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Abstract

Background: Tospoviruses (Genus Tospovirus, Family Bunyaviridae) are phytopathogens responsible for significant
worldwide crop losses. They have a tripartite negative and ambisense RNA genome segments, termed S (Small), M
(Medium) and L (Large) RNA. The vector-transmission is mediated by thrips in a circulative-propagative manner. For new
tospovirus species acceptance, several analyses are needed, e.g., the determination of the viral protein sequences for
enlightenment of their evolutionary history.

Methodology/Principal Findings: Biological (host range and symptomatology), serological, and molecular (S and M RNA
sequencing and evolutionary studies) experiments were performed to characterize and differentiate a new tospovirus
species, Bean necrotic mosaic virus (BeNMV), which naturally infects common beans in Brazil. Based upon the results,
BeNMV can be classified as a novel species and, together with Soybean vein necrosis-associated virus (SVNaV), they
represent members of a new evolutionary lineage within the genus Tospovirus.

Conclusion/Significances: Taken together, these evidences suggest that two divergent lineages of tospoviruses are
circulating in the American continent and, based on the main clades diversity (American and Eurasian lineages), new
tospovirus species related to the BeNMV-SVNaV clade remain to be discovered. This possible greater diversity of
tospoviruses may be reflected in a higher number of crops as natural hosts, increasing the economic impact on agriculture.
This idea also is supported since BeNMV and SVNaV were discovered naturally infecting atypical hosts (common bean and
soybean, respectively), indicating, in this case, a preference for leguminous species. Further studies, for instance a survey
focusing on crops, specifically of leguminous plants, may reveal a greater tospovirus diversity not only in the Americas
(where both viruses were reported), but throughout the world.
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Introduction

Tospovirus is the only plant-infecting genus of the family

Bunyaviridae and its members are responsible for significant quality

and yielding losses to crops worldwide [1]. The tospoviruses have

enveloped quasi-spherical particles and a tripartite negative and

ambisense RNA genome containing five open reading frames [2].

The genomic segments are denominated according to their size, as

S (Small), M (Medium) and L (Large). The S RNA encodes a non-

structural RNA-silencing suppressor protein (NSs) and the

nucleocapsid protein (N) [3,4]. The M RNA encodes a cell-to-

cell movement protein (NSm) and the envelope glycoproteins

precursor (GPp) [5,6]. The L RNA encodes an RNA-dependent

RNA polymerase (RdRp), also called L protein [7].

The tospoviruses are transmitted by thrips insects (Order

Thysanoptera) in a circulative-propagative manner [8,9]. Despite

the existence of more than 5,000 thrips species, only 14 species are

known as potential tospovirus vectors and most of them belong to

the genera Frankliniella and Thrips [10]. The Frankliniella genus is

neotropical with all but seven species considered endemic to the

New World [11], while the worldwide distributed genus Thrips has

no species native to South America [12]. Interestingly, the natural

distribution of these vector species is somewhere reflected in the

tospovirus phylogenetic relationships, with Fankliniella-transmitted

tospoviruses clustering in an ‘‘American lineage’’ and Thrips-

transmitted tospoviruses clustering in an ‘‘Eurasian lineage’’ [1].

Another evolutionary lineage is formed by two tospoviruses

isolated from peanut and transmitted by thrips from genus

Scirtothrips [13].

Recently, two new tospoviruses were described infecting

soybean (Glycine max (L.) Merr.) [14] and common bean (Phaseolus

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e38634



vulgaris L.) [15]; both of them clustered together and apart from the

other tospovirus lineages. While the soybean-infecting tospovirus

(Soybean vein necrosis-associated virus, SVNaV) genome has been

completely sequenced [14], only the RNA-dependent RNA

polymerase gene of the common bean tospovirus (Bean necrotic

mosaic virus, BeNMV) has been determined [15]. No biological

characterization has been reported for either virus. Therefore, we

carried out an extensive analysis of a BeNMV isolate, including

the study of its host range, symptomatology, serological differen-

tiation, and genome sequencing, revealing that, indeed, this virus

is a representative of a new evolutionary lineage within genus

Tospovirus.

