

CARACTERIZAÇÃO TEMPORAL DO MUNICÍPIO DE CAMPINAS USANDO NDVI, NDBI E TEMPERATURA DA SUPERFÍCIE

LEANDRO P. SAIRAIVA¹; ADRIANA FANTINATI CONCEIÇÃO²; NILTON DE JESUS³, ANDRÉ LUIZ DOS SANTOS FURTADO⁴

Nº 12504

RESUMO

Este estudo tem por objetivo investigar, com o apoio de técnicas de sensoriamento remoto e com base na organização das UTBs (Unidades Territoriais Básicas) do Município de Campinas, as relações entre a temperatura da superfície (TS), o NDVI (índice da diferença normalizada da vegetação) e o NDBI (índice normalizado de diferença de construção) utilizando imagens Landsat 5 TM. As imagens do satélite Landsat 5 foram obtidas em agosto de 1996, 2003 e 2011. Considerando os três anos analisados, o NDVI médio do município aumentou significativamente de 0,18 em 1996 para 0,32 em 2003. Verificou-se redução significativa no valor médio do NDBI, que representou alteração acentuada no uso e na cobertura do solo entre 1996 e 2003 ou 2011. Os resultados identificaram uma relação negativa entre o NDVI e a temperatura da superfície e uma relação positiva entre o NDBI e a temperatura da superfície. Concomitantemente, demonstraram um padrão de ocupação do solo no sentido sul e noroeste do Município de Campinas.

ABSTRACT

This study aims to investigate, with the support of remote sensing techniques and based on the organization of UTBs (basic territorial units) in the city of Campinas, relationships between the surface temperature (TS), the NDVI (normalized difference vegetation index) and the NDBI (normalized difference built-up index) using Landsat 5 TM. We used Landsat 5 satellite imagery acquired on August 1996, 2003 and 2011. Considering the three years analyzed, the average municipal NDVI increased significantly from 0.18 in 1996 to 0.32 in 2003. There was a significant reduction in the average NDBI, representing a marked change in land use and cover between 1996 and 2003 or 2011. The results showed a negative relationship between NDVI and surface temperature and a positive relationship between NDBI and surface

¹Bolsista PIBIC-CNPq: Graduação em Geografia, PUC-Campinas, Campinas-SP, leandro.sairaiva@gmail.com.

²Bolsista DTI-CNPq, Embrapa Monitoramento por Satélite, Campinas-SP.

³Bolsista Pós Doutorado-CAPES, Embrapa Monitoramento por Satélite, Campinas-SP.

⁴Orientador: Pesquisador, Embrapa Monitoramento por Satélite, Campinas-SP.

temperature. Concomitantly, the results identified a pattern of land occupancy towards the south and northwest of the city of Campinas.

INTRODUÇÃO

O rápido processo de urbanização, decorrente do aumento populacional, acarreta a expansão das áreas edificadas nas cidades. Frequentemente, esse processo ocasiona uma drástica redução das áreas verdes, com o consequente aumento das superfícies impermeabilizadas.

O sensoriamento remoto representa uma valiosa ferramenta para estudos ambientais, pois permite realizarmos análises temporais e em diferentes escalas. Diversos estudos relacionaram os problemas urbanos com a definição de indicadores obtidos de imagens orbitais, como os índices de vegetação, índices de superfícies impermeabilizadas e a definição da temperatura de superfície a partir do espectro termal, permitindo a avaliação das "ilhas de calor urbanas" (WENG et al., 2004; YA et al., 2010; YUAN; BAUER, 2007; ZHANG et al., 2009).

Segundo Jensen (2009), desde a década de 1960, os pesquisadores vêm extraindo e modelando vários parâmetros biofísicos da vegetação por meio de dados do sensoriamento remoto, com destaque para os índices de vegetação que indicam parâmetros quantitativos e qualitativos da cobertura vegetal. Esses índices procuram maximizar as respostas de vegetação, normalização dos dados para minimizar efeitos da geometria de aquisição, interferência atmosférica, topografia e solos visando a análises mais consistentes.

