper et al. 1992; Davey et al. 1993). The excitation and emission wavelengths of 

the free dye and the dye taken up by the cells are within a range of 450 to 560 nm. 

Since the fluorescence of individual cell stained with Rh 123 can be easily measured 

by flow cytometry, quantification of the uptake of the dye per cell is possible for large 

populations of cells (Ronot et al. 1986). 

4.3 Applications of viability probes in combination with flow cytometry 

In the field of microbiology, flow cytometry (FCM) has been applied to study 

bacterial cell cycle kinetics and antibiotic susceptibility, (Steen et al. 1982), to 

enumerate bacteria, (Pinder et al. 1990; Page and Burns 1991), to detect food-borne 

bacteria (McClelland and Pinder 1994a, 1994b), to distinguish between viable and 

non-viable bacteria, (Diaper and Edwards 1994; Mason et al. 1995), to characterize 
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bacterial DNA content, (Allman et al. 1992; Christensen et al. 1993), and to 

characterize fungal spores, (Allman 1992). 

In the field of plant pathology, this technique is relatively new, and few studies 

have been performed on the application of FCM for the determination of viability and 

detection of plant pathogenic bacteria (Chitarra et al. 2000; Chapters 3, 4). The 

disadvantages of this technique, however, are the high cost of the equipment and the 

fact that well-trained technicians are needed to set up the protocols, before it can be 

routinely applied. 

Diaper and Edwards (1994) studied the colonisation of sterile mushroom 

composts by Bacillus subtilis employing flow cytometry in combination with the 

membrane potential dye rhodamine 123 (Rh 123), and the enzyme activity probes, 

cFDA and Chemchrome B. FCM was evaluated with respect to detect and enumerate 

viable bacteria in filtered compost extract, and also to study the viability of an 

indigenous compost community. The results showed that FCM was able to detect and 

enumerate Bacillus subtilis cells stained with Rh 123, cFDA or Chemchrome B in 

sterile, filtered compost extract spiked with Bacillus subtilis. In indigenous compost 

populations, FCM was not able to detect any viable bacteria after staining with cFDA, 

although it has been shown that cFDA is able to stain several species of bacilli. Rh 

123, although underestimating the viable population when compared to CFU's 

determined by plating, gave a similar correlation with regard to the relative changes in 

the overall population. Chemchrome B was considered successful to enumerate the 

indigenous bacterial population, although FCM detected higher numbers of viable 

cells compared with those determined by plate counts. 

In the field of plant pathology, FCM combined with fluorescent probes 

technique was applied to assess viability of the plant pathogenic bacterium 

Clavibacter michiganensis subsp. michiganensis (Cmm) by measuring the 

intracellular pH (pHi„) as a viability parameter. The pHj„ of Cmm was determined 

using FCM and the fluorescent probe 5(and 6-)-carboxyfluorescein succinimidyl ester 

(cFSE). Heat-treated and non-treated Cmm cells could be distinguished by FCM 

based on the absence and presence of a pH gradient, respectively (Chitarra et al. 

2000). The assessment of viability of Cmm cells was also evaluated using the 

fluorescent probes Calcein AM, cFDA, and PI in combination with flow cytometry 

(Chapter 3). Heat-treated and viable (non-treated) Cmm cells labeled with Calcein 

AM, cFDA, PI, or combinations of Calcein AM and cFDA with PI, could be 
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distinguished based on their fluorescence intensity in flow cytometry analysis. Non-

treated cells showed relatively high green fluorescence levels, whereas damaged cells 

(heat-treated) showed high red fluorescence levels. Flow cytometry allowed a rapid 

quantification and separation of viable Cmm cells labeled with Calcein AM or cFDA, 

and heat-treated cells labeled with PI. 

5 Current techniques for detecting plant pathogenic bacteria 

Apart from plating assays mentioned earlier, current methods for detection of plant 

pathogenic bacteria are based on serological techniques, such as enzyme-linked 

immunosorbent assay (ELISA), immunufluorescence microscopy (IF) or 

Immunofluorescence colony-staining (IFC), or on DNA techniques, such as the 

polymerase chain reaction (PCR). Their advantages and disadvantages will briefly be 

discribed. 

5.1 Serological techniques 

5.1.1 ELISA 

The enzyme-linked immunosorbent assay (ELISA) registers the occurrence of 

antigen-antibody complexes by a rapid enzymatic development of a distinctly 

coloured product. It was potentially recognized as useful for the detection of plant 

pathogenic bacteria after the report written by Engvall and Perlmann in 1971. Many 

variations of this procedure have been developed and the most important ones 

nowadays are the direct assay using the double antibody sandwich method (DAS-

ELISA), and the indirect assay, where a secondary antibody, usually an antiglobulin 

conjugated with enzyme is added after addition of the primary antibody. In some 

cases, indirect ELISA is preferred rather than DAS-ELISA, since the secondary 

antibody-enzyme conjugate can be obtained commercially and it saves the time 

needed to produce and to conjugate the antibody and its enzyme. It is also preferred in 

situations where antibodies do not react efficiently as trapping antibodies. The 

advantages of the ELISA method for the detection of plant pathogenic bacteria are its 

speed, i.e. 4-5 hours required to perform the assay comparing to other methods of 

detection, its simplicity, and it is especially useful for routine diagnosis in a large 

number of samples. However, ELISA lacks sensitivity. A detection limit of 2 x 105 

cells ml"1 testing infected cabbage leaf tissue was reported for ELISA using 
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polyclonal antibodies against Xanthomonas campestris pv. campestris (Alvarez and 

Lou 1985). The sensitivity of the ELISA test applied to detect Clavibacter 

michiganensis subsp. sepedonicum in potato tubers using monoclonal antibody was 

determined by testing serial 10-fold dilutions of preparations made from tubers with 

typical ring rot symptoms. Sample dilutions up to 10 times were still positive in 

ELISA (De Boer et al. 1988). The detection limits of ELISA can be improved in a 

stronger ELISA reaction by using antibodies with better specificity, and in some 

cases, when the antigen is heat-treated prior to absorption to microtiter plate wells 

(Alvarez and Lou 1985; Kishinevsky and Gurfel 1980). 

5.1.2 Immunofluorescence microscopy (IF) 

Immunofluorescence microscopy is a method used to detect or to confirm plant 

pathogenic bacteria in seeds and plants. The antibody is bound to a fluorescent probe, 

usually fluorescein isothiocyanate (FITC), and stained bacterial cells can be visualized 

on microscope slides with an appropriately equipped fluorescence microscope. The IF 

method has been used to detect bacteria in seeds (Franken 1992; Van Vuurde and 

Bovenkamp 1995) and the sensitivity of the method has been reported to be up to 103 

cells ml"1 (Taylor 1978). The advantage of the IF method is that it offers the 

possibility to study cell morphology in combination with serological reaction. 

However, the reliability of this method, as well as ELISA, depends on the specificity 

of the antibodies, which must be tested prior to use and preferably should not cross-

react with other bacteria present in the sample. In general, the disadvantages of this 

technique are: 1) it does not discriminate between live and dead cells; 2) it depends on 

the quality of the antiserum; 3) the examination of IF slides is time consuming and 

should be performed by experienced technicians. 

5.1.3 Immunofluorescence colony-staining (IFC) 

Immunofluorescence colony-staining is based on a combination of plating and 

serological techniques. It is a technique that allows the colonies of the target 

bacterium to be distinguished from those of other microorganisms after growth in an 

agar-medium, followed by drying the medium and adding specific FITC-conjugated 

antibodies to label the target bacterium. The target colonies fluoresce against a dark 

background when observed with a fluorescence microscope. This technique provides 

a tool for the study of plant pathogenic bacteria, such as the in situ detection of target 
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bacteria on or in plant tissues, i.e. roots, stems or seeds. It is used to distinguish 

between culturable and non-culturable cells, because observations are done on (micro) 

colonies. It is possible to detect different target bacteria through the application of 

different fluorescent markers. Furthermore, IFC is also used for selective isolation of 

cross-reacting bacteria for research purposes, thereby improving the reliability of 

serological techniques (Van Vuurde et al. 1995). Leeman et al. (1991), using the IFC 

method, reported that the detection level for Pseudomonas spp. in undiluted soil 

sample extracts with a high saprophyte background was between 10 and 100 cells ml" 

. The detection level for soft rot Erwinia ssp. using undiluted tissue culture extract 

was determined to be about 102 CFU ml"1 (Van Vuurde and Roozen 1990). It seems 

that a detection level of approximately 10 CFU ml"1 can be achieved with IFC. 

However, a major concern is the specificity of the technique. The specificity of IFC 

relies on growth in a selective medium, which can take 1 to 2 days, colony phenotype, 

and serological staining characteristics (Van Vuurde, Kastelein and Van der Woff 

1995). 

In general, serological techniques play an important role in the identification 

and detection of plant pathogenic bacteria. The main advantage of serological tests are 

their low costs. Disadvantages of these techniques are the risk of cross-reaction, the 

fact that they do not distinguish between viable and non-viable cells (except for IFC), 

and the tests being time consuming and laborious. 

5.2 Polymerase chain reaction (PCR) 

The polymerase chain reaction is a technique which involves the amplification of a 

specific piece of DNA from the genome of a target bacterium. PCR-based methods 

may be rapid, highly sensitive, accurate, and specific for detection and identification 

of plant pathogenic bacteria (Rasmussen and Wulf 1991; Prosen et al. 1993; Firrao 

and Locci 1994; Rademaker and Janse 1994; Dreir et al. 1995; Audy et al. 1996; 

Cajza et al. 1996; Lopes and Damann 1997; Santos et al. 1997; Fegan et al. 1998; 

Manulis et al. 1998; Pan et al. 1998; Toth et al. 1998; Verdier et al. 1998; Wang et al. 

1998; Belgrader et al. 1999; Cubero et al. 1999; Oh et al. 1999; Toth et al. 1999) as 

well as for detecting culturable target cells when applied in combination with 

enrichment as in bio-PCR (Schaad et al. 1995; Manulis et al. 1999; Wang et al. 1999). 

Using PCR, the presence of pathogenic microorganisms in very low concentrations in 

samples, i.e. 30 CFU ml"1, could be confirmed (Miyoshi et al. 1998). The 
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disadvantage, however, as is the case for serological assays, DNA methods do not, or 

not completely, provide information about the viability of the target pathogens. 

Furthermore, when natural plant samples are used this technique may lack sensitivity 

due to the presence of PCR inhibitors, potentially resulting in false negatives (Schaad 

et al. 1997). PCR technique is semi-quantitative and relatively sensitive to 

interference of saprophytes (Van Vuurde 1997). 

6 Detection of bacteria applying flow cytometry 

Flow cytometry in combination with fluorescent probes technology has been 

successfully applied to assess the viability of microorganisms as well as for a rapid 

and specific detection of bacteria in medical and veterinary research, and in 

environmental samples (Diaper et al. 1992; Li and Walker 1992; May et al. 1994; 

Porter et al. 1993; McClelland and Pinder 1994a, 1994b; Pinder and McClelland 

1994; Porter et al. 1997; Kusunoki et al. 1998; Bunthof et al. 1999). 

McClelland and Pinder (1994a) used multiparameter flow cytometry as a rapid 

method for detection of Salmonella cells labeled with fluorescent monoclonal 

antibodies in pure cultures. Accurate detection of specific Salmonella serotypes was 

demonstrated down to levels below 104 cells ml"1 within 30 minutes. This level of 

sensitivity was attained even in the presence of high levels of other bacterial species 

that could otherwise have interfered with the results. With combinations of different 

antibodies, each with a unique fluorescent label, simultaneous analysis for two species 

was possible. They also applied flow cytometry with fluorescently labeled 

monoclonal antibodies to detect Salmonella typhimuruim in eggs and milk, and 

concluded that this technique offered advantages of speed and sensitivity for the 

detection of specific pathogenic bacteria in foods (McClelland and Pinder 1994b). 

The first report on the detection of a plant pathogenic bacterium applying 

FCM in combination with antibodies is described in this thesis (Chapters 4). FCM 

was evaluated for the detection of Xanthomonas campestris pv. campestris (Xcc) cells 

labeled with FITC-conjugated monoclonal antibodies. This was done in pure culture, 

in mixed cultures with the common saprophyte Pseudomonas fluorescens (Psf), and in 

crude seed extracts. Antibody-labeled Xcc cells could rapidly be detected at low 

numbers, i.e. 10 cells ml" , and the cells could also be distinguished from other 

organisms or particles present in the samples based on their high intensity green 
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fluorescence levels. The only prerequisite for the use of antibodies is the same as for 

the other serological techniques discussed, viz. that no cross-reactions with other 

bacteria present in the sample occur. The antibodies applied in this study (Chapter 5) 

were previously shown to be specific for Xcc and are recommended for use in routine 

seed health testing for Xcc (Franken 1992). One of the major advantages of applying 

the FCM technique in combination with FITC-conjugated antibodies for the detection 

of Xcc is the short assay time, i.e. less than 1 hour, and the easy quantification. 

7 Concluding remarks 

Plant pathologists are among other things faced with the challenge of detecting, 

enumerating, and assessing viability of plant pathogenic microorganisms in plants and 

seeds. The existing methods, such as the conventional plate assays and serological 

techniques, often lead to serious overestimation, due to not discriminating between 

live and dead cells, or underestimation, due to the presence of viable but non-

culturable cells, of the bacterial population present in the sample. These methods are 

neither suitable to test disinfected seeds nor for a rapid detection of plant pathogens. 

The importance and the need for methods to detect and to assess viability of 

plant pathogenic microorganisms accurately, reliably and fast was discussed. A 

promising new technique is the use of fluorescent probes in combination with FCM 

(Chitarra et al. 2000; Chapters 3, 4, 5). It can be applied to check for the presence of 

pathogens in plants or plant parts, and to verify if the population of the pathogen is 

viable, non-viable, or maybe dormant. 

The latest flow cytometers allow measuring of two or three different 

fluorescent probes based on their emission of wavelengths meaning that simultaneous 

detection and viability assessment can be performed in the same assay. FCM also 

provides quantitative information about the total number of target cells present in a 

sample as well as the percentage of viable cells. 

A flow cytometry-based method has technical benefits over traditional 

methods, since it is rapid, relatively sensitive, and quantitative for the detection and 

determination of viability of microorganisms and should be further explored for 

applications in the field of plant pathology. 
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Summary 

The viability of Clavibacter michiganensis subsp. michiganensis (Cmm) was 

determined by measuring the intracellular pH (pHi„) as a viability parameter. This was 

based on our observation that growth of Cmm was inhibited at pH 5.5 and below. 

Therefore, viable cells should maintain their pHi„ above this pH value. The pHjn of 

Cmm was determined using the fluorescent probe 5 (and 6-)- carboxyfluorescein 

succinimidyl ester (cFSE). The pHi„ of Cmm cells exposed to acid treatments was 

determined using fluorescence spectrofluorometry and for cells exposed to elevated 

temperatures, the pHin was determined using fluorescence spectrofluorometry and 

flow cytometry (FCM). A good correlation was found between the presence of a pH 

gradient and the number of colony forming units observed in plate counts. However, 

with the spectrofluorometry technique the analysis is based on the whole cell 

population and the detection sensitivity of this technique is rather low, i.e. cell 

numbers of at least 107 CFU ml"1 are needed for the analysis. Using FCM, heat-treated 

and non-treated Cmm cells could be distinguished based on the absence and presence 

of a pH gradient, respectively. The major advantage of FCM is its high sensitivity, 

allowing analysis of microbial populations, even at low numbers, i.e. 102 - 103 CFU 

mr1. 
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Introduction 

Clavibacter michiganensis subsp. michiganensis (Smith) (Davis et al. 1984) is a seed-

transmitted plant pathogenic bacterium which causes bacterial canker of tomato 

(Bryan 1930). This disease is responsible for major economic losses in commercial 

tomato production worldwide. Seeds and plants must be free of the pathogen and in 

practice tomato seeds are therefore treated with hot water (Blood 1933; Shoemaker 

and Echandi 1976); hydrochloric acid (Thyr et al. 1973; Dhanvantari 1989), or 

sodium hypochlorite (Shoemaker and Echandi 1976). To test the efficacy of such 

disinfection methods, rapid, accurate and reliable methods to assess viability of 

Clavibacter michiganensis subsp. michiganensis (Cmm) are highly desirable. 