Results and Discussion

Polyclonal antibodies against the nucleoprotein
discriminate BeNMV from other Brazilian tospoviruses

After nucleocapsid (N) purification from BeNMV-infected

Physalis pubescens L., a protein of approximately 29 kDa was

visualized by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE) (data not shown). Polyclonal antibodies

against this protein were produced in rabbits. The serological

differentiation performed through dot enzyme linked immuno-

sorbent assay (DOT-ELISA) revealed the presence of a distinct N

protein from four Brazilian tospoviruses: Tomato spotted wilt virus

(TSWV) [16], Tomato chlorotic spot virus (TCSV) [16], Groundnut

ringspot virus (GRSV) [16] and Zucchini lethal chlorosis virus (ZLCV)

[17] (Figure 1). A negligible cross-reaction was observed between

BeNMV and TSWV and GRSV, strengthening the idea that

BeNMV is a new Brazilian tospovirus. Usually, when polyclonal

antibodies against the N proteins are utilized, an expressive cross-

reaction is visualized between phylogenetically close species

[18,19], challenging the serological diagnosis.

BeNMV has a very limited host range by mechanical
inoculation

The BeNMV isolate was inoculated to 20 distinct plants,

including test-plants and some fabaceous plants to assess

transmission capacity by mechanical inoculation, host range

and symptomatology. Interestingly, only Phaseolus vulgaris cv.

Santana, Datura stramonium L. and P. pubescens exhibited systemic

symptoms post-inoculation (Table 1 and Figure 2). Specifically,

foliar deformation, interveinal chlorosis and stunting were seen in

P. vulgaris (Figure 2B). In D. stramonium the symptoms consisted of

mottling, necrotic lesions, foliar deformation and stunting

(Figure 2C), while P. pubescens plants exhibited mottling and

stunting (Figure 2D). To further confirm that BeNMV did not

replicate in other P. vulgaris varieties, a DOT-ELISA for

nucleoprotein detection was performed to evaluate systemic

infection, using both inoculated and upper leaves. Only P. vulgaris

cv. Santana was found positive (Figure S1). Seven out of twenty

tested plants reacted with local symptoms, which later did not

evolve to systemic infection (Table 1). Crucially, this limited host

range pattern is not observed in any other tospovirus species.

The transmission by mechanical inoculation of BeNMV proved

difficult, noticeable from its narrow host range. Despite the

transmission to P. vulgaris, its natural host, the field-observed

symptoms (Figure 2A) were not totally reproducible in greenhouse

and, just one of three common bean varieties, was susceptible after

many attempts. However, no transmission of a tospovirus to its

natural host by mechanical inoculation had been reported for

Alstroemeria necrotic streak virus (ANSV) [19]. For BeNMV, a

more efficient transmission could be performed by one or more

known thrips species. Alternatively, like ZLCV that has a peculiar

host range and exclusive vector [17,20], BeNMV could also have a

new thrips species as vector, which would be different from those

shared by other tospoviruses present in Brazil.

Figure 1. Serological differentiation between BeNMV and other Brazilian tospovirus species. A) Tospovirus-infected plant extract dots
incubated with anti-BeNMV. The plant hosts were Physalis pubescens to BeNMV and Datura stramonium to the others. The negative controls (C2) are
healthy P. pubescens and D. stramonium, respectively. B) Confirmation of the virus presence in the samples utilized and cross-reaction evaluation. The
dots in the first column are 1:100 dilutions (leaf mass per volume of 0.56 PBS (g/ml), while the second column are 1:1000 dilutions.
doi:10.1371/journal.pone.0038634.g001
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The difference between field symptoms and those observed

under greenhouse conditions may have originated from genotypic

differences between P. vulgaris collected in the field (cv. unknown)

and the cultivar ‘‘Santana’’. On the other hand, environmental

interferences cannot be discarded as having played a part in the

difference between symptoms. Furthermore, the allocated period

for observation may not have been sufficient for the development

of necrotic lesions.