O NDVI (Normalized Difference Vegetation Index, índice de vegetação por diferença normalizada) foi introduzido por Rouse et al. (1973) e explora a diferença entre as respostas espectrais no infravermelho próximo e no vermelho, e desde então tem sido amplamente empregado em estudos referentes ao comportamento espectral da vegetação (LYON et al., 1998; SCHLERF et al., 2005).

Com a urbanização, a paisagem natural é substituída por construções antrópicas (edifícios, ruas etc.), que alteram as características físicas da superfície terrestre, por exemplo, causando a variação da temperatura da superfície (XIAN; CRANE, 2006). Áreas urbanas normalmente apresentam maior poder de absorção da radiação solar e maior condutividade termal, o que torna o clima urbano mais quente quando comparado às áreas rurais circunvizinhas, dando origem ao efeito denominado ilha de calor (VOOGT; OKE, 2003). O crescimento urbano acelerado acentua o efeito

de ilha de calor, que pode influenciar a qualidade ambiental e o clima regional (CHEN et al., 2006).

Este estudo tem por objetivo investigar, com o apoio de técnicas de sensoriamento remoto, as relações entre temperatura da superfície (TS), NDVI e NDBI (índice normalizado de impermeabilização) utilizando imagens Landsat 5 TM.

MATERIAL E MÉTODOS

A área de estudo representa o Município de Campinas (SP), situado entre a zona de transição do Planalto Ocidental e a Depressão Periférica Paulista, que compreende uma área total de 795 km² e tem sua cobertura vegetal composta por vestígios de Mata Atlântica, resultado do acentuado desmatamento decorrente de seu processo de desenvolvimento (Figura 1). O clima predominante é o tropical de altitude, com médias anuais de temperatura em torno de 22 °C, com índice pluviométrico em torno de 1.430 mm ao ano.

Foram obtidas junto ao INPE (Instituto Nacional de Pesquisas Espaciais) três imagens do satélite Landsat 5 (Land Remote Sensing Satellite), sensor TM (Thematic Mapper), órbita 219, ponto 76, com resolução espacial de 30 m para as bandas 1, 2, 3, 4, 5, 7 e 120 m para a banda 6. As imagens correspondem aos dias 17/08/1996, 05/08/2003 e 11/08/2011, e foram escolhidas porque nessa época do ano observa-se reduzida cobertura de nuvens, o que favorece a obtenção e interpretação dos índices descritos.

Os processamentos foram realizados no SIG IdrisiTaiga. A correção atmosférica foi realizada usando o módulo ATMOSC/Cos(t), método desenvolvido por Chavez Junior (1996) e que incorpora todos os elementos da correção pelo pixel escuro (Dark Object Subtraction, DOS) (CHAVES JUNIOR, 1989). O produto do processamento é uma imagem em valores de reflectância (0 a 1).

O georreferenciamento foi realizado usando o módulo RESAMPLE e tomando como referência uma imagem do satélite Landsat 5 sensor TM com cena em 11/08/2011 disponível no site do United States Geological Survey (www.usgs.gov).

O NDVI introduzido por Rouse et al. (1973) tem sido amplamente empregado para mapear, quantificar e estimar a condição da cobertura vegetal e foi calculado a partir da fórmula descrita abaixo:

$$NDVI = (NIR - R) / (NIR + R)$$
(1)

Onde: NIR = infravermelho próximo (0,76 – 0,90 $\mu m)$ e R = vermelho (0,63 – 0,69 $\mu m).$

FIGURA 1. Localização da cidade de Campinas (SP).

Para o cálculo do NDBI foi utilizada a metodologia proposta por Zha et al. (2003) para a identificação de áreas construídas e, por conseguinte, impermeabilizadas. O NDBI é expresso pela seguinte equação e resultado da diferença normalizada entre as bandas 4 e 5 do Landsat ETM+:

$$NDBI= (MIR - NIR / MIR + NIR)$$
(2)

Onde: MIR = infravermelho médio (1,550 - 1,75 μ m) e NIR = infravermelho próximo (0,76 – 0,90 μ m).