Detection methods for Cmm which are applied to test seed lots and plants for 

contamination with the pathogen are usually based on immuno-fluorescence 

microscopy or on plating seeds or seed extracts on semi-selective agar media (Saettler 

et al. 1989). Plating methods provide information about the number of viable cells. 

This method, however, is time consuming. Immuno-fluorescence microscopy, on the 

other hand, does not discriminate between dead and live cells and is therefore not 

suited as a viability assay. 

Various methods have been described for rapid assessment of microbial 

viability, including those based on assessment of cell membrane integrity with DNA 

probes (Kaneshiro et al. 1993; Bunthof et al. 1999), and the capability of cells to 

maintain a membrane potential as determined by probe uptake or exclusion 

(Kaprelyants and Kell 1992; Mason et al. 1995). Additionally, the capability of cells 

to maintain a pH gradient (pHm higher than pHout) may also supply information about 

viability. The pHin was successfully determined in several gram positive bacteria 

using the pH dependent fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl 

ester (cFSE) (Breeuwer et al. 1996). cFSE can form conjugates with aliphatic amines 

and is therefore better retained within the cell than non-conjugated probes such as 

carboxyfluorescein (cF) and 2', 7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein 

(BCECF) (Haugland 1992; Breeuwer etal. 1996). 

In this study, cFSE was tested for determination of the pH;n of Cmm and 

subsequently this parameter was evaluated for its use as a viability indicator. The pHin 

of Cmm exposed to stress conditions, such as elevated temperatures and acid 

treatments, was determined at the population level with cell suspensions containing at 
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least 107 CFU ml"1 using fluorescence spectrofluorometry, and at the level of 

individual cells using flow cytometry. FCM has been used successfully to distinguish 

between viable and non-viable bacteria after staining with a range of fluorescent 

probes such as cFDA, Calcein AM and Rhodamine 123 (Diaper and Edwards 1994). 

The results obtained with the fluorescence techniques were compared with the 

conventional plate count technique. 

Materials and Methods 

Growth conditions and determination of growth curves 

Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB 1064 was grown on 

1% Glucose-Nutrient-Agar (GNA; Oxoid) medium for 48 hours at 25°C. For growth 

in liquid medium, Cmm cells were cultured in Nutrient Broth (NB; Oxoid) or in NB 

supplemented with 10 g l"1 glucose (GNB), pH 7.2, on a rotary shaker (180 rev min"1) 

at 25°C for 24 hours. For determination of growth curves, the optical density (O.D.) 

of 3 replicate samples containing the bacterial cells was measured every 2 hours with 

a spectrophotometer at 620 nm (O.D.620) for a period of 30 hours. The initial O.D.620 

was approximately 0.06. 

Bacterial cells were also grown in GNB medium supplemented with 200 mM 

of potassium chloride (KC1) at different pH values. The initial O.D.620 of three 

replicate samples of 250 ul containing the bacterial cells was approximately 0.04. The 

ionophore nigericin at a final concentration of 0.1 umol l"1 was added to each sample, 

except for the control samples, and the O.D.620 was measured every 15 minutes with a 

multititer plate reader (SLT Labinstrument G.M.B.H., Crailsheim, Germany) for a 

period of 12 hours. 

Plate count technique 

Plate counts were determined as described by Miles and Misra (1933). Serial dilutions 

were made from each bacterial suspension and 20 ul drops of each dilution were 

plated in triplicate on sectored GNA plates. After incubation of plates for 48 hours at 

25°C, the number of colonies was counted for those dilutions producing between 3 

and 30 colonies per 20 ul drop, and the total viable counts for different treatments 

were calculated. 
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Temperature and acid treatment 

Bacterial cells grown in GNB medium at 25°C for 10 hours were harvested at mid-

exponential phase (O.D.620 approximately 0.4). Cells grown for 48 hours at 25°C on 

GNA medium were collected at stationary phase by washing off the cells in CPK 

buffer containing citric acid (50 mmol l"1), Na2HP04-2H20 (50 mmol l'1) and KC1 (50 

mmol l"1), pH 5.5 or 7.0. The cell suspension was adjusted to an O.D.620 of 

approximately 0.4. The harvested cells were incubated at 25 (control), 40, 45 or 50°C, 

or in buffer without (control) and with 0.1, 0.2 or 0.6 mol l"1 HC1 for 1 hour. After the 

treatment, the cells were spun down (15000g for 3 minutes), resuspended in CPK 

buffer pH 5.5 or 7.0 and stored on ice until required. 

Labeling of cells with fluorescent probe 

Cmm cells in CPK buffer were incubated for 15 minutes at room temperature in the 

presence of 1.0 uM of 5 (and 6-)-carboxyfluorescein diacetate succinimidyl este 

(cFDASE), washed twice, resuspended in CPK buffer and incubated for 15 minutes 

with glucose (10 mmol l"1). Subsequently, the cells were washed, resuspended in 

buffer, and again glucose (10 mmol l"1) was added to the cells. Finally, the cells were 

washed and resuspended in CPK buffer, pH 5.5 or 7.0, and placed on ice until 

required. 

Determination of pHin 

The pHjn of Cmm was analysed according to the method of Breeuwer et al. (1996) 

with some modifications. Cmm cells containing fluorescent probe were diluted to a 

concentration of approximately 108 cells ml"1 in a 3-ml glass cuvette and placed in the 

stirred and thermostated cuvette holder of the spectrofluorometer (Perkin Elmer LS 

50B, Norwalk, UK). Fluorescence intensities were measured at excitation 

wavelengths of 500 and 440 run by rapidly altering the monochromator between both 

wavelengths. The emission wavelength was 530 nm, and the excitation and emission 

slit widths were 5 and 10 nm, respectively. The incubation temperature was 25°C. At 

the end of each assay the extracellular fluorescence signal (background) was 

determined by filtration of the cell suspension through a 0.22 um pore-size membrane 

filter and measuring the cell-free filtrate. The 500-to-440 nm ratios were corrected for 

these background signals. 
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Calibration curves of cFSE loaded cells at different pHj„ values were 

determined in CPK buffer with pH values ranging from 4.0 to 8.0 adjusted with HC1. 

The fluorescence intensity was measured at 25°C after equilibrating pHin and pH0Ut by 

addition of valinomycin (1 umol l"1) and nigericin (1 umol l"1). The calibration curve 

was fitted according to a 4 parameter sigmoid function y=a+b/{l+exp[-(x-c)/d}] and 

the parameters a to d were determined. The pH;n was calculated using the formula 

pHin=-[ln((b-(ratio-a))/(ratio-a)) x d] + c. 

Flow cytometric analysis of the intracellular pH 

Analysis of individual cells was performed with a FACSCalibur flow cytometer 

(Becton-Dickinson Benelux N.V., Erembodegem, Belgium), equipped with an air-

cooled argon ion laser (excitation wavelength 488 nm), which was operated at 15 

mW. The instrument was set up to collect 6 parameters: forward and side scatter, 

fluorescent light at emission wavelengths of 530±15 nm (FL-1; green fluorescence), 

585±21 nm (FL-2; orange fluorescence), and > 670 nm (FL-3; red fluorescence), and 

time. The low angle light scatter (forward scatter) and the wide angle light scatter 

(side scatter) were used as indicators of cell size and granularity, respectively. The 

results are represented in 2 parameter dot plots in which the X-axis and Y-axis are 

divided into 1024 channels, relative to the intensity of the incoming signal. A 

logarithmic amplification of the incoming signal was used to measure a wider range 

of signals (4 decade log scale). The sample analysis time and the flow rate were 

approximately 2 minutes and 12 ul min"1, respectively. The cells were separated from 

background by their side and forward scatter characteristics. From the FL1/FL2 dot 

plots the ratio of the green and the orange signals (FL1/FL2) could be calculated (after 

back transformation from log to linear mode). From this ratio the intracellular pH 

could be calculated. 

Results 

Growth curves under various conditions 

Growth of Cmm was determined in NB without and with glucose (GNB). The 

presence of glucose resulted in faster growth and higher cell densities. Since GNB 

showed a more pronounced exponential phase compared to NB, it was selected as the 

standard growth medium for further experiments (Fig.l). 
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Fig. 1. Growth curve of Clavibacter michiganensis subsp. michiganensis in Nutrient 
Broth (NB) medium without (A) and with lOg l"1 glucose (•). Cells were grown on a 
rotary shaker (180 rev min"1) at 25°C for 30 hours. 

Additionally, it allows the use of glucose as an energy source in the in vitro 

experiments. Exponential phase cells (O.D.62o of suspension in GNB approximately 

0.4) and stationary phase cells (cells harvested from GNA after 48 hours with O.D.620 

of the suspension adjusted to 0.4) were used in the experiments. 

Growth of Cmm cells in GNB medium supplemented with KC1 in the absence 

and presence of nigericin was evaluated to determine the minimum pHj„ value at 

which cells are able to grow (Fig. 2). 

I O O 

5 . 0 5 . 5 6 . 0 

P H i n 

6 . 5 7 . 0 

Fig. 2. Growth of Clavibacter michiganensis subsp. michiganensis in GNB medium 
supplemented with 200 mmol l"' of KG without (A) and with 0.1 nmol l"1 of nigericin 
(•). The bacteria were incubated in GNB medium with pH varying from 5.0 to 7.0, at 
25°C for 12 hours. Growth was expressed as percentage of maximum growth at pH 7.0. 
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Maximum growth was observed at pH 7.0. Growth decreased with a decrease 

of medium pH, with 60% growth at pH 5.0 compared to that at pH 7.0. In the 

presence of nigericin (0.1 umol"1), which equilibrates the intracellular and the 

extracellular pH, Cmm was not able to grow at pH 5.5 and below. This sets the 

minimal intracellular pH allowing growth of Cmm at pH 5.5. 

Calibration of pHin measurements 

Calibration curves with cFSE loaded Cmm cells were determined to enable 

calculation of pH;n values from fluorescence ratios. The ratios of the pH-sensitive 

wavelength (500 nm) and the pH-insensitive wavelength (440 nm) versus pH;n were 

determined in CPK buffer with pH varying from 4.0 to 8.0. For each treatment, e.g. 

different growth conditions or exposure to different temperatures, calibration curves 

were determined (Fig. 3). 
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Fig. 3. The relationship between the intracellular pH (pHin) and the fluorescence ratio 
(500 nm/440 nm)of cFSE labelled Clavibacter michiganensis subsp. michiganensis pre-
cultured in GNB medium and treated at different temperatures. The pHin and pHout were 
equilibrated by adding valinomycin (1 umol l"1) and nigericin (1 umol l"1). 

The results of pH;n measurements for non-treated cells and for cells exposed 

for lhour at 45°C in buffer pH 7.0, are shown in Figure 4. After addition of glucose to 

energize the cells, the ratio 500 nm/440 nm showed a slight increase for non-treated 

cells (pH;n 7.3). The addition of the K+ ionophore valinomycin resulted in dissipation 

of the membrane potential (negative inside) which is compensated by an increase in 
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the pH gradient, i.e. pHin increased to 7.8. Subsequently, addition of nigericin 

dissipated the pH gradient (pH,n = pHoUt = pH 7.0). 

For heat-treated Cmm cells, no pH gradient could be observed, neither after 

the addition of glucose nor after the addition of valinomycin and nigericin. 

6.0 

7.5 

7.0 

6.5 
10 15 20 
Time ( min ) 

Fig. 4. Intracellular pH of Cmm control cells (1) and treated at 45°C for 1 hour (2) in 
CPK. buffer at pH 7.0. The cells were loaded with 1.0 uM cFDASE. Measurements in the 
cuvette were performed at 25°C in 3 ml of CPK buffer pH 7.0. The following additions 
were made at the time indicated by the arrows: a, cell suspension (200 ul); b, glucose (10 
mmol 1"'); c, valinomycin (1 umol l'1); and d, nigericin (1 umol l"1). 

Effect of high temperature treatment on the pHin of Clavibacter michiganensis 

subsp. michiganensis 

cFSE-labeled Cmm cells, grown in GNB or on GNA, were incubated for 1 hour at 

different temperatures (25,40, 45 and 50°C), and in CPK buffer of pH 5.5 and 7.0 for 

pHj„ measurements. The results (Table 1) show that at increased temperatures, both 

the capacity to maintain a pH gradient and the number of colony-forming units 

decreased. 

Control cells and cells treated at 40°C were able to maintain a pH gradient. 

However, both the gradient and the recovery of Cmm cells after plating showed a 

decrease for the 40°C treated cells compared to the control. No pH gradient was 

observed for cells treated at 45 and 50°C for 1 hour and cells could not, or only in low 

numbers be recovered after plating. Cells incubated in buffer of pH 5.5 always 

showed a higher pH gradient than when incubated in buffer of pH 7.0. 
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A good correlation (r2 > 0.80) was found between the number of CFU ml"1 

determined by plate counting and the magnitude of the pH gradient determined for the 

whole population provided the log reduction of the plate counts is less than 3. 

Table 1. The effect of temperature treatment on the intracellular pH of Clavibacter michiganensis subsp. 
michiganensis. The bacteria were grown in NB liquid medium supplemented with lOg l'1 glucose (GNB) 
or on NA medium, also supplemented with lOg l"1 glucose (GNA). Cells in CPK buffer pH 5.5 or 7.0 
wereexposed to different temperatures for 1 hour. Cells were loaded with cFSE and the pHin 

measurements were done as described in Materials and Methods. 

Growth 
medium 

GNB 

GNA 

pHof 
buffer 

5.5 

7.0 

5.5 

7.0 

Temperature 
(°C) 

25 
40 
45 
50 
25 
40 
45 
50 
25 
40 
45 
50 
25 
40 
45 
50 

pHln + 
glucose 
(lOmmoI1) 
6.6 
6.4 
5.5 
5.5 
7.2 
7.15 
7.0 
7.0 
6.5 
5.9 
5.5 
5.5 
7.5 
7.2 
7.0 
7.0 

pH gradient 
(pH,„ 

1.1 
0.9 
0 
0 
0.2 
0.15 
0 
0 
1.0 
0.4 
0 
0 
0.5 
0.2 
0 
0 

- pHout) 
Plate 
counts 
(CFU ml1) 
1.28xl09 

3.16xl07 

0 
0 
1.40xl09 

3.66xl07 

0 
0 
1.05xl09 

2.16xl07 

0 
0 
1.63xl09 

3.33xl06 

3.83xl02 

0 

Reduction 
log units 

0 
1.6 
9.1 
9.1 
0 
1.73 
9.29 
9.29 
0 
1.69 
9.02 
9.02 
0 
2.69 
6.63 
9.21 

Effect of HC1 treatment on the pHin of Clavibacter michiganensis subsp. 

michiganensis 

Cmm cells were shown to be very sensitive to acid (HO) treatment. A pH gradient 

could not be observed for any of the treated cell suspensions (Table 2). The ratio of 

fluorescence intensities at 500 nm and 440 nm of cFSE stained treated cells was 

constant, even after the addition of glucose, or valinomycin and nigericin (pHin = 

pHoUt). This suggests that the cells were not viable (no pH gradient). Observations by 

fluorescence microscopy showed that, as the concentration of HC1 increased, the 

intensity of fluorescence of stained cells decreased. In plate count assays, the 

percentage of viable cells was strongly reduced and the difference with the control 

value, expressed as the reduction in log unit, showed that only a very small percentage 

(< 0.001%) of the population could be recovered after the 0.1 mol l"1 HC1 treatment. 
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Table 2. The effect of acid treatment (HC1) on the intracellular pH of Clavibacter michiganensis subsp. 
michiganensis. The bacteria were grown in NB liquid medium supplemented with lOg l"1 glucose (GNB) 
or on NA medium, also supplemented with lOg l"1 with glucose (GNA). Cells were incubated in HC1 at 
different molaritiesfor 1 hour and then resuspended in CPK buffer pH 5.5 or 7.0. Cells were loaded with 
cFSE and the pHin measurements were done as described in Materials and Methods. 