The S and M RNA of BeNMV has the same genetic
organization as other tospoviruses

The S and M RNA sequences of BeNMV were obtained from

a cDNA library and by using degenerate and specific primers in

reverse transcription coupled with polymerase chain reaction

(RT-PCR) (Figure 3); in both cases cloning and automatic

sequencing followed. The S RNA of BeNMV had 2,584

nucleotides (nt) and two ORFs corresponding to the N and

NSs protein genes as in other tospoviruses. In the viral strand

sense, the N protein ORF started at nucleotide position 2,508

and terminated at nucleotide 1,696, resulting in an ORF of

813 nt. Its encoded protein had 270 amino acids (aa) and a

predicted molecular mass of 29.8 kDa. The NSs protein gene

started at nucleotide position 61 and terminated at nucleotide

1,380, generating an ORF of 1,320 nt. Its encoded protein had

439 aa and a predicted molecular mass of 49.2 kDa. The S RNA

presented 59UTR and 39UTR with 60 and 76 nt, respectively.

The two ORFs were separated by an A/U-rich (79.4%)

intergenic region (IR) of 315 nt, the second smallest among the

tospoviruses’ whose sequence is available (Table S1). The

nucleotide and amino acid sequences were deposited in GenBank

database under the accession number JN587268.

The M RNA had 4,886 nt and presented two ORFs

corresponding to the Gn/Gc glycoprotein precursor and NSm

protein genes as other tospoviruses. In the viral strand sense, GPp

gene started at nucleotide position 4,803 and terminated at

nucleotide 1,318, generating an ORF of 3,486 nt and 1,161 aa

with a molecular mass prediction of 130.7 kDa. The NSm protein

gene started at nucleotide position 65 and terminated at nucleotide

1,018, resulting in an ORF of 954 nt. Its encoded protein had

317 aa and a predicted molecular mass of 35.4 kDa. This NSm

protein was the longest among all tospoviruses with M RNA

sequenced (Table S1). The M RNA’s A/U-rich (82.6%) IR

presented 299 nt and the 59UTR and 39UTR with 64 nt and

83 nt, respectively. The nucleotide and amino acid sequences were

deposited in GenBank database under accession number

JN587269.

As observed in other tospoviruses [2], the S and M genomic

segments of BeNMV presented an ambisense configuration. Both

molecules showed higher proximity in their characteristics with

SVNaV [14]. Structural characteristics such as length of the

segments, open reading frames, and non-coding sequences, as well

as predicted molecular mass of their proteins are similar (Table

S1). For all S and M RNA encoded proteins, BeNMV showed

more identity with SVNaV (Table S2).

In the topologic characterization of Gn/Cc glycoproteins, six

putative N-glycosylation sites were predicted (Asn123, Asn207,

Asn320, Asn360, Asn521, and Asn1048), but no O-glycosylation site

was found. Similarly to other tospoviral GPp, two cleavage sites

were found. The first was predicted in the N-terminal region

between Leu20 and Asp21, after a putative signal peptide. The

second site was found between Ala468 and Met469, potentially

responsible for Gn and Gc processing. In general, three

transmembrane domains were predicted (297 aa to 319 aa,

326 aa to 348 aa, and 1075 aa to 1097 aa), but using an old

version of the TMHMM program, an additional two domains

were indicated (6 aa to 24 aa and 442 aa to 460 aa). In summary,

the glycoprotein precursor of BeNMV presented features observed

in other tospoviruses [21] and, therefore, functions related to

particle assemble and tospovirus-thrips interactions performed by

the glycoproteins could be extrapolated for this new species [22–

24].

Figure 2. Field and greenhouse BeNMV-caused symptoms. A) Phaseolus vulgaris showing mosaic necrotic in the field. B), C) and D) P. vulgaris
cv ‘‘Santana’’, Datura stramonium, and Physalis pubescens presenting systemic symptoms in greenhouse 4 days post-inoculation, respectively.
doi:10.1371/journal.pone.0038634.g002
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Concerning the L RNA sequence, we previously demonstrated

[15] that this genome segment of BeNMV presents similar

genomic organization to the RNA-dependent-RNA polymerase

genes of other tospovirus species characterized so far. However,

BeNMV L protein is unique, it has 2,932 aa and a molecular mass

of 335.9 kDa, being the largest RdRp for this genus at the present

date.