Para a obtenção da temperatura de superfície, realizou-se primeiramente o cálculo da emissividade. De acordo Zhang et al. (2006), a partir da experiência de vários estudos e de características estatísticas de diferentes imagens, pode-se atribuir ao NDVI os valores de emissividade conforme a Tabela 1.

A imagem da emissividade foi carregada no módulo THERMAL/Other com a banda 6 do Landsat 5 TM após sua reamostragem para a resolução espacial de 30 m. Foram adotados os parâmetros *offset* e *gain* descritos no documento da imagem fornecido pelo INPE. As constantes de calibração K1 e K2 foram, respectivamente, $607,76 \text{ W/(m}^2 \text{ sr } \mu\text{m}) \text{ e } 1.260,56 \text{ °K}.$

Neste estudo, as UTBs (unidades territoriais básicas) foram utilizadas como unidades amostrais do Município de Campinas. Desse modo, foi calculado o valor médio de NDVI, NDBI e temperatura de superfície para cada UTB para cada imagem.

NDVI	EMISSIVIDADE (E)
-1 a -0,18	0,985
-0,18 a 0,157	0,955
0,157 a 0,727	1,0094 + 0,047 ln (NDVI)
0,727 a 1	0,99

RESULTADOS E DISCUSSÃO

Considerando os três anos analisados, o NDVI médio do município aumentou significativamente. O NDVI médio calculado foi 0,18 em 1966, alcançou 0,32 em 2003 e permaneceu igual em 2011. Esse fato indica ter havido aumento da cobertura vegetal no município, assim como de atividade fotossintética, o que representa aumento da biomassa vegetal (Tabela 2). Entretanto, a diferença observada neste estudo pode ser resultado de variações no regime pluviométrico, o qual possui forte influencia sobre o resultado do NDVI (WANG et al., 2003).

Verificou-se também redução significativa no valor médio do NDBI, resultado de alterações no uso e na cobertura do solo entre 1996 e 2003 ou 2011. A Tabela 3 apresenta a classificação do uso do solo das três imagens considerando três classes. Observou-se redução de 7% da classe Área impermeabilizada/Solo exposto e aumento da classe Vegetação densa entre os anos de 1996 e 2011.

A Figura 2 exemplifica a distribuição espacial das classes. Observa-se que a classe Área impermeabilizada/Solo exposto está concentrada na região central de Campinas, expandindo-se nas direções sul e noroeste. Por outro lado, a classe Vegetação densa é distinguida facilmente na região nordeste do município, a área de Proteção Ambiental de Campinas, formada pelos distritos de Joaquim Egídio e Sousas e pelos bairros de Carlos Gomes, Jardim Monte Belo e Gargantilha, que representa aproximadamente 30% da área do município. Manchas esparsas desta classe também são observadas em outras regiões.

A temperatura da superfície, com base nas imagens Landsat (Tabela 2), mostrou padrão distinto ao detectado para os dois índices medidos neste estudo. Entre 1966 e 2003, houve elevação acentuada na temperatura média em 3,6 °C, o que representa aumento próximo de 15%. Comparando-se os anos de 2003 e 2011, verificou-se redução não significativa nos valores de temperatura. É fato que a relação entre a temperatura real da superfície e a estimativa a partir de dados de sensoriamento remoto não é simples (QIN et al., 2001).

TABELA 2. Média do NDVI (índice de vegetação por diferença normalizada), do NDBI (índice normalizado de diferença de construção) e da temperatura de superfície (°C) calculados para as UTBs (unidades territoriais básicas) de Campinas.