Growth 
medium 

GNB 

GNA 

pHof 
buffer 

5.5 

7.0 

5.5 

7.0 

HC1 treatment 
(mol 1') 

0 
0.1 
0.2 
0.6 
0 
0.1 
0.2 
0.6 
0 
0.1 
0.2 
0.6 
0 
0.1 
0.2 
0.6 

pHin 

+glucose 
(lOmmol') 
6.8 
5.5 
5.5 
5.5 
7.3 
7.0 
7.0 
7.0 
7.1 
5.5 
5.5 
5.5 
8.1 
7.0 
7.0 
7.0 

pH gradient 
(pH,„ 

1.3 
0 
0 
0 
0.3 
0 
0 
0 
1.6 
0 
0 
0 
1.1 
0 
0 
0 

- pH0Ut) 
Plate 
counts 
(CFU ml1) 
1.85x10* 
8.03xl02 

4.40x10' 
0 
2.96xl09 

1.68xl04 

0 
0 
6.68xl09 

0 
0 
0 
6.00xl09 

1.71xl03 

0 
0 

Reduction 
log units 

0 
6.33 
7.59 
9.23 
0 
5.24 
9.47 
9.47 
0 
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Flow cytometric analysis of the intracellular pH of Cmm cells 

The spectrofluorometry technique allows rapid measurement at the population level, 

however, at least 107 viable cells ml"1 are needed to be able to detect a pH gradient. 

FCM allows measurement of individual cells and it detects low numbers of cells i.e. 

approximately 102 - 103 CFU ml"1. 

Fig. 5 (A) shows the results of the flow cytometric analysis of the FL1/FL2 

ratio for non-treated and heat-treated Cmm cells (40°C for 1 hour) in CPK buffer at 

pH 5.5. For non-treated cells in the presence of nigericin (c), the mean value of the 

emission ratio (FL1/FL2) of fluorescence (ERF) is 1.254, which corresponds to an 

intracellular pH of 5.5 (no pH gradient). For cells treated at 40°C (b), the mean value 

of ERF is 1.291, which is close to the ratio (pHj„) of the ionophore treated cells. A 

higher pH;„ was observed for non-treated cells (a), which showed a mean value of 

ERF of 1.702. 
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Fig. 5. Flow cytometric analysis of the intracellular pH of Cmm cells incubated in CPK 
buffer at pH 5.5 (A) and at pH 7.0 (B). Cells were loaded with 1.0 umol l"1 cFDASE. The 
following treatments were given to the bacterial cells: a and d, non-treated (control); b 
and f, cells treated at 40°C; e, cells treated at 45°C; and c, non-treated cells in the 
presence of nigericin (0.1 umol l"1). 

Fig. 5 (B) shows non-treated Cmm cells and cells treated at 40 or 45°C for 1 

hour, in CPK buffer at pH 7.0. For cells treated at 40 (f) and 45°C (e), the mean value 

of ERF is 1.453, which corresponds to an intracellular pH of 7.0. Treated cells, thus, 

show no pH gradient. For non-treated cells (d), the mean value of ERF was 

significantly higher, i.e. 1.821, indicating the presence of a pH gradient. 

The results show that the flow cytometric analysis allowed distinguishing 

between heat-treated and non-treated Cmm cells based on differences in their pH 

gradients. 

Discussion 

In this study, fluorescence assessment of pHjn of Clavibacter michiganensis subsp. 

michiganensis was used as an indicator for viability of Cmm. This application is 

based on the capability of a cell to maintain its pH gradient at conditions where the 

external pH is suboptimal, i.e. pHjn higher than pH0Ut- It was shown for Cmm that 

when the intracellular pH drops to 5.5 or below, growth was inhibited. Therefore, 

viable cells should maintain their pHjn above this pH value. Studies with Leuconostoc 

mesenteroides and Lactobacillus plantarum showed that these microorganisms were 

not able to grow when their pHj„ dropped below 5.4 and 4.6, respectively (McDonald 

etal. 1990). 
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The decrease in the ability of Cmm cells to maintain a pH gradient indicate 

that the temperature treatments affected the viability of Cmm cells as demonstrated by 

the decrease in the number of CFUs observed in the plate count assay. The viability of 

bacterial cells was also affected when the cells were treated with HC1 at different 

molarities (0.1, 0.2 or 0.6 mol l"1). In HC1 treated cells no pH gradient could be 

detected (pHj„ = pH0Ut). Fluorescence microscopy revealed that these cells were 

poorly labeled with cFSE, either due to a low esterase activity in the cytoplasm or due 

to an increased efflux of cFSE resulting from the cell membrane damage caused by 

the acid treatment. The spectrofluorometer analysis for pHj„ measurements was not 

able to detect the signal of these weakly stained cells and only a small percentage of 

the HC1 treated cells (<0.001%) could be recovered on plate. Although, the 

spectrofluorometry technique allows rapid measurement at the population level, at 

least 107 viable cells ml"1 are needed to be able to detect a pH gradient, i.e to get a 

fluorescence ratio signal of sufficient magnitude. This indicates that the sensitivity of 

this technique is rather low. 

FCM allows analysis of individual cells based on their physical and/or 

chemical characteristics such as size, granularity and DNA content. A major 

advantage of using FCM are its sensitivity and its capability to detect low number of 

cells, i.e 10 -10 cells ml"1. Here we showed that populations of heat-treated and non-

treated Cmm cells could be distinguished based on the differences in the fluorescence 

ratios (pH gradients) after labeling with cFSE. The heat-treated cells had a low 

fluorescence ratio (no pH gradient) and could not be recovered on plates, whereas the 

ratio of live cells was significantly higher (pH gradient present). FCM was used 

successfully before to distinguish between viable and non-viable bacteria after 

staining with a range of fluorescent probes, such as cFDA, Calcein AM and 

Rhodamine 123 (Diaper and Edwards 1994; Magarinos et al. 1997; Porter et al. 

1997). 

Overall, a good correlation was found between the presence of a pH gradient, 

determined by applying the fluorescent probe cFSE, and the number of colony 

forming units observed in plate counts. Compared to the conventional plating assays, 

which for Cmm takes at least 4 - 5 days, the use of FCM seems promising, especially 

for fundamental studies with pure cultures. For determining viability of Cmm in an 

environment with other saprophytic microorganisms specific detection of Cmm 

should be achieved as well. This is the topic of further studies. 
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Summary 

The determination of the viability of bacteria by the conventional plating techniques is 

a time-consuming process. Methods based on enzyme activity or membrane integrity 

are much faster and may be good alternatives. Assessment of the viability of 

suspensions of the plant pathogenic bacterium Clavibacter michiganensis subsp. 

michiganensis (Cmm) using the fluorescent probes Calcein acetoxy methyl ester 

(Calcein AM), carboxyfluorescein diacetate (cFDA), and propidium iodide (PI) in 

combination with flow cytometry was evaluated. 

Heat-treated and viable (non-treated) Cmm cells labeled with Calcein AM, 

cFDA, PI, or combinations of Calcein AM and cFDA with PI could be distinguished 

based on their fluorescence intensity in flow cytometry analysis. Non-treated cells 

showed relatively high green fluorescence levels, whereas damaged cells (heat-

treated) showed high red fluorescence levels. Flow cytometry allowed a rapid 

quantification and separation of viable Cmm cells labeled with Calcein AM or cFDA 

and heat-treated cells labeled with PI. Therefore, the application of flow cytometry in 

combination with fluorescent probes appears to be a promising technique for 

assessing viability of Cmm cells in suspensions when cells are labeled with Calcein 

AM or the combination of Calcein AM with PI. 
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Introduction 

Bacterial canker of tomato, caused by the seed-transmitted plant pathogenic bacterium 

Clavibacter michiganensis subsp. michiganensis (Smith) (Davis et al. 1984), causes 

major economic losses in commercial tomato production worldwide. To prevent the 

introduction of bacterial canker, disease-free seeds should be used. Indexing seeds for 

the presence of Clavibacter michiganensis subsp. michiganensis (Cram) is 

recommended to select for disease-free seeds. Information on the viability of the 

target bacterium is essential for decision-making, but also to determine the effect of 

seed treatments. Therefore, accurate and rapid methods to assess the viability of plant 

pathogenic bacteria, such as Cmm, are highly desirable. 

Here we define viability as the capability of a cell to perform all the necessary 

functions for its survival under given conditions. Viable microorganisms require an 

intact cytoplasmic membrane, DNA transcription and RNA translation, enzyme 

activity, and growth (Breeuwer et al. 1996). The plate count method is commonly 

applied for detection and enumeration of viable bacteria and involves plating serial 

dilutions of an extract or washing on a selective medium. Subsequently, the isolated 

organisms may be identified by a range of biochemical and serological tests. 

However, the plate count method is time consuming (Plihon et al. 1995) and the 

results are sometimes difficult to interpret due to cell concentration effects, 

interference by other microorganisms, or presence of inhibitory components. 

The development of fluorescent probes for cellular functions has led to new 

techniques for measuring the viability of microorganisms (Haugland 1996). Various 

fluorescent probes have the ability to explore different properties of the cell, such as 

enzyme activity (Kaneshiro et al. 1993; Diaper and Edwards 1994a, 1994b; Endo et 

al. 1997; Ueckert et al. 1997; Bunthof et al. 1999); cytoplasmic membrane 

permeability (Magarifios et al. 1997; Porter et al. 1997; Roth et al. 1997; Williams et 

al. 1998), membrane potential (Kaprelyants and Kell 1992; Mason et al. 1995; 

Langsrad and Sundheim 1996), respiratory activity (Kaprelyants and Kell 1993a, 

1993b); relative DNA content (Allman et al. 1992; Christensen et al. 1993; Sgorbati 

et al. 1996; Bernander et al. 1998) and pH gradient (Breeuwer et al. 1996; Chitarra et 

al. 2000). Several of these parameters can be used as viability indicators. 

One of the enzyme activity probes that has been used as a cell viability 

indicator is fluorescein diacetate (FDA). FDA is a non-fluorescent polar ester 

40 



Viability of Clavibacter michiganenis subsp. michiganensis 

compound that can permeate intact cell membranes. Once inside the cell it is cleaved 

(hydrolysed) by non-specific esterases to release fluorescein, a polar fluorescent 

compound which is retained inside the cells. Thus, the viability can be correlated with 

the ability of the cell to accumulate fluorescein due to esterase activity (Widholm 

1972). However, fluorescein is poorly retained by viable cells (Fry 1990; Edwards et 

al. 1993), and the FDA method can be easily frustated due to leakage or active efflux 

of fluorescein to the extracellular environment. This first problem can be minimized 

by using probes which are more negatively charged at physiological pH, resulting in 

less leakage of fluorescein from the cells. Such probes are for instance 

carboxyfluorescein diacetate (cFDA) and calcein acetoxy methyl ester (Calcein AM). 

To prevent active extrusion, the assay has to be performed with de-energized cells or 

in buffer without energy source or on a very short timescale. 

Propidium iodide (PI) is a nucleic acid probe that has also been used 

successfully to assess viability of microorganisms (Sgorbati et al. 1996; Magarinos et 

al. 1997). PI is not capable of crossing intact membranes of living microorganisms 

(Alvarado-Aleman et al. 1996), but it passes through damaged cell membranes. Once 

inside the cell, PI intercalates into RNA and DNA backbones independently of base 

pair ratio (Taylor and Milthorpe 1980) and AT-rich regions (Crissman et al. 1979). It 

can also form complexes with double-stranded DNA and RNA (Hudson et al. 1969). 

Pi-stained cells are assumed to be non-viable. 

The potential of such viability measurements is increased when applied in 

combination with flow cytometry (FCM), a technique highly suited for the rapid 

analyses of fluorescent cells. 

The aim of the present paper was to test the enzyme activity probes cFDA and 

Calcein AM, and the nucleic acid probe PI in combination with FCM, to determine 

the viability of Cmm cells. The results are compared with those of the conventional 

plate count technique. 

Materials and Methods 

Growth conditions 

Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB 1064 was grown on 

1% Glucose-Nutrient-Agar (GNA; Oxoid) medium for 24 hours at 25°C. The cells 

were harvested and resuspended in 0.2 M sodium phosphate buffer (SPj) pH 7.4. The 
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Optical Density (O.D.) was measured with a spectrofotometer at 620 nm and adjusted 

by diluting with SP; to approximately 0.35, ii 

107 colony forming units per ml (CFU ml"1). 

by diluting with SP; to approximately 0.35, in order to obtain concentrations of 10 to 

Temperature treatment 

To obtain non-viable bacterial cells, the bacterial suspensions were heat-treated (Test 

Tube Heater SHT 2D) at 80°C for 30 minutes. 

Non-treated and heat-treated bacterial cells were mixed in different ratios, i.e. 

100/0, 80/20, 50/50, 20/80, and 0/100% respectively, to create populations varying in 

viability. 

Labeling of cells with fluorescent probes 

Cmm cells in SPj pH 7.4 were incubated for 1 hour at 28°C in the presence of cFDA 

(10 uM), Calcein AM (10 uM), or in combination with PI (10 uM) for double 

labeling. Samples to be stained with PI were incubated for 20 minutes at room 

temperature. Subsequently, the cells were spun down at 1 lOOOg, washed, resuspended 

in SPj pH 7.4, and placed on ice until required. 

Flow cytometric analysis 

Analysis of individual cells was performed with a FACSCalibur flow cytometer 

(Becton-Dickinson Benelux N.V., Erembodegem, Belgium), equipped with an air-

cooled argon ion laser (excitation wavelength 488 nm), which was operated at 15 

mW. The instrument was set up to collect 6 parameters: forward and side scatter, 

fluorescent light at emission wavelengths of 530/30 nm (FL-1; green fluorescence), 

585/42 (FL-2; orange fluorescence), and > 670 nm (FL-3; red fluorescence), and time. 

The low angle light scatter (forward scatter) was used as an indicator of cell size and 

the wide angle light scatter (90° or side scatter) was used as an indicator of cell 

granularity. The results are represented in 2 parameter dot plots in which the X-axis 

and Y-axis are divided into 1024 channels, relative to the intensity of the incoming 

signal. A logarithmic amplification of the incoming signal was used to measure a 

wider range of signals (4 decade log scale). The sample analysis time was 

approximately 2 minutes and the number of labeled bacterial cells was quantified 

based on the flow rate, which was determined to be 4.8 ul min"1. The cells were 
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separated from the background by their side scatter characteristics. Non-treated 

(viable) unstained cells were used as negative controls for Calcein AM and cFDA, 

and heat-treated (non-viable) unstained cells for PI. 

To verify that green and red fluorescent cells represent live (non-treated) and 

dead (heat-treated) bacterial cells, respectively, cells from defined populations were 

sorted and plated. 

Sorting of viable and non-viable cells 

Cmm cells labeled with Calcein AM, cFDA or PI were sorted based on the green and 

red fluorescence of the cells at 530/30 and > 670 mn respectively. Calcein AM and 

cFDA positive cells give high green fluorescence signal (viable cells), and PI positive 

cells give a high red fluorescence signal (non-viable cells). Cells from these two 

distinct fluorescence regions were sorted, counted by the flow cytometer, and 50 ul 

drops containing sorted viable or non-viable cells were plated on GNA medium. After 

incubation of plates for 96 hours at 25°C, the number of colonies was counted and the 

total number of CFU ml"1 was calculated. Sorted cells were also counted in a 

Neubauer counting chamber. 

Plate count technique 

Plate counts were determined as described by Miles and Misra (1933). Serial ten-fold 

dilutions were made from each bacterial suspension in SPj pH 7.4, and 20 ul drops of 

each dilution were plated in triplicate on sectored GNA plates. After incubation of 

plates for 72h at 25° C, the number of colonies was counted for those dilutions 

producing between 3 and 30 colonies per 20 ul drop, and the total number of CFU 

ml' was calculated for each sample. 

Total cell counts 

Four replicates of each sample were counted in a Neubauer counting chamber with a 

fluorescence microscope (Zeiss, Axiophoto, West Germany) at a magnification of 10 

x 40. The total count determination was done by counting the non-treated cells stained 

with Calcein AM or cFDA (green fluorescence), and heat-treated cells stained with PI 

(red fluorescence). Non-labeled cells were counted as well (control). 
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Results 

For the FCM-based viability assay, Cmm cells were labeled with Calcein AM, cFDA, 

PI, or combinations of Calcein AM and cFDA with PI and analysed. The number of 

green and red fluorescent particles, labeled with Calcein AM, cFDA or PI was 

quantified. Green particles represented cells with intact membranes and esterease 

activity, whereas red particles represented cells with a damaged membrane (Fig. 1). 

Fig. 1. Fluorescence microscopy of Cmm cells labeled with Calcein AM (green 
fluorescence) and PI (red fluorescence). 