Phylogenetic analysis confirmed that BeNMV is, indeed, a
distinct tospovirus species

The nucleoprotein (N) is commonly used for taxonomic

classification [25–27] and new species should exhibit no more

than 89% amino acid sequence identity to another member of the

genus [2]. Therefore, to understand the evolutionary relationship

between BeNMV and other tospoviruses, a data set composed of

nucleoprotein sequences from distinct tospoviruses was collected.

Notably, the N protein pairwise comparison showed that BeNMV

differs from other tospoviruses from 17.2% to 52.2% (Table S2).

This degree of divergence is considerable higher than the

established threshold for new species acceptance (10%), confirm-

ing that BeNMV is a new tospovirus. Although we did not test all

known tospoviruses, the lack of serological cross-reactivity in

DOT-ELISA experiments (Figure 1) also supports this idea.

The maximum likelihood tree based on the N protein is shown

in Figure 4. As previously observed [13,15], the American and

Eurasian clades formed distinct monophyletic groups (bootstrap

values of 98 and 98, respectively), and the Peanut chlorotic fan-

spot virus (PCFSV) [28] and Groundnut yellow spot virus (PYSV) [29]

(divergent viruses isolated from peanut) formed a monophyletic

basal clade among tospoviruses. Crucially, the BeNMV was

related to SVNaV, forming a well-supported monophyletic clade

(bootstrap value of 93%), which was consistent with their pairwise

distances (Table S2). The phylogenetic trees estimated from Nss,

Nsm and Glycoprotein data sets are shown in Figure 4. Similarly,

BeNMV consistently clustered with SVNaV, suggesting that

reassortments were not involved in the origin of this BeNMV

isolate. Furthermore, a phylogenetic tree inferred from the

concatenated protein sequences (RdRp, N, NSs, NSm and

Glycoprotein) robustly supports the observed clades (Figure 5),

except for the PCFSV-PYSV clade, which was not included in this

analysis.

These results confirmed that BeNMV is particularly distinct

from other characterized tospovirus species, as previously suggest-

ed using only the RNA-dependent RNA polymerase (RdRp)

protein [15]. The correspondence between N and RdRp protein

phylogeny suggests that both genes can be used to understand the

phylogenetic relationships among tospoviruses, with the advantage

of using a more conserved region (RdRp) and, consequently,

simplifying the PCR-based strategies for detection of highly

divergent new viruses.

BeNMV-SVNaV clade is a novel evolutionary lineage
within the genus Tospovirus

The phylogenetic analysis (Figure 4 and Figure 5) also showed

that the BeNMV-SVNaV clade was almost equidistant between

the American and Eurasian lineages, suggesting that this clade

constitutes a novel evolutionary lineage within tospoviruses.

Importantly, when the PCFSV-PYSV clade was included in the

analysis (N and NSs protein phylogenies) the BeNMV-SVNaV

clade was more closely related to the American lineage (Figure 4).

To further confirm this finding, the likelihood of the N protein best

tree (lnL = 212018.58) (Figure 4) was compared to those estimated

from alternative trees, constraining the BeNMV-SVNaV clade to

be related to the Eurasian lineage (lnL = 212025.58) or to

PCFSV-PYSV clade (lnL = 212024.78). Each of these alternative

phylogenies was rejected with a Bayes factor above 5, further

corroborating the suggested shared ancestry between the BeNMV-

SVNaV clade and the American lineage. Altogether, these results

Table 1. Host range of BeNMV determined via mechanical
inoculation 4 days post-inoculation.