		1996			2003			2011	
UTB	NDVI	NDBI	Т	NDVI	NDBI	Т	NDVI	NDBI	Т
01	0,242458	0,14982	21,62336	0,350482	0,038142	25,40889	0,435252	-0,02749	22,82897
02	0,286422	0,077504	20,88995	0,382585	-0,02535	24,04081	0,424746	-0,0539	22,9108
03	0,241006	0,129045	21,8987	0,334895	0,04454	26,20225	0,417058	-0,03714	24,4505
03A	0,312698	0,067454	19,74962	0,428116	-0,04011	23,19611	0,467226	-0,06892	22,54849
04	0,196063	0,119822	21,18564	0,339408	-0,0137	23,88665	0,346296	-0,01786	23,91824
05	0,182249	0,12577	21,54118	0,323022	-0,01077	23,75631	0,330222	-0,02194	23,61881
06	0,308679	0,037089	20,88523	0,438558	-0,07243	24,0226	0,381235	-0,02553	25,01406
07	0,253561	0,07373	20,28754	0,340026	-0,02301	24,3152	0,351156	-0,00689	23,44188
08	0,212801	0,121087	21,2141	0,317238	-0,01893	25,41305	0,395227	-0,04002	23,37543
09	0,176835	0,155399	22,48816	0,313223	-0,00114	25,66977	0,295519	-0,01812	24,5193
09A	0,27278	0,047264	21,00737	0,446119	-0,13846	23,22952	0,379381	-0,04292	24,7058
10	0,13354	0,151406	21,4698	0,265629	0,029825	25,11653	0,275396	0,019074	24,71563
10A	0,05784	0,186383	22,33231	0,236605	0,011875	26,32602	0,257666	0,0345	24,75073
11	0,122767	0,155736	22,07597	0,269356	0,018469	25,19093	0,26912	0,010426	24,95594
12	0.183635	0.110872	21,00067	0.321216	-0.01063	24,27311	0.336904	-0.01349	24,18035
13	0.109416	0.160921	21,96891	0.267992	0.018621	25.231	0.267577	0.00963	24,94469
14	0,242553	0,119878	21,5353	0,391691	-0,02223	24,49678	0,449019	-0,06581	22,31314
15	0.267353	0.079717	20.82126	0.402099	-0.05139	25,19945	0.47888	-0.09818	22,72444
16	0.123664	0.176138	20.23407	0.261691	0.040613	24,18984	0.251263	0.025895	23,28455
17	0.099897	0.17172	21,20749	0.236357	0.045585	24.73051	0.23506	0.036512	24.07413
18	0.104133	0.190678	20.23762	0.236264	0.058971	24.37781	0.22602	0.052947	23,73449
19	0.054284	0.186115	20.16978	0.187189	0.055772	24,12853	0.173619	0.052076	23.449
20	0.081147	0.176192	20.65341	0.226801	0.042486	24.7474	0.233213	0.032703	23.81999
21	0.26438	0.126583	20.44426	0.361205	0.016732	24.15352	0.454278	-0.06527	21.60248
21A	0.327045	0.044651	21.35713	0.422824	-0.0296	25.08769	0.487565	-0.09906	22.93238
22	0.261045	0.138943	21,50072	0.303362	0.042662	25.52285	0.365051	-0.02146	23,54387
22A	0.290046	0.111558	21,47311	0.374744	0.02691	24.64975	0.437394	-0.02571	22.7612
22B	0.291598	0.079707	19.50621	0.415988	-0.04363	23.51883	0.477066	-0.10988	21.3103
23	0.108403	0.168971	21.03496	0.251988	0.030839	25.06873	0.265102	0.018041	24.19155
24	0.177862	0.123997	20,93603	0.280517	-0.01779	23.62269	0.274984	-0.03805	23,48948
25	0.230023	0.108755	20.3983	0.336609	-0.02701	24.00668	0.348525	-0.04432	22.4336
26	0.146866	0.145874	20.67837	0.278413	0.021191	24.37283	0.287203	0.006715	23.78163
27	0.08864	0.168657	20.4909	0.225423	0.037326	24.27397	0.214064	0.029673	23.54305
28	0.097674	0.180286	20.12193	0.24641	0.054895	24.07782	0.239397	0.051164	23.41489
29	0.207908	0.145123	20.68515	0.323978	-0.00058	24.2128	0.355392	-0.02951	23.08175
30	0.053996	0.185144	20.72583	0.197393	0.052271	24.22242	0.175405	0.042277	23.88772
31	0.068672	0.164204	20.20799	0.210709	0.025314	23.58171	0.195999	0.013634	22.92791
32	0.116662	0.172381	20.74743	0.262644	0.035781	24.23655	0.256792	0.032109	23.77242
33	0.178921	0.132327	20.37133	0.331699	-0.01867	23,47297	0.323778	-0.01016	23.09453
34	-0.02178	0.226011	20,89067	0.11394	0.098503	24.47855	0.109734	0.087411	23,82906
35	0.066381	0.175625	20.12416	0.204354	0.042698	23,70592	0.209089	0.027612	22,78073
36	0.164542	0.138924	20,23061	0.299369	0.001947	23,11311	0.286871	0.003093	22,73567
37	0.295489	0.087578	20,56179	0.463809	-0.07869	22.9694	0.500142	-0.09981	21,74479
38	0.261473	0.086282	19.36468	0.427582	-0.083	22.07057	0.4476	-0.10069	20.94729
38A	0.20355	0.122596	20.45041	0.3782	-0.05514	22,79198	0.383011	-0.06799	22,16271
39	0.352042	0.048803	19,40081	0.553347	-0.14706	20.92723	0.529458	-0.12367	20,68681
40	0.258475	0.109935	19.86893	0.413101	-0.03906	22.09264	0.434328	-0.05858	21,60248
40A	0.288888	0.158966	20.6587	0.423596	0.034435	23,40819	0.413956	0.01042	22,9997
41	0,241976	0,127521	19,66916	0,417578	-0,04615	21,53226	0,454344	-0,0689	20,71979