The FCM analyses showed that individual cells labeled with Calcein AM or 

cFDA, and cells labeled with PI could be perfectly separated into two well distinct 

regions based on their fluorescence intensity, as shown for instance for Cmm 

population containing 50% heat-treated cells (Fig. 2). Non-treated Calcein AM-

stained cells showed relatively high green fluorescence levels (R2), whereas damaged 

cells (heat-treated) showed high red fluorescence levels (R3) when stained with PI. 

The quantitative results of the FCM analyses were compared with total counts 

and plate counts for populations containing 100, 80, 50, 20 and 0% viable Cmm cells. 

The total counts were all in the same range, i.e. 2.0 to 2.8 x 107 cell ml"1, which 

proved that the number of Cmm cells is similar in all samples, irrespective of the label 

used or treatment given. The total counts and FCM counts of non-heat treated cells 

labeled with Calcein AM (Fig. 3) or cFDA (Fig. 4) were almost the same, but the 

number of CFU ml"1 detected by plate counts was much lower. A linear relation (r > 

0.95) was found between the percentage of non-treated cells present in the samples 

and the FCM counts for Cmm cells labeled with Calcein AM or cFDA. 

44 



Viability of Clavibacter michiganenis subsp. michiganensis 

10' 10* 
FL1 -Height 

Fig. 2. Green fluorescence intensity (FL1) and red fluorescence intensity (FL3) of a Cmm 
population containing 50% heat-treated cells labeled with Calcein AM (R2) and PI (R3). 
Rl = background. 
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Fig. 3. Comparison between plate counts (A) and flow counts for different ratios of non-
treated and heat-treated Cmm cells labeled with Calcein AM ( • ) or PI ( •) . 
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Fig.4. Comparison between plate counts (A) and flow counts for different ratios of non-
treated and heat-treated Cram cells labeled with cFDA (•) or PI (•). 

A linear relation (r > 0.80) was also found between the percentage of heat-

treated cells in the samples and the FCM counts for Cmm cells labeled with PI. 

However, the labeling with cFDA and PI appears to affect outgrowth of the Cmm 

cells after plating, since the number of CFU ml"1 showed a decrease of 72% and 52% 

compared to non-labeled cells, respectively. The plate counts showed that the 

recovery of Cmm cells in the presence of Calcein AM was higher than in the presence 

of cFDA. Indeed, the sorting of cells labeled with cFDA showed that only 0.6% to 5% 

of these cells could form colonies after plating (Table 1). For Cmm cells labeled with 

Calcein AM , 42 to 65% of the sorted cells were able to form colonies. As expected, 

sorted cells labeled with PI could not be recovered at all after plating on GNA. 

Overall, the number of non-treated Cmm cells labeled with Calcein AM, 

cFDA, PI, or a combination of these probes, quantified by FCM analyses was 

comparable to the number of total counts and both were higher than the number of 

CFU ml"1 detected by plate counting. 
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Table 1. Colony formation of sorted Cmm cells labeled with Calcein AM, cFDA, PI or combinations 
of Calcein AM and cFDA with PI, after plating on GNA medium. 

Label Cmm population Concentration of sorted cells Plate counts of 
% heat treated cells (cells/ml) sorted cells CFU/ml) 

Calcein AM 

PI 

Calcein AM + 

cFDA 

PI 

cFDA + PI 

PI 

0 

100 

50 

0 

100 

50 

2.4 x103 9.8x102(42%) 

9.7 x 102 (Calcein AM stained) 6.3 x 102 (65%) 
4.2 x102 (PI stained) 0 

2.0x10 2(5%) 

2.6 x10 3 

2.5 x 103 (cFDA stained) 1.6x10 (0.6%) 
3.5 x103 (PI stained) 0 

Discussion 

The assessment of the viability of the plant pathogenic bacterium Cmm applying the 

fluorescent probes Calcein AM, cFDA and PI in combination with flow cytometry 

was evaluated for Cmm populations differing in the ratio of viable cells. The use of 

flow cytometry to distinguish between viable and non-viable bacteria after labeling 

with cFDA, Calcein AM or PI has been reported before for microorganisms in food, 

compost extracts and seawater (Diaper and Edwards 1994a, 1994b; Magarinos et al. 

1997). The viability of Cmm cells in suspension has also been determined by 

measuring the intracellular pH as a viability indicator, using the pH dependent 

fluorescent probe 5 (and 6-)-carboxyfluorescein succinimidyl ester (cFSE) and FCM 

(Chitarra et al. 2000). However, compared to the method applied in this study, the 

intracellular pH analysis has to be performed at two pH values, the preparation of the 

samples takes a longer time, a calibration curve has to be made each time, and the 

results are more difficult to interpret. 

In this study, we observed that non-treated (viable) and heat-treated (non­

viable) Cmm cells could be distinguished based on the fluorescence intensity of the 

cells after labeling with Calcein AM or cFDA (green fluorescence), and PI (red 

fluorescence). A good correlation was found between the percentage of viable Cmm 

cells and the FCM counts when the cells were Calcein AM-stained. These results 

differ from the results reported by Kaneshiro et al. (1993) and Diaper and Edwards 
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(1994b). Their research showed the inability of Calcein AM to stain many yeast and 

bacterial cells, probably due to a poor accessibility of the cells for this dye. 

cFDA is one of the mostly used fluorogenic esters that has been applied to 

detect viable bacteria using fluorescence microscopy (Chrzanowski et al. 1984) and 

flow cytometry (Diaper and Edwards 1994a, 1994b). Since this dye preferentially 

stains gram positive bacteria, it was expected to be a good viability indicator for 

Cmm. However, comparing cFDA and Calcein AM, the latter showed more reliable 

results, and appears to be a good indicator for viability of Cmm cells when applied in 

combination with FCM. 

PI is a dye that is supposed not to cross intact cell membranes (Alvarado-

Aleman et al. 1996), but it was able to stain 18 to 56% of non-treated Cmm cells 

when applied as a single stain. These results suggest that PI cannot be considered a 

good viability indicator for viable Cmm cells when it is applied alone. However, it 

was shown that it can be a good indicator for dead or demaged cells. 

The number of labeled cells detected by FCM analyses was always higher than 

the number of CFU ml"1 detected by the plate count method. This implies that a large 

proportion of the cells are enzymatically active, e.g. they are able to hydrolyse 

Calcein AM or cFDA, but only about 55% and 24% are able to form colonies, 

respectively. Nonetheless, both plate count and FCM results show a linear relationship 

with the percentage of viable Cmm cells in the population. FCM counts can therefore 

be used as a viability indicator as well. 

Overall, FCM analysis of Calcein AM stained cells was shown to be a method 

to assess viability of Cmm cells in suspensions with the speed of the assay being 

superior to the conventional plate count method. 
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Summary 

Xanthomonas campestris pv. campestris (Xcc) is a seed transmitted plant pathogenic 

bacterium which causes black rot of crucifers. Seed lots and plants are screened for 

contamination with this pathogen using plating or serological assays. These methods, 

however, are time consuming and not very sensitive, respectively. Therefore, flow 

cytometry (FCM) was evaluated for the rapid detection of Xcc cells labeled with a 

FITC-monoclonal antibody in pure culture and in mixed culture with the common 

saprophyte Pseudomonas fluorescens (Psf). The detection limit employing FCM was 

assessed and compared with the conventional plate count technique. 

The monoclonal antibody (Mab) 18G12, directly conjugated with FITC, was 

used at dilutions of 1:50, 1:100, 1:200 and 1:400. For mixed suspensions of Xcc and 

Psf, Mab 18G12 was used at a dilution of 1:100. The analyses were performed with a 

Coulter EPICS XL-MCL flow cytometer, at low flow rate during 4 minutes. Serial 

ten-fold dilutions were made from the bacterial suspensions and plated in triplicate on 

sectored Tryptone Soya Agar medium. 
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Using FCM, Xcc cells labeled with FITC-conjugated monoclonal antibodies 

could rapidly be detected at low numbers, i.e 103 colony forming units ml"1 in pure 

and mixed cultures with Psf. 

FCM in combination with Xcc specific FITC-labeled monoclonal antibodies 

may provide a novel tool for rapid detection of this plant pathogenic bacterium. 

Introduction 

Xanthomonas campestris pv. campestris (Xcc) is a seed-transmitted plant pathogenic 

bacterium which causes black rot of crucifers. The bacterium attacks Brassica spp, 

radishes and numerous weeds (Williams 1980). To prevent black rot, disease-free 

seeds should be used. 

Several detection methods for Xcc have been developed to test seed lots and 

plants for contamination with the pathogen. The routinely used methods are based on 

plate assays or on serological tests. Plate assays allow isolation of the pathogen by 

plating seeds or seed extracts on semi-selective agar media (Schaad and Donaldson 

1980; Randhawa and Schaad 1984; Chang et al. 1990; Chang et al. 1991). Semi-

selective media may reduce the interference of saprophytes, but it can also affect the 

recovery of the target bacterium (Chun and Alvarez 1983). Saprophytic bacteria may 

produce antibiotics that can act in combination with inhibiting components in the 

selective media suppressing growth of Xcc (Schaad et al. 1997). Furthermore, plating 

assays require long incubation times, varying from 3 to 5 days. 

Serological tests, such as the enzyme-linked immunosorbent assay (ELISA), 

register the occurrence of antigen-antibody complexes by rapid enzymatic 

development of a distinctly coloured product. Xcc could be detected on infected 

cabbage leaves using polyclonal antibodies within 5 hours, but the detection limit was 

quite high, i.e. 105 CFU ml"1 (Alvarez and Lou 1985). This detection method, 

therefore, is generally considered to be insensitive. 

Alternatively, immunofluorescence microscopy (IF) has been evaluated for 

detecting FITC-labeled Xcc cells (Franken 1992). The reliability of this method, as 

well as ELISA, depends on the specificity of the antibodies, which must be tested 

prior to use and preferably should not cross-react with other bacteria present in the 

sample. The IF method requires at least 5 hours to prepare the samples. Furthermore, 

the examination of IF slides is time-consuming and should be performed by 
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experienced technicians. Immunofluorescence colony-staining (IFC) is based on a 

combination of plating and serological techniques. The specificity of IFC relies on 

growth on a selective medium, which can take 1 to 2 days, colony phenotype, and 

serological staining characteristics (Van Vuurde et al. 1995). Overall, the above 

mentioned methods are time consuming or not very sensitive. 

Flow cytometry (FCM) is a technique that allows rapid examination and 

detection of individual cells based on their physical and/or chemical characteristics 

such as size, granularity or DNA content. FCM in combination with fluorescent 

antibodies has successfully been used to detect Staphylococcus aureus in lake water 

(Diaper et al. 1992), to detect Escherichia coli in natural lake water populations and 

sewage (Porter et al. 1993), to detect low levels of Salmonella in pure cultures 

(McClelland and Pinder 1994a; Pinder and McClelland 1994), and in dairy products 

(McClelland and Pinder 1994b). Advantages of FCM are its speed, the actual analysis 

can be done in a matter of minutes, and the fact that it is a quantitative method. 

In this study, FCM was evaluated for the detection of Xcc cells labeled with a 

FITC-labeled monoclonal antibody in pure and in mixed cultures with the commonly 

occurring saprophytic bacterium Pseudomonas fluorescens (Psf). 

Materials and Methods 

Growth conditions 

Xanthomonas campestris pv. campestris (Xcc) 1279A (HRI - Horticulture Research 

International, England) and Pseudomonas fluorescens (Psf) 252 (PRI - Plant Research 

International, The Netherlands) were grown on 1% Glucose-Nutrient-Agar (GNA; 

Oxoid) medium for 24 hours at 25°C. The cells were harvested and resuspended in 

0.2M phosphate buffer (PB), pH 7.2. The Optical Density (O.D 620) was measured 

with a spectrophotometer at 620 nm and adjusted by diluting with PB to 

approximately 0.35 and 0.43 for Xcc and Psf respectively, in order to obtain 

suspensions with 107 to 108 cells ml"1. 

Bacterial sample preparation 

For flow cytometric analyses, serial dilutions of the Xcc suspension were made in PB 

pH 7.2 to give cell concentrations ranging from approximately 102 to 106 cells ml"1. 

55 



Chapter 4 

Suspensions of Xcc and Psf, each containing approximately 106 cells ml"1, were 

mixed in different ratios, i.e. 100/0, 80/20, 50/50, 20/80, and 0/100%, prior to staining 

in order to test the monoclonal antibody specificity. 

Cell labeling with monoclonal antibody 

The monoclonal antibody (Mab) 18G12, directly conjugated with fluorescein 

isothiocyanate (FITC), was provided by IPO (Research Institute for Plant Protection, 

Wageningen, The Netherlands), and is specific for Xcc (Franken 1992). For FCM 

experiments, Mab 18G12 was tested at dilutions of 1:50, 1:100, 1:200 and 1:400. For 

mixed suspensions of Xcc and Psf, Mab 18G12 was used at a dilution of 1:100. The 

samples were stained by incubation with Mab at room temperature for 30 minutes in 

the dark. Subsequently, the cells were spun down at 11000 g, washed, resuspended in 

PB pH 7.2 and placed on ice until required. 

Flow cytometry 

All the analyses were performed with a Coulter EPICS XL-MCL flow cytometer 

(Beckman-Coulter Electronics, Miami, FL, USA) equipped with a 15 mW Argon ion 

laser at 488 nm. Green fluorescence emission of the monoclonal antibody 18G12-

FITC conjugate was measured with a band pass filter at 525 nm (510-540 nm). 

Forward scatter was used as an indicator of cell size and the side scatter was used as 

an indicator of cell granularity. The flow rate of the system was calibrated using Flow 

Count (Beckman-Coulter Electronics, Miami, FL, USA) with a diameter of 10 urn, at 

a concentration of 997 particles ul"1. The calibration was performed in triplicate for 4 

minutes at a low flow rate. Subsequently, the volume (ul min"1) of each analysed 

sample was calculated. An average volume of 9.5 |il min"1 was used as a standard 

value to calculate the number of FITC-labeled Xcc cells present in each sample in 

further experiments. 

The sample analysis time was 4 minutes, and the cells were separated from 

background by their side and forward scatter characteristics. The number of labeled-

FITC cells present in each sample was calculated based on the peak of the histogram 

(number of FITC-labeled Xcc cells), time of analysis (4 minutes), and volume (38 ui). 

The data are presented as the total amount of FITC-labeled cells ml"1 in each sample. 
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Plate count technique 

Plate counts were determined as described by Miles and Misra (1933). Basically, 

serial dilutions were made from both stained and unstained bacterial suspensions in 

PB pH 7.2, and 20 ul drops of each dilution were plated in triplicate on sectored 

Tryptone Soya Agar (TSA, Oxoid) plates. After incubation of plates for 48 hours at 

25°C, the number of colonies was counted for those dilutions producing between 3 

and 30 colonies per 20 ul drop, and the total number of colony-forming units ml"1 

(CFU ml"1) was calculated. 

Total cells counts 

Four replicates of unstained and stained 100-fold diluted samples were counted in a 

Neubauer counting chamber with a fluorescence microscope (Zeiss, Axiophot, West 

Germany). The total count determination was done by counting labeled Xcc cells to 

enable discrimination between Xcc and Psf. 

Results 

Detection level of FITC-labeled Xcc cells 

To establish the potential use of flow cytometry for the detection of the plant 

pathogenic bacterium Xcc, the optimal concentration of the Mab and the detection 

limit of the flow cytometry method were determined. 

Ten-fold serial dilutions of Xcc, ranging from 102 to 106 CFU ml"1 as 

determined by plate counts, were used for this purpose. Detection by flow cytometry 

of Xcc cells labeled with FITC-monoclonal antibody gave reliable counts for 

suspensions of 103 CFU ml"1 or higher (Table 1), indicating that 103 CFU ml"1 is the 

detection limit for flow cytometry detection of Mab-FITC-labeled Xcc. 

Table 1. Comparison of plate counts and flow counts for serial dilution of FITC-labeled Xcc cells. 
Cells were labeled with Mab 18G12 at dilution of 1:100, and the initial O.D 620 of the undiluted sample 
was 0.35. 

Xcc dilutions 

-3 
-4 
-5 
-6 
-7 
-8 

Plate counts 
(cfu ml"1) 
5.7 x 105 

5.7 x 104 

1.0 xlO4 

1.2 xlO3 

0 
0 

Flow counts 
(cells ml"1) 
6.1 x 10* 
6.8 x 104 

9.4 x 103 

2.3 x 103 

1.0 xlO3 

1.9 xlO3 
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For the series of different Mab dilutions, good correlation was observed 

between the flow cytometry counts and the plate counts for bacterial suspensions 

containing 103 to 106 CFU ml"' (Fig. 1). 