Plant host
Local
symptoms

Systemic
symptoms

Chenopodiaceae

Chenopodium amaranticolor NL -

Chenopodium quinoa NL -

Chenopodium murale NL -

Cucurbitaceae

Cucurbita pepo CS -

Fabaceae

Phaseolus vulgaris ‘‘Manteiga’’ - -

Phaseolus vulgaris ‘‘Santana’’ - St, IC, FD

Phaseolus vulgaris ‘‘BT2’’ - -

Vigna angularis - -

Vigna unguiculata - -

Solanaceae

Capsicum annuum - -

Capsicum chinense - -

Datura metel NL -

Datura stramonium - NL, Mo, FD, St

Solanum lycopersicum - -

Nicandra physaloides - -

Nicotiana benthamiana - -

Nicotiana rustica - -

Nicotiana tabacum Samsun NL, VC -

Nicotiana tabacum TNN NL -

Physalis pubescens CS Mo, St

CS chlorotic spots; FD foliar deformation; IC interveinal chlorosis; Mo mottling;
NL necrotic lesion; St Stunting; VC vein chloros.
doi:10.1371/journal.pone.0038634.t001

Figure 3. Cloning strategies for S and M RNA sequencing. The
arrows indicate the primers’ annealing positions. The dotted line shows
the sequence obtained by cDNA library methodology.
doi:10.1371/journal.pone.0038634.g003
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Figure 4. Phylogenetic relationships of Tospovirus species inferred using S and M RNA-encoded proteins. The trees were inferred with
the maximum likelihood criterion implemented in the program RAxML. Node support was evaluated using non-parametric bootstrap resampling (500
replicates) and values are shown for key nodes. The BeNMV-SVNaV clade is shown in red. The shaded areas in purple, green and red represent the
‘‘Eurasian’’, ‘‘American’’ and PCFSV-PYSV clades, respectively. Tree inferred using N protein alignment: 23 taxa and 217 amino acids. Tree inferred
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support the notion that BeNMV-SVNaV clade is, indeed, the

fourth clade of the genus Tospovirus.

This finding could have implications for tospovirus diagnosis

and crop production. First, the available diagnostic reagents for

tospoviruses, such as polyclonal serum and degenerated primers,

might not detect viruses belonging to this new clade. Actually,

several previously described primers designed for N gene

amplification were not capable to detect BeNMV (data not

shown), including those described for SVNaV [14]. Second, based

on the diversity of the American and Eurasian clades, more species

related to BeNMV-SVNaV clade probably remain to be

discovery, increasing their economic impact on agriculture.

Evidence of episodic diversifying selection in the
branches leading to BeNMV-SVNaV clade and the
American clade

Intriguingly, both BeNMV and SVNaV were isolated from

common bean and soybean, respectively, which may indicate

that viruses of this clade preferentially infect plants of the

Fabaceae family, similar to the PCFSV-PYSV clade [28,29]. In

fact, if the different viral proteins were evolving in response to

plant or insect host specificity, an increase in the ratio of non-

synonymous (Ka) to synonymous substitutions (Ks) would be

expected on those nodes leading to the different lineages.

Therefore, a random effects branch-site model [30] was

implemented in order to detect lineages on which a proportion

of sites has evolved under positive selection. We found evidence

of episodic diversifying selection only in the Nsm and RdRp

datasets, along the branches leading to (i) the BeNMV-SVNaV

and the American clade, to (ii) the BeNMV-SVNaV clade and to

(iii) the American clade (Figure 6). It is hard to determine the

biological constraints responsible for these events. Particularly,

the occurrence of diversifying selection does not seem to be

correlated with the width of plant host range. However, when we

analysed viral vector host range it was possible to observe that

the American clade is transmitted by several species of

Frankliniella genus (at least 7), while those viruses from the

Eurasian clade are predominantly transmitted by only two

species of Thrips genus [13]. It is important to stress that

sequence divergence is expected to influence the power of the

branch-site tests because many synonymous sites might be

saturated [31]. However, our results are reinforced by experi-

mental data showing that both NSm and RdRp proteins are

known to interact with the plant and insect restriction factors

[32,33], suggesting a classic evolutionary arms race. Actually, one

of these studies showed that positive selection on the NSm

protein was implicated in the tomato Sw-5 gene resistance

breaking by TSWV [32].