42	0,371362	0,070957	18,96162	0,482813	-0,05644	21,51952	0,529302	-0,08186	20,33076
43	0,296037	0,120492	20,68915	0,407873	-0,00398	23,59983	0,44607	-0,03155	22,66441
44	0,08262	0,190444	21,27196	0,23455	0,058127	25,21678	0,213131	0,054112	24,71989
45	0,167055	0,167518	20,38504	0,311911	0,025457	24,02116	0,302588	0,019971	24,2291
46	0,189668	0,173261	21,05767	0,326927	0,02709	24,5234	0,327954	0,006139	24,09254
47	0,082129	0,16629	20,67083	0,242129	0,04556	24,66468	0,220712	0,042904	24,48489
48	0,133556	0,173737	20,63021	0,299639	0,032539	24,57877	0,281006	0,038816	24,61362
49	0,138927	0,151265	20,79091	0,292625	0,014927	24,70465	0,287262	0,008269	24,38672
50	0,114534	0,172751	19,85867	0,268604	0,037381	24,78507	0,274843	0,022782	24,07232
51	0,067223	0,191971	20,20012	0,246727	0,041306	24,45778	0,237107	0,043523	24,34257
52	0,141108	0,178837	20,45748	0,296038	0,033204	24,45065	0,308748	0,003098	23,66607
53	0,081958	0,23712	20,1236	0,22773	0,08446	25,44137	0,249632	0,065215	24,37967
54	0,216485	0,165074	19,87315	0,34065	0,032508	24,15395	0,378985	0,007787	22,85163
55	0,064877	0,192998	20,78915	0,206346	0,063596	24,93122	0,207653	0,052291	24,33509
56	0,050969	0,203188	20,12169	0,200984	0,069411	24,24162	0,187798	0,060303	23,60266
57	0,079449	0,19072	20,40769	0,218182	0,068457	24,4577	0,213988	0,06168	23,84557
58	0,132328	0,16296	20,32339	0,275532	0,027734	24,35829	0,259327	0,032194	23,66377
59	0,037787	0,201305	20,69784	0,18412	0,073252	24,58601	0,164741	0,063138	24,09182
60	0,10131	0,171301	20,42192	0,233378	0,043362	24,59211	0,223749	0,035234	23,93406
61	0,066778	0,195937	20,05598	0,208392	0,064965	24,25583	0,205996	0,057403	23,57845
62	0,18944	0,141678	20,40837	0,341034	-0,00324	23,42951	0,334501	-0,00526	23,08451
63	0,283745	0,109025	19,60423	0,414475	-0,03856	22,60532	0,421053	-0,0668	21,33278
64	0,253006	0,103072	20,12999	0,382316	-0,02739	23,06824	0,329287	-0,00301	23,64125
65	0,240367	0,122612	20,51206	0,353528	-0,00496	24,7559	0,357845	-0,02546	23,23052
65A	0,469567	-0,03885	18,63347	0,544791	-0,12399	22,16669	0,561815	-0,14752	21,01616
66	0,20012	0,139291	19,53918	0,333769	0,02322	24,33275	0,302324	0,031137	23,62565
66A	0,201487	0,152482	20,57873	0,298043	0,049823	25,20659	0,304163	0,042666	24,49127
67	0,22213	0,173719	19,75535	0,308599	0,034968	24,37366	0,278538	0,020547	23,1033