1 2 3 4 5 6 

Plate counts ( logCFU/ml) 

1 2 3 4 5 6 

Plate counts ( logCFU/ml) 

1 2 3 4 5 6 

Plate counts ( logCFU/ml) 

1 2 3 4 5 6 

Plate counts ( logCFU/n l ) 

Fig. 1. Correlation between plate counts (CFU ml"1) and flow counts (cells ml"1) for 10-
fold serial dilution of Xcc and different working titers for Mab 18G12: A = 1:50; B = 
1:100; C = 1:200, and D = 1:400. 

These results also show that the concentration of the Mab is an important 

factor for optimal detection of Xcc using FCM. Among the Mab dilutions, the 

dilutions of 1:50 and 1:100 showed relatively less background compared to the 

dilutions of 1:200 and 1:400, but with the dilution 1:50 a low correlation between 

plate counts and flow counts was observed. Of all events (including background and 

cell counts), 80% of the counts detected by FCM represented FITC labeled Xcc cells 

for Mab dilutions of 1:50 and 1:100, whereas 69% and 55% of all events were labeled 

Xcc cells for Mab dilutions of 1:200 and 1:400, respectively (Fig. 2). It was also 
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observed in previous experiments that FITC-labeled Xcc cells with Mab 18G12 

always gave less background at dilutions of 1:50 and 1:100 (data not shown). 

Therefore, the Mab dilution of 1:100 was chosen for further experiments because the 

background was low and it gave the best correlation between plate counts and flow 

counts. 

R1 

20% 

C 

0 
R2 

80% 

a 

b 

& 
0" 

R1 
31% 

io' io1 

E 

if" 
R2 
69% 

'10' 

Fig. 2. Fluorescence intensity (FL1) of FITC-labeled Xcc cells (R2) and the background 
(Rl) for different working titers of Mab 18G12; C = 1:50; D = 1:100; E = 1.200 and F = 
1:400. A and B represent background and non-labeled Xcc cells, respectively. 

The total counts always showed higher numbers of cells than flow counts and 

plate counts (Table 2). 

Table 2. Comparison of total counts, flow counts, and plate counts of FITC-labeled Xcc cells at 
different working titers of Mab 18G12. 

Mabl8G12 
Working titer 
1:50 
1:100 
1:200 
1:400 

Total counts 
cells ml"1 

2.9 x 10" 
2.0 xlO6 

1.7 xlO6 

2.5 x IO6 

Flow counts 
cells ml"1 

9.1 x 105 

6.1 x 105 

6.2 x 105 

7.3 x 105 

Plate counts 
CFU ml"1 

1.0x10" 
5.7 xlO5 

3.8 x 105 

5.8 xlO5 
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Detection of Xcc in the presence of P. fluorescens 

Both plate assays and flow cytometry allowed detection of Xcc cells labeled with the 

Mab-FITC conjugate when mixed with the saprophyte Psf in different ratios. The 

amount of labeled Xcc cells detected was proportional to the percentage of cells 

present in the samples. Labeled Xcc cells showed relatively high green fluorescence 

levels (FL1) compared to non-labeled cells and the saprophyte Psf (Fig. 3). 

Fig. 3. Fluorescence intensity (FL1) of Xcc and Psf cells without (A,B, and C) and with 
Mab 18G12 (D,E, and F). A and D = 100% Xcc; B and E = 50% : 50% Xcc and Psf cells; 
C and F = 100% Psf cells. 

The highest numbers of labeled Xcc cells were obtained using the total count 

technique (Fig. 4), whereas plate counts gave the lowest counts. 

2 0 4 0 6 0 8 0 
% X cc c e l l s 

Fig. 4. Correlation between the number of Xcc cells labeled with Mab 18G12, in the 
presence of an increased percentage of Psf cells, determined by the total count technique 
(A) and flow cytometry ( • ) . 
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A good correlation ( r = 0.95) was observed between the flow cytometry 

counts and plate counts, although flow counts were always higher than plate counts 

(Fig. 5). 

"o 
X 
Ifl 
c 
0 
o 
<D 

-
a. 

X 

II) 
+ J 
C 
0 
o 

§ 

20 40 60 80 100 

% X c c cells 

Fig. 5. Correlation between the number of Xcc cells labeled with Mab 18G12 at dilution 
of 1:100, in the presence of an increased percentage of Psf cells, determined by the plate 
count technique (A) and flow cytometry (•) . 

Discussion 

This is the first report which shows that FCM in combination with Xcc specific FITC-

labeled monoclonal antibodies allows rapid detection of a plant pathogen bacterium. 

Including the incubation time for staining, the analysis could be performed within one 

hour. Combined with the Multi Carousel Loader (MCL), this can speed up test 

procedures considerably. 

It was shown in this study that the concentration of Mab affected the 

sensitivity of the FCM measurements. This has also been reported for the sensitivity 

of serological techniques such as IF and IFC (Franken 1992; Van Vuurde 1997). This 

is based on the concept that the optimal concentration of Mab is the one that gives the 

greatest discrimination between the positive cells (fluorescence staining-signal) and 

negative cells (non-specific binding). FCM measurements were less sensitive and 

showed higher backgrounds as the concentration of Mab decreased (Fig. 2). Though, 

it seems not to be a limiting factor for the detection of Xcc by flow cytometry. In our 
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study, the limitations of the flow cytometry technique for the detection of Xcc cells 

labeled with FITC-antibody complex are primarily the concentration of the cells 

present in the samples and the fact that Mab does not discriminate between live and 

dead cells. The detection limit for Xcc using the FCM method is 103 CFU ml"1. The 

sensitivity of flow cytometry for the detection of Salmonella spp. in pure cultures, or 

in a food matrix, proved to be reliable down to the number of 1 x 104 cells ml" 

(McClelland and Pinder 1994a, 1994b). 

The detection limit for plant pathogens in plant materials and environmental 

samples applying the conventional plating technique and the IFC method is limited to 

about 104 and 102 CFU ml"1, respectively (Van Vuurde et al 1995). For Xcc, the 

detection threshold is important, since the tolerance level for black rot of crucifers is 

rather low. Only one infected cabbage seed per 10.000 seeds is acceptable for direct 

seeding of cabbage (Schaad et al. 1980). Seed health tests which are applied to test 

seed lots for contamination with pathogens are usually based on the conventional 

plate assays. Such assays take a long time and meanwhile, seed industries have to 

store the seeds before they can be processed and become available to the market. This 

results in a significant increase in cost. A reliable, fast and sensitive method to detect 

Xcc is therefore highly desirable. As shown, FCM combined with monoclonal 

antibodies may provide an alternative detection method for Xcc cells. The only 

prerequisite for the use of antibodies is that no cross-reactions with other bacteria 

present in the sample occur. In this study, no cross-reactions were observed with the 

common saprophyte Psf, independent of the ratio Xcc/Psf tested. The monoclonal 

antibody used in this study was previously shown to be specific for Xcc, although a 

mixture of 3 different Mabs was recommended for use in routine seed health testing 

for Xcc (Franken 1992). One of the advantages of applying the FCM technique for the 

detection of Xcc is the short assay time, i.e. less than 1 hour. For these reasons, FCM 

combined with Xcc specific FITC-monoclonal antibodies may provide a novel tool 

for rapid detection of this plant pathogenic bacterium. 
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Summary 

The plant pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) is the 

causal organism of black rot of crucifers. The bacterium is seed-borne, and to prevent 

black rot, pathogen-free seeds must be used. 

The routine methods used for the detection of Xcc in seed lots are usually 

based on plate assays and / or serological techniques. However, these methods are 

time consuming and laborious. 

Flow cytometry (FCM) was evaluated as a tool for a rapid detection and 

quantification of Xcc cells labeled with a mixture of specific FITC-labeled 

monoclonal antibodies in crude seed extracts. 

FCM allows a rapid detection and quantification of Xcc cells labeled with 

FITC-monoclonal antibodies (18G12, 2F4, and 20H6) in the samples tested. The 

presence of non-pathogenic Xc in the seed extracts did not interfere with FCM results. 

Xcc cells could be distinguished from cells of other organisms and small particles 

present in the seed extracts based on the high intensity fluorescence of labeled cells. 

FCM counts were always higher than plate counts which is most likely due to the fact 

that monoclonal antibodies do not discriminate between viable and non-viable cells. 

The application of FCM in combination with FITC-monoclonal antibodies 

appears to be a promising technique for the detection and quantification of Xcc cells 

in seed extracts of crucifers. 
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Introduction 

The plant pathogenic bacterium Xanthomonas campestris pv. campestris (Xcc) is a 

seed-bome bacterium which causes black rot of crucifers, one of the most important 

diseases of crucifers (Williams, 1980). To prevent black rot, the use of pathogen-free 

seeds is recommended. Testing of seed lots for the presence of the pathogen is, 

therefore, essential. 

The routine methods used for the detection of Xcc in seed lots or in plants are 

usually based on plating assays and / or serological techniques. Plating assays are 

based on plating seed washings or extracts on selective or semi-selective media, and 

are considered to be reliable and efficient methods for routine detection (Schaad 

1989). A major disadvantage of plating assays is the long incubation time required, 

taking for Xcc from 2 - 3 days up to one week. Another disadvantage is the possible 

presence of cells of other microorganisms, which may interfere by causing 

overgrowth or suppression of outgrowth of the target bacterium, in spite of the 

availability of semi-selective culture media. 

Alternative methods which are available for detection of bacteria include 

immunological and DNA techniques. Both techniques can be performed in a shorter 

timespan than the plating assays. However, these techniques are considered to provide 

the user only with semi-quantitative information, which for seed health testing is not 

satisfactory. Furthermore, immunological techniques, such as enzyme-linked 

imunosorbent assay (ELISA), are relatively insensitive, and DNA-based methods are 

relatively expensive and more laborious. 

Nowadays, advanced techniques have become available for simultaneous 

detection and quantification of specific plant pathogenic bacteria, even when they are 

present in low numbers. Flow cytometry (FCM) is such a technique, which combines 

the advantages of microscopy and serological analysis in a single, highly sensitive 

technique for a rapid examination and detection of numerous individual cells in a few 

minutes (Muirhead et al. 1985). Moreover, flow cytometry in combination with 

fluorescent probes technology has successfully been applied for a rapid and specific 

detection and enumeration of bacteria in medical, veterinary, and environmental 

microbiology (Pinder et al. 1990; Page and Burns 1991; Diaper et al. 1992; Li and 

Walker 1992; May et al. 1994; Porter et al. 1993; McClelland and Pinder 1994a, 

1994b; Pinder and McClelland 1994; Kusunoki et al. 1998). 
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In this study, flow cytometry in combination with fluorescein isothiocyanate 

(FITC)-conjugated monoclonal antibodies was evaluated as a new method for the 

detection and quantification of Xcc cells in pure culture, in suspensions containing 

both Xcc and Xc strains, and in crude seed extracts. 

Materials and Methods 

Seed lots 

Healthy and naturally infected seed lots with three different levels of contamination 

were kindly provided by Bejo Zaden B.V., The Netherlands. The contamination level 

of the seed lots was based on plating results determined by Bejo Zaden B.V.. 

Organisms and growth conditions 

The Xcc strains and Xc strains employed in this study are listed in table 1. All the 

strains were cultured on 1% Glucose-Nutrient-Agar (GNA; Oxoid) medium for 24 

hours at 25°C. The cells were harvested and resuspended in sterile saline (0.85% 

NaCl). The optical density (O.D.) was measured with a spectrophotometer at 620 nm 

and adjusted by diluting with sterile saline to approximately 0.35, in order to obtain 

concentrations of approximately 106 colony-forming units per ml (CFU ml"1). 

Extraction of Xcc from cabbage seeds 

Five sub-samples of 3,000 cabbage seeds of healthy seed lot were artificially 

contaminated in a 250 ml Erlenmeyer flask by adding 30 ml of pure suspensions of 

either Xcc 367, Xc 5040, or Xc 5053, or the mixture of Xcc 367 / Xc 5040 or Xcc 367 

/ Xc 5053. The sub-samples were shaken on an orbital shaker at 125 rpm for 5 

minutes and then kept stationary at room temperature (22-25°C) for 2.5 hours. 

Subsequently, the extract of each sub-sample was filtered through a nylon filter with a 

mesh width of 10 uM, centrifuged for 3 minutes at 1 l,000g, washed, and resuspended 

in the same volume of 0.85% sterile saline. 

Xcc was extracted from naturally contaminated sub-samples, each containing 

3,000 seeds, by adding 30 ml of sterile saline, pre-chilled to 2 - 4°C. The extraction 

procedure for Xcc was performed as described above. 
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Isolation of Xcc from the seed extract 

Ten-fold dilutions of each sub-sample were prepared in sterile saline. Fifty microliter 

aliquots of each dilution were plated in duplicate on NSCAA (Randhawa and Schaad 

1984) and FS (Fieldhouse and Sasser unpublished; Schaad 1989) media. Inoculated 

NSCAA plates were incubated at 25°C for three days and FS plates for four days. The 

number of colonies was counted for those dilutions producing between 15 and 300 

colonies per 50 ul, and the total number of CFUs ml"1 for each dilution was 

calculated. Reference strain Xcc 367 was plated as a control. 

Cell labeling with monoclonal antibody 

The mixture of monoclonal antibodies (Mabs) 18G12, 2F4, and 20H6, directly 

conjugated with fluorescein isothiocyanate (FITC), was provided by the former 

Research Institute for Plant Protection, Wageningen, The Netherlands, and was shown 

before to be specific for Xcc (Franken 1992). Pure suspensions of Xcc, mixed 

suspensions of Xcc and Xc, undiluted, and 10 and 100 times dilutions of the seed 

extract were incubated with the mixture of Mabs, at room temperature for 30 minutes 

in the dark, at a final titer of 1:100, before analysis by flow cytometry. 

Flow cytometry 

All the analyses were performed with a Coulter EPICS XL-MCL flow cytometer 

(Beckman-Coulter Electronics, Miami, FL, USA) equipped with a 15 mW Argon ion 

laser at 488 ran. Green fluorescence emission (FL1) of the mixture of FITC 

conjugated monoclonal antibodies was measured with a band pass filter at 525 nm 

(510-540 nm). Forward scatter was used as an indicator of cell size and the side 

scatter was used as an indicator of cell granularity. The flow rate of the system was 

calibrated using Flow Count (Beckman-Coulter Electronics, Miami, FL, USA) with a 

diameter of 10 um, at a concentration of 997 particles per ul The calibration was 

performed in triplicate for 4 minutes at a low flow rate. Subsequently, the volume (|il 

per minute) of each analysed sample was calculated. An average flow rate of 9.0 jul 

per minute was used as a standard value to calculate the number of FITC-labeled Xcc 

cells present in each sample in further experiments. The sample analysis time was 2 

minutes, and the cells were separated from background on basis of their side and 

forward scatter characteristics. The number of FITC - labeled cells present in each 
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sample was calculated based on the peak of the histogram (FL1 - number of FITC-

labeled Xcc cells), time of analysis (2 minutes), and volume (18 JJ.1). The data are 

presented as the total amount of FITC-labeled cells ml"1 in each sample. 

Immunofluorescence microscopy (IF) 

The IF slides were prepared by pipetting 5 ul aliquots of each stained sample in 

duplicate on a Neubauer counting chamber. Reading of IF slides was done with a 

fluorescence microscope (Zeiss, Axiophot, West Germany), using a 40x objective 

magnification, lOx ocular magnification, and a I 2 filter system for incident 

illumination with blue light for FITC excitation. Xcc cells were considered IF positive 

when a high green fluorescence signal of FITC-labeled Xcc cells was observed. IF 

positive cells were counted. 

Pathogenicity test 

Xcc 367, Xcc 1279A, Xc 5040 and Xc 5053 were cultured on yeast extract-dextrose-

calcium carbonate agar (YDC) (Schaad 1988) for 24 hours at 25°C. Two plants in the 

3-4 leaf stage of each susceptible cabbage cultivar, Almanac and Erdeno (Brassica 

oleracea var. capitata), were inoculated. Two different methods of inoculation were 

used. In the first method, the major veins of the first two true leaves were stabbed at 

5-10 points with a sterile toothpick contaminated with Xcc cells directly scraped from 

a culture on YDC medium. In the second method, the stem below the first two true 

leaves was carefully injected with a freshly prepared light milky Xcc suspension (107 

- 108 cells ml"1), using a hypodermic syringe. In both methods, tap water was used as a 

negative control. Plants were incubated in a growth cabinet at 20°C and 60% relative 

humidity, with a 12 hours light cycle. The appearance of typical V-shaped, yellow 

lesions with blackened veins after 7-10 days was considered to be a positive response. 