Materials and Methods

Virus isolates, Host range and Symptomatology
The BeNMV isolate was isolated in São Paulo State in Brazil

[15] and maintained in P. pubescens by mechanical inoculation

[34]. The other tospovirus isolates (TSWV, TCSV, GRSV and

ZLCV) were maintained in D. stramonium. In order to determine

using the NSm protein alignment: 18 taxa and 291 amino acids. Tree inferred using the NSs protein alignment: 21 taxa and 391 amino acids. Tree
inferred using the Glycoprotein alignment: 18 taxa and 1007 amino acids. Tree inferred using the RdRp protein alignment: 14 taxa and 2811
amino acids. The complete viral names are found in the Table S2.
doi:10.1371/journal.pone.0038634.g004

Figure 5. Phylogenetic relationships of Tospovirus species inferred using a concatenated dataset (N, NSs, NSm, Glycoprotein and
RdRp). The tree was inferred with the maximum likelihood criterion implemented in the program RAxML. Node support was evaluated using non-
parametric bootstrap resampling (500 replicates) and values are shown for key nodes. The tree is mid-point rooted for purposes of clarity. The
BeNMV-SVNaV clade is shown in red and the previously described lineages are highlighted. The data set includes 14 taxa and 4721 amino acids.
doi:10.1371/journal.pone.0038634.g005
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host range and symptoms, several plant species (Table 1) were

mechanically inoculated with BeNMV. The plants were main-

tained in greenhouse and the onset of symptoms was observed up

to four weeks post-inoculation.

Virus purification and serology
Three weeks post mechanical inoculation, ribonucleocapsids

were purified from 100 g of infected P. pubescens leaves following

the protocol described by De Àvila et al. [34]. The purified

ribonucleocapsids were injected in rabbits for polyclonal antibody

production against N protein as described [34]. The serological

differentiation was performed through DOT-ELISA between

BeNMV and four tospovirus species found in Brazil (TSWV,

TCSV, GRSV, and ZLCV) [16,17]. The antisera to other

tospoviruses were kindly supplied by Embrapa Vegetables

(Brazil).

RNA extraction and sequencing
Genomic RNA was extracted from BeNMV’s ribonucleocap-

sids. For each 250 mL of sample were utilized 750 mL of Trizol LS

(Invitrogen) following the manufacturer’s recommendations. To

determine the S and M RNA sequences two procedures were

adopted. The first was the construction of a cDNA library using

Universal Riboclone cDNA Synthesis System Kit (Promega). By

this method, only the BeNMV’s RNA-dependent RNA polymer-

ase [15] and a truncated version of the glycoprotein precursor

nucleotide sequences were obtained. Then, RT-PCR was

performed to clone the remaining parts of the genome. Initially,

J13 and UHP primers were utilized as described [25], where the

latter was used for first-strand cDNA synthesis. Specific primers

were then designed to complete the S and M RNA nucleotide

sequences. The primer BeNMV-N-F2 (59CTTCTGATGA-

CAAGCTGCAAGGTA39) and J13 were used to amplify the

end of NSs open reading frame (ORF) and the remainder of S

RNA. The primers BeNMV-IRM-F1 (59GGCTGCAATAGAT-

GAAGAGAATGAA39) and BeNMV-IRM-R1

(59GCCCTTTTGATTCTGTTATGACTTG39) were used to

amplify the end of Gn/Gc glycoprotein precursor ORF and M

RNA intergenic region. The Figure 3 illustrates the cloning

strategies for S and M RNA sequencing. M-MLV Reverse

Transcriptase (Promega) was used for RT reactions and Platinum

Taq DNA Polymerase (Invitrogen) was used for PCR. All

procedures followed the manufacturer’s instructions. All cDNA

fragments were cloned in pGEM-T easy (Promega) and sequenced

by chain-termination method using an automatic sequencer by

Macrogen Corporation, Seoul, Korea. Sequence data were edited

and assembled with Staden Package program [35].

In silico analysis
N-glycosylation, O-glycosylation, and cleavage sites predictions

were performed by NetNGlyc 1.0 Server, NetOGlyc 3.1 Server

[36], and SignalP 3.0 [37], respectively. For transmembrane

domain prediction was utilized the TMHMM Server 2.0 program.