Nas três imagens analisadas, observou-se relação inversa entre o NDVI e a temperatura, com um aumento do coeficiente de correlação de 0,27 em 1996 para 0,69 em 2011 (Tabela 4). Áreas rurais ou urbanas com alto índice de cobertura vegetal em geral apresentam temperaturas mais amenas (WILSON et al., 2003; YUAN; BAUER, 2007).

Segundo Wilson et al. (2003), áreas urbanas mais impermeabilizadas e com reduzida vegetação apresentam maior temperatura que áreas periurbanas ou aquelas com maior cobertura vegetal ou presença de corpos d'água, que contribuem para atenuar a temperatura. Apesar de existir correlação positiva entre a quantidade de cobertura artificial da superfície e o efeito de ilha de calor, áreas urbanas arborizadas apresentam menor intensidade de ilha de calor que áreas urbanas não arborizadas ou menos arborizadas (SZEGEDI; GYARMATI, 2009). Nas áreas urbanas, a vegetação tem influência no vento, na temperatura, na umidade e na precipitação local. Em um planejamento urbano adequado, a vegetação (áreas verdes) pode ser usada para mitigar alguns dos efeitos antrópicos causados pelo crescimento de áreas urbanas (AVISSAR, 1996).

Classe	199	96	200	3	2011	
	ha	%	ha	%	ha	%
Área						
impermeabilizada						
Solo exposto	27.753	35	26.134	33	22.539	28
Vegetação esparsa	37.109	47	35.831	45	37.364	47
Vegetação densa	14.446	18	17.284	22	19.30	24

TABELA 3. Classificação do uso e da cobertura do solo do Município de Campinas.

FIGURA 2. Classificação do uso do solo do Município de Campinas.

TABELA 4. Relação da média do NDVI (índice de vegetação por diferença normalizada), NDBI (índice normalizado de diferença de construção) e temperatura de superfície (°C).

	Temperatura				
Índice	1996	2003	2011		
NDVI	-0,27	-0,60	-0,69		
NDBI	0,25	0,65	0,73		

De acordo com Zha et al. (2003), a definição de áreas construídas é obtida da subtração das imagens do NDBI–NDVI. Contudo, os limites que separam áreas construídas, solo exposto e áreas vegetadas são extremamente variáveis (LEE et al., 2011), o que dificulta essa operação. Portanto, é possível que tenha havido uma mistura espectral na definição de áreas construídas, principalmente por termos utilizado o sensor de baixa resolução do Landsat.

CONCLUSÃO

Apesar de haver demonstrado sua utilidade na identificação de padrões do uso do solo, este estudo apresenta algumas restrições. A primeira refere-se especificamente à limitação da resolução espacial do sensor do Landsat, que impede

uma análise mais detalhada de manchas de áreas construídas ou com vegetação. Outro ponto a considerar é a dificuldade em obter dados temporais da temperatura para avaliar efetivamente a estimativa feita a partir da imagem Landsat. Contudo, o uso de imagens de satélite para estimativas da temperatura tem sido recomendado, e as questões apontadas não interferem diretamente nos resultados obtidos, que identificaram relação negativa entre o NDVI e a temperatura da superfície e relação positiva entre o NDBI e a temperatura da superfície.

AGRADECIMENTOS

Os autores agradecem ao CNPq – PIBIC, à Embrapa Monitoramento por Satélite e à PUC-Campinas, pelo apoio para a realização desta pesquisa.

REFERÊNCIAS

AVISSAR, R. Potential effects of vegetation on the urban thermal environment. **Atmospheric Environment**, v. 30, n. 3, p. 437-448, 1996.