Results 

Specificity of the Mabs in flow cytometry 

A good specificity of the monoclonal antibodies used in this study is essential for their 

application in either IF or FCM. To verify the possible occurrence of unspecific 

binding of the Mabs 20H6 (IgGl) and 18G12 (IgG3) and 2F4 (IgG3), isotypes of 

IgGl and IgG3, FITC-conjugated, were tested. Pure suspensions of Xcc 367 and Xc 
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5040, and cabbage seed extracts containing mixed suspensions of Xcc 367 and Xc 

5040 were used. No cells were added to the control samples. FCM analysis detected 

no green fluorescence signal from the FITC-labeled IgGl and IgG3, showing that no 

unspecific binding occurred for all the samples tested, meaning that the Mabs applied 

in this study are specific for Xcc cells. 

Pathogenicity testing 

Xcc 367, 1279A and the X. campestris strains 5040 and 5053 were tested for 

pathogenicity in two susceptible cabbage cultivars, using two different methods of 

inoculation, stabbing with a toothpick and injecting with a syringe. Independent of the 

inoculation method used, Xcc 367 and Xcc 1279A produced on both cultivars 

systemic black discoloration of the veins after 7-10 days of inoculation, followed by 

appearance of leaf lesions and desiccation of the lesion tissue. X. campestris strains 

5040, 5053, and the water control did not show any symptoms on the cultivars tested. 

Table 1. Comparison of ELISA, flow cytometry, and immunofluorescence microscopy detection of 
Xanthomonas strains labeled with a mixture of Mabs (18G12, 2F4 and 20H6) FITC-conjugated. Xcc 
strains gave positive reaction and X. campestris strains negative reaction (non-pathogenic for cabbage). 

Xanthomonas 
strains 

367 
1279A 
5110 
5112 
5115 
5117 
5119 
5120 
5121 
5128 
5087 
5005 
5111 
5113 
5018 
5020 
5131 
5037 
5040 
5041 
5053 
5064 

Origin 

NCPPB 1645 
England 

Australia 
France 

unknown 
unknown 
unknown 
unknown 
unknown 
Australia 

Italy 
unknown 

Italy 
unknown 
unknown 
unknown 
unknown 

Italy 
Italy 
Italy 
Italy 
Italy 

*ELISA 

n.d. 
n.d. 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

FCM 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ 
+ 

IF 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
-
-
-
-
-
-
-
-
-
-

-
-

n.d. not determined; + 
*ELISA test was done 

= positive reaction; - = negative reaction 
by Bejo Zaden B.V., The Netherlands 
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Testing of various X. campestris strains by FCM and IF 

Eleven Xcc strains and 11 other X. campestris strains were tested for their reaction 

with Mabs 18G12, 2F4, and 20H6 in IF and FCM. The test results were also 

compared with results from ELISA done with the same set of Mabs, obtained from 

Bejo Zaden B.V., The Netherlands (Table 1). All Xcc strains showed a positive 

response in either method, whereas cells of the (non-pathogenic) X. campestris were 

not detected. 

Detection of Xcc by FCM in pure and mixed suspensions 

FCM and IF were used to identify and to quantify Xcc cells labeled with the FITC-

conjugated Mabs 18G12, 2F4 and 20H6 in pure suspensions and in suspensions 

containing a mixed population of Xcc 367 with Xc 5040 or Xc 5053. FCM analysis of 

pure suspensions of Xcc 367 showed a high intensity of the fluorescence signal (FL1) 

after labeling, whereas Xc strains 5040 and 5053 showed a low intensity of the 

fluorescence signal (FL1). In suspensions containing Xcc 367 and Xc 5040 or 5053, a 

high fluorescence signal was shown only by the labeled Xcc 367 cells (Fig. 1). 

b'm\ 

FL1 LOG FL1 LOG FL1LOG 

Fig. 1. Fluorescence intensity (FL1) of suspensions containing Xcc 367 (a) and / or 5053 
(b) cells labeled with a mixture of FITC-conjugated monoclonal antibodies (18G12, 2F4, 
and 20H6). A = 100% Xcc 367; B = 50% : 50% Xcc 367 and P5053; C = 100% P5053. 
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FCM analysis of pure suspensions of Xcc 367 (Table 2), showed that 96.6% 

(3.4 x 106 cells ml"1) of all events, background and cell counts, represented FITC-

labeled Xcc 367 cells. For Xc 5040 and Xc 5053, FCM analysis showed that 0.38 (6.7 

x 103 cells ml"1) and 0.28% (6.3 x 103 cells ml"1) of all events were labeled particles at 

the region were Xcc cells are suppose to be present, respectively. 

Table 2. Detection by FCM, IF, and plate counts of Xanthomonas strains labeled with a mixture of 
FITC-conjugated Mabs (18G12, 2F4, and 20H6), at a dilution of 1:100, in pure suspensions and in seed 
extract. Bacterial cells were added to and extracted from cabbage seeds. The initial O.D.620 = 0.35. 

Xc strains 
367 
5040 
5053 
367 + 5040 
367 + 5053 
SE control 
SE + 367 
SE + 5040 
SE + 5053 
SE + 367 + 5040 
SE + 367 + 5053 

FCM (cells ml"1) 
3.4 x 106 

6.7 x 103 

6.3 x 103 

1.5 xlO6 

1.4 xlO6 

3.9xlOJ 

6.1 xlO6 

5.2 xlO3 

5.2 xlO3 

2.6 x 106 

2.7 xlO6 

IF (cells ml"1) 
5.7 x 106 

0 
0 

3.7 xlO6 

3.2 x 106 

0 
6.5 x 106 

0 
0 

4.7 x 106 

4.2 x 106 

Plate counts (CFU ml"1) 
7.8 x 104 

6.8 x 104 

6.8 x 104 

8.2 x 104 

7.8 x 104 

0 
1.7 xlO5 

1.5 xlO5 

9.0 x 104 

9.6 x 104 

8.7 x 104 

SE = seed extract 

IF analysis showed that in mixed suspensions containing both Xcc 367 and Xc 

5040 or Xc 5053, the green fluorescence observed was from FITC-labeled Xcc 367 

cells, because Xc 5040 and Xc 5053 did not show fluorescence when analysed using 

IF microscopy. 

All tested Xanthomonas strains were detected after plating the suspensions on 

FS and NSCAA media. 

Detection of Xcc by FCM in artificially contaminated cabbage seed lots 

Bacterial suspensions containing Xcc 367 or mixed suspensions of Xcc 367 with 5040 

or 5053 were added to a healthy cabbage seed lot, which was then extracted and the 

extract incubated with a mixture of FITC-conjugated Mabs (18G12, 2F4 and 20H6) 

prior to FCM and IF analysis. FCM analysis of extracts containing Xcc 367 showed a 

high intensity of the fluorescence signal (FL1) and FCM could separate the target 

bacterium from the background, which contains non-labeled cells, other particles 

present in the samples, or non-specifically labeled particles (Fig. 2). Xc 5040 and 
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5053 showed a low intensity fluorescence signal, which was part of the background. 

IF analysis of the same extracts showed that only Xcc 367 cells were FITC-labeled. 

No fluorescent cells were observed in extracts containing pure suspensions of Xc 

5040 or 5053. No Xcc cells were detected in the control seed extract samples as 

shown by IF and plate counts. 

FCM and IF counts for all the samples tested were always higher than plate 

counts (Table 2), due to the fact that test methods applying Mabs do not discriminate 

between live and dead cells. 

B 

1 1 1 1 

FL1 LOG FL1 LOG FL1 LOG 

Fig. 2. Fluorescence intensity (FL1) of FITC-labeled Xcc cells in seed extracts artificially 
inoculated with pure suspensions of Xcc 367 (a) and / or 5053 (b). The pure suspensions 
were added to the cabbage seeds, extracted and incubated with the mixture of FITC-
conjugated monoclonal antibodies (18G12, 2F4, and 20H6). A = 100% Xcc 367; B = 
50% : 50% Xcc 367 and P5053; C= 100% P5053. 

Detection of Xcc in naturally contaminated cabbage seed lots 

Three naturally Xcc contaminated cabbage seed lots, with different levels of infection, 

were tested for the presence of Xcc cells applying the FCM technique in combination 

with FITC-conjugated Mabs (18G12, 2F4 and 20H6), and applying the plate count 

method (Table 3). FCM and the plate count method detected Xcc cells in all three 

samples tested. The number of Xcc cells detected by FCM and plate counts was 

proportional to the infection level of the seed lot (high, intermediate, and low), and it 
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was always higher in FCM than in plate counts. Antibody-labeled Xcc cells detected 

by FCM in naturally contaminated seed extract are shown in Fig. 3. 

Table 3. Comparison of FCM counts and plate counts of Xcc, for similar dilutions. Three naturally 
contaminated cabbage seed lots, varying in contamination level, were used. 

Level of Xcc 
in seed extracts 

High level 

average 

Intermediate level 

average 

Low level 

average 

Seed sub-samples 

1 
2 
3 

1 
2 
3 

1 
2 
3 

Flow counts 
(cells ml"1) 

1.0 xlO7 

0.9 x 107 

1.0 xlO7 

0.9 x 107 

1.3 xlO6 

0.5 x 106 

1.0 xlO6 

0.9 xlO6 

1.1 xlO5 

2.8 xlO5 

0.8 x 105 

1.6 xlO5 

Plate counts 
(CFU ml"1) 

4.8 x 10' 
5.1 x 103 

7.3 x 10' 
5.7 x 10' 

2.0 x 10' 
1.1 x lO' 
7.2 x 10' 
3.4 x 103 

1.5x10' 
0.7 x 10' 
1.9 xlO3 

1.4x10' 

Discussion 

The feasibility of applying the FCM technique in combination with Xcc-specific, 

FITC-conjugated Mabs (18G12, 2F4 and 20H6) for the detection and quantification of 

Xcc cells, especially in cabbage seed extracts, was shown in this study. The use of 

FCM in combination with the specific Mabs for the detection of Xcc strains 

performed well in pure as well as in suspensions containing both Xcc and non­

pathogenic strains. These results were also confirmed by the immunofluorescence 

microscopy analysis. FCM appears to be a faster method compared to IF and ELISA, 

because the analysis of each suspension could be performed in approximately 32 

minutes (incubation time and FCM analysis). FCM in combination with fluorescent 

monoclonal antibodies has also been shown to be a rapid and accurate method for the 

detection of specific Salmonella serotypes in pure suspensions. These analyses were 

performed within 30 minutes and the detection levels were found to be up to 104 cells 

ml"1 (McClelland and Pinder 1994a). 
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. . . / 

FL1 LOG FL1 LOG 

D 

FL1LOG FL1 LOG 

Fig. 3. Detection by FCM of Xcc cells (a) labeled with a mixture of Mabs 
(18G12, 2F4, and 20H6) FITC-conjugated in crude cabbage seed extract. A = 
Phosphate buffer (control); B = Seed extract, non-stained; C = Healthy seed 
extract, stained with Mabs; D = Xcc contaminated seed extract, stained with 
FITC-labeled Mabs. The arrow (a) indicates the population of Xcc cells. 

Cabbage seed extracts contain a variety of organisms, which may interfere in 

the sensitivity, accuracy, and reliability of the methods that are routinely applied for 

the detection of Xcc. FCM could rapidly detect and quantify antibody-labeled Xcc 

cells and distinguish them from other microbial cells or particles present in the seed 

extracts, based on the high intensity of green fluorescence of the FITC-labeled cells. 

McClelland and Pinder (1994b) also applied FCM in combination with fluorescent 

antibodies to detect Salmonella typhimurium in eggs and milk, and concluded that this 

technique offers advantages of speed and sensitivity for the detection of specific 

pathogenic bacteria in food. 
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The FCM technique has been proved to perform well in several areas such as 

in medical, veterinary, and environmental microbiology. In the field of plant 

pathology, this technique is new, and may be a powerful tool when used in 

combination with fluorescence probes technology. In this study, FCM in combination 

with specific FITC-labeled monoclonal antibodies was shown to be a rapid and 

quantitative technique for the detection and quantification of Xcc cells in crude seed 

extracts. Its reliability needs to be confirmed in future research by testing more seed 

lots and comparing it with currently accepted routine test methods. 
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Chapter 

General discussion 6 
Introduction 

The methods applied to test plants and seeds for contamination with plant pathogenic 

bacteria are usually based on plating assays or on serological techniques. The 

conventional plate count method is used routinely and allows isolation of the target 

bacteria by plating plant material (Shirakawa et al. 1991; De la Cruz et al. 1992; 

Goszczynska and Serfontein 1998) or seed washings on selective or semi-selective 

media (Schaad and Donaldson 1980; Randhawa and Schaad 1994; Chang et al. 1990; 

Chang et al. 1991), followed by identification. This is a time-consuming process 

(Lange et al. 1993; Plihon et al. 1995), taking from 2 days up to one or more weeks. 

Serological techniques can be performed in a shorter timespan than most plating 

assays, however, they do not discriminate between viable and non-viable cells (except 

for immunofluorescence colony-staining - IFC), are time-consuming and laborious. 

Flow cytometry (FCM) is a technique that has the ability to measure several 

parameters on thousands of individual cells within a few minutes. It also combines the 

advantages of microscopy and biochemical analysis in a single, highly sensitive 

technique for a rapid examination of numerous individual cells (Muirhead et al. 

1985). In the field of microbiology, flow cytometry has been applied to study bacterial 

cell cycle kinetics and antibiotic susceptibility (Steen et al. 1982), to enumerate 

bacteria (Pinder et al. 1990; Page and Burns 1991), to detect food-borne bacteria 

(McClelland and Pinder 1994a, 1994b), to distinguish between viable and non-viable 

bacteria (Diaper and Edwards 1994a, 1994b), to characterize bacterial DNA content 

(Allman et al. 1992; Christensen et al. 1993), and to characterize fungal spores 

(Allman 1992). Based on these successful examples, we decided to study the potential 

of FCM for the field of plant pathology. 

This thesis describes the development and application of a combination of 

flow cytometry and fluorescent probes technology to detect and to assess the viability 
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of plant pathogenic bacteria, in particular Clavibacter michiganensis subsp. 

michiganensis (Cmm) and Xanthomonas campestris pv. campestris (Xcc), in a rapid, 

reliable and accurate way. 

Assessment of the viability of bacteria applying flow cytometry, 

spectrofluorometry and fluorescent probe technology 

Viability is the capability of a cell to perform all the necessary functions for its 

survival under given conditions. For viable microorganisms to survive, it is necessary 

to have an intact cytoplasmic membrane, and to perform several activities including 

DNA transcription, RNA translation, enzyme activity, reproduction and growth. 