Evolutionary Analyses
All available tospovirus genome sequences were downloaded

from GenBank: SVNaV (HQ728387, HQ728386), ANSV

(GQ478668), CSNV (AF067068, AB600873, AF213675,

AB274026), GRSV (AF513219, AY574055, AF513220), INSV

(NC_003624, NC_003616), MeSMV (EU275149), TCSV

(AF282982, AY574054, AF213674), TSWV (NC_002051,

NC_002050), ZLCV (AF067069, AB274027, AF213676), CaCV

(DQ256133, DQ256125), CCSV (AY867502, FJ822961), GBNV

(NC_003619, NC_003620), IYSV (AF001387, AF214014),

MYSV (NC_008300, NC_008307), PolRSV (EF445397,

EU271753), TNRV (FJ489600, FJ947152), TYRV (AY686718),

TZSV (NC_010489, NC_010490), WBNV (GU584184,

GU584185), WSMoV (NC_003843, NC_003841), PCFSV

(AF080526), and PYSV (AF013994). The complete viral names

are available in Table S2.

The RNA coding sequences were aligned based on its

corresponding amino acid translation using the software Muscle

[38] implemented in TranslatorX web server [39]. The resulting

alignments were inspected by eye and manually edited using Se-Al

(v2.0a11 Carbon, http://tree.bio.ed.ac.uk/software/seal/), and all

gap-containing sites were excluded. The level of substitution

saturation was checked using Xia et al. (2003) [40] method

implemented in DAMBE [41]. The third codon position of all

alignments were saturated or nearly saturated (data not shown),

therefore, phylogenetic trees were based on protein sequences

alignments. The resulting data sets (available upon request) of 23

taxa for the N protein (217 amino acids, aa), 21 taxa for the NSs

protein (391 aa), 18 taxa for the NSm protein (291 aa), 18 taxa for

the Glycoproteins (1007 aa), 14 taxa for the RdRp protein

(2811 aa). We also constructed a concatenated alignment of all

proteins (N, NSs, NSm, Glycoproteins and RdRp) with 14 taxa

Figure 6. Episodic diversifying selection detected on NSm and
RdRp alignments. Each tree is scaled on the expected number of
substitutions/nucleotide. The hue of each color indicates strength of
selection, with red corresponding to dn/ds .5, blue to dn/ds = 0 and
grey to dn/ds = 1. The width of each color represents the proportion of
sites in the corresponding class. Thicker branches have been classified
as undergoing episodic diversifying selection (p.0.05).
doi:10.1371/journal.pone.0038634.g006
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(4721 aa). The phylogenetic relationships among the tospoviruses

were inferred using maximum likelihood (ML) criterion imple-

mented in RAxML [42], using the RAxML BlackBox web-server

at CIPRES [http://www.phylo.org] [43]. The most appropriate

model of protein evolution was selected with the software ProTest

[44]. Node support was determined using non-parametric

bootstrap resampling (500 replicates). The marginal likelihood of

alternative topologies estimated using MrBayes 3.2 [45] were

compared using Bayes factor. A log difference in the range of 3–5

is typically considered strong evidence in favor of the better model,

while a log difference above 5 is considered very strong evidence

[46]

The selection analyses were performed using the random effects

branch-site model [47] available in www.datamonkey.org [48].

This method can identify branches in a tree with evidence of

episodic diversifying selection. Therefore, each nucleotide align-

ment (N, NSs, NSm, Glycoproteins and RdRp) was submitted to

the Datamonkey webserver.

Supporting Information

Figure S1 DOT-ELISA for BeNMV nucleoprotein detec-
tion in Phaseolus vulgaris varieties. Polyclonal antibody

against BeNMV nucleoprotein was used. A. Extract of inoculated

leaves. B. Extract of upper leaves (not mechanically inoculated).

Uninfected P. vulgaris was used as negative control (C2). Infected

Physalis pubescens was used as positive control (C+). The dots are

1:100 dilutions (leaf mass per volume of 0.56 PBS (g/ml).

(DOCX)

Table S1 Characteristics of the S and M RNA for the
avaiable tospoviruses.
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Table S2 Sequence identity comparison (%) of BeNMV
proteins from S and M RNA.
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