CHAVEZ JUNIOR, P. S. Image-based atmospheric corrections: revisited and improved. **Photogrammetric Engineering and Remote Sensing**, Bethesda, v. 62, p. 1025-1036, 1996.

CHAVEZ JUNIOR, P. S. Radiometric calibration of Landsat thematic mapper multispectral images. **Photogrammetric Engineering and Remote Sensing**, v. 55, p. 1285-1294, 1989.

CHEN, X.; ZHAO, H.; LI, P.; YIN, Z. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. **Remote Sensing of Environment**, v. 104, n. 2, p. 133-146, 2006.

JENSEN, J. R. **Sensoriamento remoto do ambiente**: uma perspectiva em recursos naturais. São José dos Campos, SP: Parêntese, 2009.

LEE, L.; CHEN, L.; WANG, X.; ZHAO, J. Use of Landsat TM/ETM+ Data to Analyze Urban Heat Island and Its Relationship with Land Use/Cover Change. In: INTERNATIONAL CONFERENCE REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING, 2011, Nanjing, China. **Proceedings...** Nanjing, China: Nanjing University of Information Science & Technology, 2011. p. 922–927, 2011.

LYON, J. C.; YUAN, D.; LUNETTA, R. S.; ELVIDGE, C. D. A change detection experiment using vegetation indices. **PE&RS**, v. 64, n. 2, p.143-150, 1998.

QIN, Z.; KARNIELI, A.; BERLINER, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. **International Journal of Remote Sensing**, v. 22, n. 18, p. 3719–3746, 2001.

ROUSE, J. W.; HAAS, R. H.; SCHELL, J. A.; DEERING, D. W. Monitoring vegetation systems in the great plains with ERTS. In: EARTH RESOURCES TECHNOLOGY SATELLITE-1 SYMPOSIUM, 3., Washington, D. C., 1973. **Proceedings...**

Washington, D. C.: NASA. Goddart Space Flight Center, 1973. v. 1, p. 309-317. (NASA SP-351).

SCHLERF, M.; ATZBERGER, C.; HILL, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. **Remote Sensing of Environment**, v. 95, n. 2, p. 177-194, 2005.

SZEGEDI, S.; GYARMATI, R. Impacts of Urban Green Spaces on the Spatial Structure of the Urban Heat Island in Debrecen and Different Sized Settlements in Its Neighbourhood. – Acta Climatologica et Chorologica Universitatis Szegediensis. v.42, p.151-158, 2009.

VOOGT, J. A.; OKE, T. R. Thermal remote sensing of urban climates. **Remote Sensing of Environment**, v. 86, n.3, p. 370–384, 2003.

WANG, J.; RICH, P. M.; PRICE, K. P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. **International Journal of Remote Sensing**, v. 24, n. 11, p. 2345-2364, 2003.

WENG, Q.; LU, D.; SCHUBRING, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. **Remote Sensing of Environment**, v. 89, n. 4, p. 467-483, 2004.

WILSON, J. S.; CLAY, M.; MARTIN, E.; STUCKEY, D.; VEDDER-RISCHD, K. Evaluating environmental influences of zoning in urban ecosystems with remote sensing. **Remote Sensing of Environment**, v. 86, n. 3, p. 303-321, 2003.

XIAN, G.; CRANE, M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. **Remote Sensing of Environment**, v. 104, n. 2, p. 147-156, 2006.

YA, M.; YAOQIU, K.; NINGSHENG, H. Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. **International Journal of Applied Earth Observation and Geoinformation**, v. 12, n. 2, p.110-118, 2010.

YUAN, F.; BAUER, M. E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. **Remote Sensing of Environment**, v. 106, n. 3, p. 375-386, 2007.

ZHA, Y.; GAO, J.; NI, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. **International Journal of Remote Sensing**. v. 24, n. 3, p. 583-659, 2003.

ZHANG, J.; WANGA, Y.; YAN, L. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band 6. **Computers & Geosciences**, v. 32, p.1796-1805, 2006.

ZHANG, Y.; ODEH, I. O. A.; HAN, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. **International Journal of Applied Earth Observation and Geoinformation**, v. 11, n. 4, p. 256-264, 2009.