In this thesis, the viability of Cmm cells was first determined by measuring the 

intracellular pH (pHj„) as a parameter for viability (Chapter 2). This concept is based 

on the capability of a cell to maintain its pH gradient under conditions where the 

external pH is sub-optimal, i.e. pHjn higher than pHoUt. For Cmm, it was shown that 

when the pHjn drops to 5.5 or below, growth is inhibited. Therefore, viable Cmm cells 

should maintain their pHj„ above this pH value. Leuconostoc mesenteroides and 

Lactobacillusplantarum are not able to grow when their pHjn drops below 5.4 and 4.6, 

respectively (McDonald et al. 1990). The pHm of Cmm could be determined applying 

the fluorescent probe 5 (and 6-)- carboxyfluorescein succinimidyl ester (cFSE). cFSE 

is a pH-dependent fluorescent probe which has been applied successfully in pHjn 

measurements of several Gram-positive bacteria (Breeuwer 1996). cFSE forms 

conjugates with aliphatic amines (proteins) in the cell and is therefore better retained 

within the cell than non-conjugated probes such as carboxyfluorescein (cF) and 2', 7'-

bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) (Haughland 1996; 

Breeuwer et al. 1996). The pHj„ of Cmm cells exposed to acid treatments (0.1, 0.2, or 

0.6 mol 1" of HC1 for 1 hour) was determined using fluorescence spectrofluorometry, 

and for cells exposed to elevated temperatures (40, 45, or 50°C for 1 hour) the pHj„ 

was determined using fluorescence spectrofluorometry and flow cytometry. The 

viability of Cmm cells was affected when cells were treated with HC1; no pH gradient 

could be detected (pHjn = pH0Ut) probably due to a low esterase activity in the 

cytoplasm, or to an increased efflux of cFSE resulting from the cell membrane 

damage caused by the acid treatment. Concomitantly, only a small percentage of HC1-

treated cells (< 0.001%) could be recovered on plate. The spectrofluorometry 
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technique allows rapid measurement at the population level, however at least 10 

viable cells ml"1 were needed to be able to detect a pH gradient, i.e. to get a 

fluorescence signal of sufficient magnitude. This indicates that the sensitivity of the 

technique is rather low. The observed decrease in the ability of Cmm cells to maintain 

a pH gradient indicated that the temperature treatments affected the viability of Cmm 

cells, as confirmed by the decrease in the number of CFUs observed in a plate count 

assay. FCM analysis could distinguish populations of heat-treated and non-treated 

Cmm cells based on differences in the fluorescence ratios (pH gradients) after 

labeling with cFSE. FCM separated Cmm cells from the background by their side and 

forward scatter characteristics. From the FL1/FL2 dot plots, the ratio of the green and 

red signals (FL1/FL2) was calculated, and based on this ratio, the intracellular pH 

could be calculated. The heat-treated cells had a low fluorescence ratio (no pH 

gradient) and could not be recovered on plates, whereas the ratio of live cells was 

significantly higher (pH gradient present). In practice, tomato seeds are treated with 

hot water (Blood 1933; Shoemaker and Echandi 1976), hydrochloric acid (Jhyr et al. 

1973; Dhanvantari 1989), or sodium hypochlorite (Shoemaker and Echandi 1976) to 

erradicate Cmm cells. To test the efficacy of such treatments, the conventional plate 

count technique is used. However, this method is time-consuming. FCM in 

combination with cFSE showed to be a rapid and accurate technique to test the 

efficacy of hot water and HC1 treatments on the viability of pure cultures of Cmm. 

Now, the challenge is to detect Cmm cells in tomato seed extracts using the FCM 

technique in combination with FITC-conjugated antibodies, and consequently, to 

combine the detection and assessment of the viability in a single assay. 

The assessment of the viability of Cmm was also evaluated applying the 

enzyme activity fluorescent probes Calcein acetoxy methyl ester (Calcein AM) and 

carboxyfluorescein diacetate (cFDA), and the nucleic acid probe propidium iodide 

(PI), in combination with flow cytometry (Chapter 3). The use of FCM to distinguish 

between viable and non-viable bacteria after labeling with cFDA, Calcein AM or PI 

had been reported earlier for microorganisms in food, compost extracts and seawater 

(Diaper and Edwards 1994a, 1994b; Magarinos et al. 1997). In our study, heat-treated 

Cmm cells at 80°C for 30 minutes (non-viable) and non-treated (viable) cells were 

mixed in different ratios, 100/0, 80/20, 50/50, 20/80, and 0/100% respectively, to 

create populations varying in viability. The Cmm cells could be distinguished and 
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separated by FCM based on the fluorescence intensity of the cells after labeling with 

Calcein AM or cFDA (green fluorescence), or PI (red fluorescence). Non-treated cells 

showed relatively high green fluorescence levels (Calcein AM or cFDA), whereas 

damaged cells (heat-treated) showed high red fluorescence levels (PI). The cells were 

separated from the background by their side scatter characteristics. A good correlation 

was found between the percentage of viable Cmm cells and the FCM counts when 

cells were Calcein AM-stained. Surprisingly, these results differ from the results 

reported by Kaneshiro et al. (1993) and Diaper and Edwards (1994b). Their research 

showed the inability of Calcein AM to stain many yeast and bacterial cells, probably 

due to a poor accessibility of the cells for this dye. PI is not supposed to cross intact 

cell membranes (Alvarado-Aleman et al. 1996), but was in our study able to stain 18 

to 56% of non-treated Cmm cells when applied as a single stain. This confirmed the 

idea that PI is mainly a good indicator for damaged or dead cells. The plate counts 

showed that the recovery of Cmm cells in the presence of Calcein AM was higher 

than in the presence of cFDA. This indicates that cFDA affects the viability of the 

cells. Also, the sorting of cells labeled with cFDA showed that only 0.6 to 5% of these 

cells were able to form colonies after plating, whereas 42 to 65% of sorted Calcein 

AM-stained cells could form colonies. As expected, Pl-stained cells could not be 

recovered after plating. 

In conclusion, the application of flow cytometry in combination with 

fluorescent probes was shown to be a feasible technique for assessing the viability of 

a pure culture of Cmm cells when cells were labeled with cFSE or Calcein AM 

(Chapters 2, 3). 

Detection of plant pathogenic bacteria applying flow cytometry and 

fluorescent antibodies 

FCM was evaluated for the detection of Xcc cells labeled with FITC-monoclonal 

antibodies in pure suspensions, in mixed suspensions with the commonly occurring 

saprophytic bacterium Pseudomonas fluorescens (Psf), in the presence of other 

Xanthomonads, and in crude cabbage seed extracts, artificially and naturally Xcc-

contaminated. It was shown that the concentration of the FITC-labeled monoclonal 

antibodies (Mab) affected the sensitivity of FCM measurements. The concentration of 

Mab has also been reported to affect the sensitivity of serological techniques, such as 
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immunofluorescence microscopy (IF) (Franken 1992) and immunofluorescence 

colony-staining (IFC) (Van Vuurde 1997). This is based on the concept that the 

optimal concentration of the antibody is the one that gives the greatest discrimination 

between the positive cells (fluorescence staining-signal) and negative cells (non­

specific binding). In this study, no cross-reactions were observed with the common 

saprophyte Psf, independent of the ratio Xcc/Psf tested (Chapter 4), or other 

Xanthomonads added to the samples (Chapter 5). FCM was able to detect and to 

quantify Xcc cells labeled with FITC-monoclonal antibodies in artificially and in 

three naturally contaminated seed lots containing different levels of Xcc infection. 

FCM counts were higher than plate counts due to the fact that antibodies do not 

discriminate between viable and non-viable cells. The detection limit for Xcc cells 

labeled with FITC-monoclonal antibodies using the FCM method was 10 CFU ml" , 

while the detection of Salmonella spp. in pure cultures, or in a complex food matrix, 

was shown to be reliable down to the number of 104 cells ml"1 (McClelland and Pinder 

1994a, 1994b). The detection limit for plant pathogens in plant materials and 

environmental samples applying the conventional plating technique and the IFC 

method is limited to about 104 and 102 CFU ml"1, respectively (Van Vuurde et al. 

1995). However, both methods are laborious and time-consuming. In our study, FCM 

showed to be rapid, accurate, and is proposed to be a promising alternative method for 

the detection and quantification of Xcc cells in combination with Mabs. The only 

prerequisite for the use of antibodies is that no cross-reactions with other bacteria 

present in the sample occur. 

Future perspectives 

This thesis shows the potential of applying the FCM technique in the field of 

phytopathology, in particular in seed health testing. Because various economically 

important phytobacteria are seed-borne, seed industries have to test their seed lots for 

infection or contamination with bacteria. Plating assays are used routinely to detect 

and to assess the viability of the bacteria. Such assays take a long time and 

meanwhile, seed industries have to store the seeds before they can be processed and 

become available to the market. This results in a significant increase in costs. 

Therefore, a rapid, reliable and accurate method to detect and to assess the viability of 

plant pathogenic bacteria is highly desirable. Flow cytometry combined with 
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fluorescent probes technology may fulfill these requirements. The advantages and 

disadvantages of FCM compared to various methods are given in Table 1 for several 

parameters. 

Table 1. Advantages and disadvantages of current methods available to detect and to assess viability of 
plant pathogenic bacteria. 

Parameters 

Accuracy 
Reliability 
Sensitivity 
Specificity 
Cheapness 
Quickness 
Labor efficiency 

Simplicity 
Low need for technical 
service 

Low complexity of 
sample preparation / 
test performance 

Low skilled technicians 

Plate counts 

+ 
+ 

± 
+ 
++ 
-
-

++ 

-

+ 

IF 

± 
+ 
+ 
+ 
+ 

± 
± 

+ 

± 

+ 

ELISA 

+ 

± 
+ 

± 
+ 
+ 
+ 

+ 

+ 

++ 

PCR 

+ 
+ 
++ 
-

± 
+ 

± 

+ 

+ 

+ 

FCM 

+ 
+ 
+ 
+ 
-
++ 
++ 

± 

++ 

± 

++ = very high (very good); + = high; ± = moderate; - = low (bad) 
IF = immunofluorescence microscopy; ELISA = enzyme-linked immunosorbent assay; PCR = polymerase 
chain reaction; FCM = flow cytometry. 
The parameters were based on: 
Accuracy: precision of a test; Reliability: trustworthy; Sensitivity: the minimum amount of target 
detectable organisms; Specificity: degree of cross-reactivity; Cheapness: equipments and lab materials; 
Quickness: time required to perform the test; Labor efficiency: (++) = not much time of personal 
required; Simplicity: as described above. 

The detection of Xcc cells in cabbage seed extract was achieved applying 

FCM in combination with FITC-conjugated monoclonal antibodies. However, the 

FCM technique should also be evaluated for the detection of FITC-labeled Xcc cells 

after treatment of cabbage seed lots, e.g. with hot water, HC1 or chlorine, treatments 

applied to eradicate pathogens present. Maybe these treatments affect the surface 

properties of Xcc cells and consequently, may affect the interaction between 

antibody-cell and the FCM measurements. 
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FCM analysis showed that the intensity of fluorescence levels of FITC-labeled 

Cmm cells varied according to the amount of FITC-conjugated polyclonal antibodies 

that bound to the cells, making the measurement difficult to interpret. This problem is 

due to the variability of the morphology of Cmm cells, which vary considerably in 

shape and in size. However, the detection may be optimized by applying different 

antibodies or antibodies labeled with different fluorescent probes, or even in 

combination with viability staining. Since the latest generation flow cytometers are 

more sensitive and can measure three different fluorescence parameters, the right 

combination of labeled antibodies and fluorescent probes may achieve simultaneous 

detection and assessment of the viability of the cells in a single assay. 

The assessment of the viability of Xcc cells was evaluated applying FCM in 

combination with the enzyme activity probes Calcein AM and cFDA, and the nucleic 

acid probe PI. Although these probes were already proved to perform well to assess 

the viability of Gram-positive bacteria, attempts to stain Xcc, a Gram-negative 

bacterium, were unsuccessful; probably due to the double cell membrane of Xcc being 

impermeable to these dyes. Nowadays, new probes have been developed to assess the 

viability of Gram-negative bacteria, and these should be tested for Xcc. 

Unfortunately, flow cytometers are not simple instruments. As with all 

sophisticated measuring devices, it is important to have a basic knowledge of the 

underlying principles to enable a correct interpretation of the results. The quality of 

the sample preparation, the staining procedure, and the settings for the measurements, 

are as important for the precision and accuracy of the measurements as the design of 

the fluidic, optical, and electronic components of the instrument itself. Flow 

cytometers can also be equipped with flow sorting, which is used for identification 

and subsequent characterization of sub-populations of cells within mixed population. 

Flow sorting can separate positively stained cells from non-stained cells and it has the 

major advantage that any combination of analytical parameters can be used to set the 

criteria for sorting. Therefore, specialized technicians are needed for operational 

purposes. Nonetheless, FCM can be a feasible method for routine use to detect and to 

assess the viability of plant pathogenic bacteria. 
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Summary 

Summary 

Plant pathogenic bacteria cause major economic losses in commercial crop production 

worldwide every year. The current methods used to detect and to assess the viability 

of bacterial pathogens and to test seed lots or plants for contamination are usually 

based on plate assays or on serological techniques. Plating methods provide 

information about cell viability, but are generally laborious and time-consuming. 

Serological techniques, such as immunofluorescence microscopy (IF) and enzyme-

linked immunosorbent assay (ELISA), are much faster than most of the plating 

assays. However, they provide the user only with semi-quantitative information, 

which for various tests is not satisfactory, and they do not distinguish between viable 

and non-viable cells. Flow cytometry (FCM) is a rapid, reliable, and sensitive 

technique that has been successfully applied to detect and to assess the viability of 

several microorganisms in the field of veterinary science, medicine, and 

microbiology, and it could be worth exploring in the field of plant pathology. The 

research described in this thesis focused on the development of a rapid, reliable, and 

accurate method for the detection and assessment of viability of the seed-borne 

organisms Xanthomonas campestris pv. campestris (Xcc), the causal agent of black 

rot on cabbage, and Clavibacter michiganensis subsp. michiganensis (Cmm), the 

cause of bacterial canker of tomato, by applying fluorescent probes in combination 

with flow cytometry or spectrofluorometry. 

The viability of Cmm cells was first determined by measuring the intracellular 

pH (pHjn), as a parameter for viability, applying the fluorescent probe 5(and 6-)-

carboxyfluorescein succinimidyl ester (cFSE) in combination with fluorescence 

spectrofluorometry or flow cytometry (Chapter 2). The growth of Cmm cells in 

Glucose-Nutrient-Broth medium supplemented with potassium chloride in the 

absence and presence of the ionophore nigericin was evaluated to determine the 

minimum pHjn value at which cells are able to grow. In the presence of nigericin (0.1 

umol"1), which equilibrates the intracellular and the extracellular pHout (pHj„ = pHout), 

Cmm was not able to grow at pH 5.5 and below. Therefore, viable cells should 

maintain their intracellular pH above this pH value. The pHi„ of Cmm cells exposed to 

acid treatments, 0.1, 0.2 or 0.6 mol l"1 of HC1 for 1 hour, was determined using 
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fluorescence spectrofluorometry. In HC1 treated cells no pH gradient could be 

detected (pHj„ = pH0„t)- Fluorescence microscopy revealed that these cells were poorly 

labeled with cFSE, either due to a low esterase activity in the cytoplasm or due to an 

increased efflux of cFSE resulting from the damage caused by the acid treatment. The 

spectrofluorometry analysis for pHjn measurements was not able to detect the signal 

of these weakly stained cells and only a small percentage of HC1 treated cells 

(0.001%) could be recovered on plate. For cells exposed to elevated temperatures, 40, 

45 or 50 °C for 1 hour, the pHi„ was determined using cFSE in combination with flow 

cytometry and fluorescence spectrofluorometry. A good correlation (r2 > 0.80) was 

found between the number of colony-forming units per ml (CFU ml"1) determined by 

plate counting and the magnitude of the pH gradient (pHout - pH;n) determined with 

spectrofluorometry for the heat-treated populations. However, with the 

spectrofluorometry technique the analysis is based on the whole cell population and 

the sensitivity of this technique was found to be rather low. In our experiments, cell 

numbers of at least 107 CFU ml"1 were needed for the analysis. Using flow cytometry, 

which measures fluorescence intensity of individual cells, heat-treated and non-treated 

Cmm cells could be distinguished based on differences in the fluorescence ratios (pH 

gradients) after labeling with cFSE. From the FL1/FL2 dot plots the ratio of the green 

and the orange signals (FL1/FL2) could be calculated (after back transformation from 

log to linear mode). From this ratio the intracellular pH was calculated. The heat-

treated cells had a low fluorescence ratio (no pH gradient) and could not be recovered 

on plates, whereas the ratio of live cells was significantly higher (pH gradient 

present). The major advantages of flow cytometry when compared with 

spectrofluorometry were its sensitivity and speed, because the analysis could be 

performed in two hours. 

In Chapter 3, the fluorescent enzyme activity probes Calcein acetoxy methyl 

ester (Calcein AM) and carboxyfluorescein diacetate (cFDA), and the nucleic acid 

probe propidium iodide (PI), were evaluated for assessing the viability of Cmm cells 

when applied in combination with flow cytometry. Heat-treated (80°C for 30 minutes) 

and viable (non-treated) Cmm cells were mixed in different ratios, 100/0, 50/50, 

20/80, and 0/100% respectively, to create populations varying in viability. Non-

treated and heat-treated Cmm cells labeled with Calcein AM, cFDA, PI, or 

combinations of Calcein AM and cFDA with PI, could be distinguished based on their 
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fluorescence intensity in flow cytometry analyses. Non-treated cells showed relatively 

high green fluorescence intensity levels, as the result of staining with Calcein AM or 

cFDA. Once inside the cell, Calcein AM and cFDA are cleaved (hydrolysed) by non­

specific esterases to release fluorescein, a polar fluorescent compound which is 

retained inside the cells. Thus, the ability of the cell to accumulate fluorescein due to 

esterase activity is used as a parameter for viability. Damaged cells (heat-treated) 

showed high red fluorescence intensity levels, as the result of PI entering the cells 

with damaged cell membranes, intercalating into RNA and DNA. Flow cytometry 

allowed a rapid quantification and separation of viable Cmm cells labeled with 

Calcein AM or cFDA from heat-treated cells labeled with PI. The results showed a 

good correlation (r2 > 0.95) between the percentage of non-treated cells present in the 

samples and the flow cytometry counts for Cmm cells labeled with Calcein AM or 

cFDA. A linear relation (r2 > 0.80) was also found between the percentage of heat-

treated cells in the samples and the flow cytometry counts for Cmm cells labeled with 

PI. However, when PI was applied as a single stain, it was able to stain 18 to 56% of 

non-treated Cmm cells. These results suggest that PI cannot be considered a good 

viability indicator for viable Cmm cells when applied alone. However, itt was shown 

to be a good indicator for dead or damaged cells. Therefore, the application of flow 

cytometry in combination with fluorescent probes appears to be a promising 

technique for assessing viability of Cmm cells in suspensions when cells are labeled 

with Calcein AM or the combination of Calcein AM with PI. 

Flow cytometry was also evaluated for the rapid detection of Xcc cells labeled 

in pure suspensions and in suspensions containing mixtures of Xcc and the common 

saprophyte Pseudomonas fluorescens (Psf) with a specific FITC-labeled monoclonal 

antibody (Mab) (Chapter 4). The concentration of Mab affected the sensitivity of the 

flow cytometry measurements. This is based on the concept that the optimal 

concentration of Mab is the one that gives the greatest discrimination between the 

fluorescently stained target cells and cells stained as the result of non-specific 

binding. A limitation, however, is the concentration of target cells present in the 

samples. Xcc cells labeled with specific FITC-conjugated monoclonal antibodies 

could rapidly be detected at low numbers, i.e 10 colony-forming units per ml in pure 

suspensions and in suspensions containing both Xcc and saprophytic Psf cells. The 

detection limit for Xcc applying other serological techniques, such as 
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immunoflorescence microscopy (IF) and enzyme-linked immunosorbent assay 

(ELISA), is approximately 103 and 105 CFU ml"1, respectively. A good correlation (r2 

> 0.95) was observed between the flow cytometry counts and plate counts, although 

flow counts were always higher than plate counts due to the fact that antibodies do not 

discriminate between viable and non-viable cells. The number of Psf cells, relative to 

the number of Xcc cells, did not interfere, neither in the flow cytometry 

measurements nor in plate counts. Thus, flow cytometry in combination with Xcc 

specific FITC-labeled monoclonal antibodies may provide a novel tool for rapid 

detection and quantification of this plant pathogenic bacterium. 

In Chapter 5, the flow cytometry method applied to bacterial 

suspensions was evaluated as a tool for a rapid detection of Xcc cells, labeled with a 

mixture of three specific FITC-monoclonal antibodies (18G12, 2F4, and 20H6), in 

crude seed extracts. Flow cytometry allowed a rapid detection and quantification of 

Xcc cells labeled with FITC-monoclonal antibodies in both artificially and naturally 

Xcc-contaminated samples tested. Flow cytometry was able to detect the labeled Xcc 

cells in the seed extracts based on their high green fluorescence levels. No cross-

reactions were observed with related Xanthomonads or other microorganisms present 

in artificially contaminated samples. In conclusion, the application of the flow 

cytometry technique in combination with specific, FITC-labeled monoclonal 

antibodies was shown to be a rapid and reliable alternative for the detection and 

quantification of Xcc cells in seed extracts. 

The work described in this thesis showed that flow cytometry in combination 

with fluorescent probes can be a promising technique to detect and to assess viability 

of plant pathogenic bacteria. Nonetheless, the application of flow cytometry as a 

routine method to test seed lots or plants for contamination with bacteria has to be 

further explored, especially combining detection with viability assessment in the same 

assay. 
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Samenvatting 

Wereldwijd wordt jaarlijks grote economische schade geleden in de land-en tuinbouw 

als gevolg van ziekten veroorzaakt door plantpathogene bacterien. De huidige 

methoden om zaadmonsters of planten te testen op aanwezigheid van pathogene 

bacterien zijn meestal gebaseerd op uitplaatmethoden of serologische technieken. 

Uitplaatmethoden geven informatie over levensvatbaarheid van cellen, maar deze zijn 

gewoonlijk bewerkelijk en tijdrovend. Serologische technieken, zoals 

immunofluorescentie microscopie (IF) of de enzyme linked immunosorbent assay 

(ELISA), zijn veel sneller dan de meeste uitplaatmethoden. Ze geven de gebruiker 

echter alleen semi-kwantitatieve informatie, wat niet altijd bevredigend is voor een 

aantal testen. Evenmin kan er geen onderscheid gemaakt worden tussen levensvatbare 

en dode cellen. 

Flowcytometrie (FCM) is een snelle, betrouwbare en gevoelige methode welke met 

succes is gebruikt voor bepaling van aanwezigheid en levensvatbaarheid van diverse 

micro organismen in de veterinaire en medische wetenschap en de 

voedingsmicrobiologie, en zou tevens waardevol kunnen zijn in de 

plantenziektekunde. Het onderzoek in dit proefschrift richtte zich op de ontwikkeling 

van een snelle, betrouwbare en nauwkeurige methode voor detectie en bepaling van 

de levensvatbaarheid van de met zaad overdraagbare organismen, Xanihomonas 

campestris pv. campestris (Xcc), de veroorzaker van zwartnervigheid in kool, en 

Clavibacter michiganensis subsp. michiganensis (Cmm), de veroorzaker van 

bacteriekanker in tomaat, daarbij gebruik makend van fluorescente probes in 

combinatie met flowcytometrie of spectrofluorometrie. 

De levensvatbaarheid van Cmm cellen is in eerste instantie vastgesteld door het meten 

van de intracellulaire zuurgraad (pHin), als parameter voor levensvatbaarheid, met 

behulp van het fluorescente label 5- en 6-carboxyfluoresceine succinimidyl ester 

(cFSE) in combinatie met spectrofluorometrie en flowcytometrie (Hoofdstuk 2). Om 

te bepalen bij welke minimale pHj„ waarde Cmm cellen in staat waren te groeien 

werden deze gekweekt in aan-of afwezigheid van het ionofoor nigericine in glucose 

boullion medium met daaraan toegevoegd kaliumchloride. In aanwezigheid van 

nigericine (OJumoi"1), dat de intracellulaire en extracellulaire pHuit(pHin=pHUjt) in 
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evenwicht brengt, bleek Cmm volledig te worden geremd bij een intracellulaire pH 

van 5,5 of lager. Levensvatbare cellen dienen hun intracellulaire pH boven deze pH 

waarde te behouden. De pHi„ van Cmm cellen, blootgesteld gedurende 1 uur aan 0,1, 

0,2 of 0,6 mol" HC1, werd bepaald met behulp van fluorescentie spectrofluorometrie 

en van cellen blootgesteld aan verhoogde temperaturen (1 uur bij 40, 45 of 50 °C) 

met behulp van flowcytometrie en fluorescentie spectrofluorometrie. In cellen 

behandeld met HCL werd geen pH verschil gemeten (pHin=pHUit). Fluorescentie 

microscopie toonde aan dat deze cellen slechts geringe kleuring met cFSE gaven, 

enerzijds als gevolg van een lage esterase activiteit in het cytoplasma of als gevolg 

van een toegenomen uitlek van cFSE uit de cellen door schade ten gevolge van de 

zuurbehandeling. Met de spectrofluorometrie analyse voor de pHjn metingen was het 

niet mogelijk om deze zwak gekleurde cellen te meten; slechts een klein percentage 

met HCL behandelde cellen (0,001%) werd na uitplaten teruggevonden. De pHjn van 

cellen, blootgesteld aan verhoogde temperaturen van 40, 45 of 50 °C gedurende 1 uur, 

is gemeten met behulp van cFSE in combinatie met flowcytrometrie en fluorescentie 

spectrofluorometrie. Voor de hitte-behandelde populaties gemeten met 

spectrofluorometrie werd een goede correlatie (r2 > 0,80) gevonden tussen het aantal 

kolonievormende eenheden per ml (KVE ml"1) bepaald door uitplaten en de grootte 

van de pH gradient (pHUit -pHjn). Bij spectrofluorometrie is de analyse gebaseerd op 

populaties en is derhalve de gevoeligheid van deze techniek vrij laag. Hierdoor waren 

in onze experimenten voor de analyses op zijn minst 107 KVE ml"1 nodig. Gebruik 

makend van flowcytometrie, waarmee de intensiteit van fluorescentie gemeten wordt 

van individuele cellen, gaf het de mogelijkheid om na labeling met cFSE hitte-

behandelde van niet hitte-behandelde Cmm cellen te onderscheiden op basis van 

verschillen in van fluorescentieratios (pH gradienten). Aan de hand van FL1/FL2 dot 

plots kon de ratio van het groene en oranje signaal (FL1/FL2) worden berekend (na 

transformatie naar de log lineaire modus). Met behulp van deze ratio werd de 

intracellulaire pH berekend. De hitte-behandelde cellen hadden een lage 

fluorescentieratio (geen pH gradient) en konden niet worden teruggevonden na 

uitplaten terwijl de ratios voor levende cellen significant hoger waren (pH gradient 

aanwezig). De belangrijkste voordelen van flowcyrometrie in vergelijking met 

spectrofluorometrie bleken de gevoeligheid en snelheid, omdat de analyse in twee uur 

kon worden uitgevoerd. 
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In Hoofdstuk 3 zijn de fluorescente enzym actieve probes, calceine 

acetoxymethyl ester (Calceine AM), carboxyfluoresceine diacetaat (cFDA) en de 

nucleinezuur probe propidium jodide (PI), in combinatie toegepast om de 

levensvatbaarheid van Cmm cellen met behulp van flowcytometrie te evalueren. Om 

populaties te maken met verschillende verhoudingen levensvatbare en niet-

levensvatbare cellen zijn hitte-behandelde (80 °C, 30 minuten) en onbehandelde Cmm 

cellen gemengd in respectievelijk de volgende verhoudingen: 100/0, 50/50, 20/80, 

and 0/100%. Cmm cellen gelabeld met calceine AM, cFDA, PI, of andere combinaties 

van calceine AM en cFDA met PI, konden onderscheiden worden op basis van 

fluorescentie intensiteit in flowcytometrie analyses. Onbehandelde cellen gaven een 

relatief hoge intensiteit van groene fluorescentie als gevolg van de kleuring met 

calceine AM of cFDA. Als calceine AM of cFDA eenmaal in de eel aanwezig zijn 

dan worden deze gesplitst (gehydrolyseerd) door niet specifieke esterases waardoor 

fluorescine vrijkomt dat in de eel aanwezig blijft. Het vermogen van cellen om 

fluorescine op te hopen als gevolg van esterase activiteit wordt daarom als een 

parameter voor levensvatbaarheid gebruikt. Beschadigde (hitte-behandelde) cellen 

toonden een hoge intensiteit van rode fluorescentie door de kleuring met PI, dat in 

staat is om in cellen met beschadigde celmembranen binnen te dringen, waarna 

binding aan DNA en RNA plaatsvindt. Flowcytometrie maakte een snelle 

kwantificering en scheiding mogelijk van levensvatbare Cmm cellen welke gelabeld 

waren met Calcein AM of cFDA en van hitte-behandelde cellen gelabeld met PI. De 

resultaten gaven een goede correlatie (r2 > 0,95) tussen het percentage niet-

behandelde cellen aanwezig in de monsters en de flowcytometrie tellingen voor Cmm 

cellen gelabeld met Calcein AM of cFDA. Een lineare relatie (r2 > 0,80) werd ook 

gevonden tussen het percentage hitte-behandelde cellen in de monsters en in de FCM 

tellingen van Cmm cellen gelabeld met PI. Echter, indien PI als een enkelvoudige 

kleuring werd toegepast, dan werden nog 18-56 procent van de levensvatbare niet-

behandelde Cmm gekleurd. Deze resultaten suggeren dat PI geen goede indicator is 

voor levensvatbaarheid wanneer het als enkelvoudige kleuring wordt toegepast. 

Aangetoond is dat PI wel een goede indicator is voor dode of beschadigde cellen. De 

toepassing van flowcytometrie in combinatie met fluorescerende labels lijkt daarom 

een veelbelovende techniek voor de bepaling van de levensvatbaarheid van Cmm 
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cellen in suspensies na labeling met calceine AM of de combinatie van calceine AM 

met PI. 

Flowcytometrie is ook getoetst voor de snelle detectie van Xcc cellen welke 

waren gelabeld met een FITC-geconjugeerd monoclonaal antilichaam (Mab) in 

suspensies van reincultures en in suspensies die mengsels bevatten van Xcc en de 

algemeen voorkomende saprofiet Pseudomonas fluorescens (Psf) (Hoofdstuk 4). De 

concentratie van Mab had invloed op de gevoeligheid van de metingen in de 

flowcytometer. De optimale concentratie van Mab is de concentratie die het grootste 

onderscheid geeft tussen de gekleurde fluorescente doelcellen en cellen gekleurd als 

gevolg van niet specifieke binding. Een beperking is echter wel de concentratie van 

doelcellen die aanwezig zijn in een monster. Xcc cellen gelabeld met specifieke 

FITC-geconjugeerde monoclonale antilichamen kunnen snel worden gedetecteerd bij 

lage aantallen, d.w.z. 103 kolonievormende eenheden per ml in reincultures en in 

suspensies die zowel Xcc als Psf cellen bevatten. De detectielimiet voor Xcc bij 

toepassing van serologische technieken zoals immunofluorescentie microscopie (IF) 

of de enzyme-linked immunosorbent assay (ELISA), is respectievelijk 10 en 10 

KVE ml"1. Er werd een goede correlatie (r2 > 0.95) gevonden tussen flowcytometrie 

tellingen en het aantal gevonden kolonies na uitplaten hoewel de flowcytometrie 

resultaten altijd hoger uirvielen dan de tellingen na uitplaten. Dit lijkt het gevolg te 

zijn van het feit dat de antilichamen geen onderscheid maken tussen levensvatbare en 

niet-levensvatbare cellen. Het aantal Psf cellen ten opzichte van het aantal Xcc cellen 

had geen invloed op de flowcytometrie bepalingen en de tellingen na uitplaten. 

Flowcytometrie heeft derhalve in combinatie met Xcc-specifiek gelabelde FITC-

gelabelde (monoclonale) antilichamen potentie als methode voor snelle detectie en 

kwantificering van deze plantpathogene bacterie. 

In Hoofdstuk 5, werd de flowcytometrie methode geevalueerd als methode 

voor detectie van Xcc cellen in ruwe zaadextracten, dit na labeling met een mengsel 

van drie specifieke FITC-geconjugeerde monoclonale antilichamen (18G12, 2F4 en 

20H6). Flowcytometrie maakte een snelle detectie en kwantificering van Xcc cellen 

mogelijk in monsters welke natuurlijk of kunstmatig besmet waren met Xcc. Detectie 

van Xcc cellen in de zaadextracten was gebaseerd op hun sterke groene fluorescentie, 

die duidelijk te onderscheiden was van de achtergrond. Er werden geen kruisracties 

met verwante Xanthomonaden of andere micro-organismen waargenomen in 
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kunstmatig besmette monsters. Hieruit kan worden geconcludeerd dat de toepassing 

van de flowcytometrie in combinatie met specifiek FITC-gelabelde monoclonale 

antilichamen een snel en betrouwbaar altematief kan zijn voor de detectie en 

kwantificering van Xcc cellen in zaadextracten. 

Algemeen kan worden geconcludeerd dat flowcytometrie in combinatie met 

fluorescente probes een veelbelovende techniek is om plantpathogene bacterien aan te 

tonen en hun levensvatbaarheid vast te stellen. De toepasbaarheid van flowcytometrie 

als routine methode voor het testen van zaadmonsters of planten zal verder moeten 

worden onderzocht, met name de combinatie van detectie en bepaling van 

levensvatbaarheid in dezelfde test. 
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