CARACTERISTICAS QUÍMICAS DE UM NEOSSOLO LITÓLICO EM ÁREA DEGRADADA EM GILBUÉS, PIAUÍ

Marcos Emanuel da Costa Veloso (Embrapa Meio Norte, marcos@cpamn.embrapa.br); Edson Cabral da Silva (CENA/USP, ecsilva@cena.usp.br); Luiz Fernando Carvalho Leite (Pesquisador - Embrapa Meio Norte, luizf@cpamn.embrapa.br); Flávio Favaro Blanco (Embrapa Meio-Norte, flavio@cpamn.embrapa.br); Agenor Francisco Rocha Júnior (Mestrando do Curso de Pós-Graduação em Agronomia - UFPI, agenorrochabsbpi@hotmail.com); Wanda Daiane da Conceição Santos (Centro de Ciências Agrárias - UFPI, wandaiane@hotmail.com).

Palavras Chave: Jatropha curcas L.; desertificação; erosão; meio ambiente.

1 - INTRODUÇÃO

A região Sudoeste do Piauí possui a principal área em degradação do Estado, abrangendo sete municípios, dos quais o mais atingido é de Gilbués, com cerca de 7.694 km² (Sales, 1998; IBGE, 2004). Dentre s os fatores que contribuíram para esta realidade, destacam-se a gênese do solo, o desmatamento desordenado, o uso freqüente do fogo, o superpastejo, o garimpo de diamante e a alta susceptibilidade do solo à erosão hídrica.

Nestas áreas, predominam os solos Neossolos Litólicos eutróficos, via de regra, apresentando voçorocas e outras formas de erosão. Estes solos são pouco evoluídos, desprovidos de horizonte "B" diagnóstico, rasos que ocorrem, geralmente, afloramentos de rocha, em áreas com relevo que varia desde suave-ondulado até montanhoso, sob diversos tipos de vegetação, tais como, cerrado caatinga, floresta e suas transições (Leite et al., 2006). Pelo atual Sistema Brasileiro de Classificação de Solos (Embrapa, 2006), os Neossolos englobam os antigos Solos Aluviais, Solos Litolicos, Regossolos e Areais Quartzosas (Siqueira, 2007). A qualidade do solo, pode ser caracteriza pela sua produtividade biológica, a qualidade ambiental e a vida e animal saudável na face da terra.

Nesta região, são poucas as informações cientificas e/ou técnicas sobre ações agronômicas relativas às caracterizações químicas dos solos, em diferentes profundidades, com a finalidade de buscar alternativas de controle do processo de degradação, tampouco, de recuperação das áreas já degradadas e/ou estacionar a expansão do processo de degradação. O conhecimento das quantidades de nutrientes disponíveis no solo é indispensável para orientar práticas conservacionistas de correção e adubação, especialmente nas ações de fixação de carbono por meio da revegetação da região utilizando-se pinhão-manso e gramíneas.

Por causa do avanço dessas áreas degradadas no estado do Piauí, há necessidade de melhor se conhecer as bases cientificas e técnicas para o manejo de nutrientes em busca por ferramentas capazes de indicar as alterações da qualidade do solo e contribuir para o desenvolvimento sustentado dessas áreas degradadas no estado.

Neste sentido, o presente trabalho teve por objetivo caracterizar quimicamente um Neossolo Litólico eutrófico degradado, com afloramento de rochas, cultivado com pinhão-manso e gramíneas, no município de Gilbués, Piauí.

2 - MATERIAL E MÉTODOS

Este trabalho foi realizado no município de Gilbués (9° 45' 55" S e 45° 21' 00" W), região Sudoeste do estado do Piauí, em uma área de relevo suavemente ondulado, com cerca de quatro hectares, ilhado por voçorocas, denominado pelos nativos da região, de "malhada". O seu uso atual é com bovinocultura de corte, geralmente, no período chuvoso.

O clima da região é do tipo Aw no sistema de classificação de Koppen, com temperatura média anual de 26,5°C, precipitação pluvial anual de 1200 mm, com estação chuvosa nos meses de outubro a abril, sendo o trimestre mais chuvoso concentrado entre janeiro e março (Medeiros, 2006).

O solo é um Neossolo Litólico eutrófico, com afloramento de rochas, denominada na região como área de "malhada". O seu uso atual é com bovinocultura de corte, geralmente, no período chuvoso.

As amostras de solos para avaliações dos atributos químicos foram realizadas antes da instalação de um trabalho de pesquisa com pinhão-manso e gramíneas, em novembro de 2009. A área amostrada foi dividida em quatro talhões: Talhão 1: um hectare plantado com pinhão-manso; Talhão 2: um hectare plantado com pinhão-manso e *Brachiaria decumbens*; Talhão 3: um hectare com pinhão-manso e *Brachiaria brisantha*, cultivar Piatã e Talhão 4: um hectare com pinhão-manso e capim *Andropogon gaianos*.

Em cada talhão, foi aberta uma mini-trincheira de 0,30 m de comprimento, 0,30 m de largura, e 0,40 m de profundidade, para que pudessem ser realizadas as amostragens do solo nas profundidades de 0-0,05; 0,05-0,10; 0,10-0,20 e 0,20-0,40 m. Logo em seguida, as amostras foram armazenadas e identificadas em sacos plásticos e levadas ao Laboratório de Solos e Água da Embrapa Meio Norte (Parnaíba-PI), para a caracterização química. O pH foi determinado em água (1:2,5) por potenciometria, a acidez trocável (Al) extraída com KCl 1 mol/L e quantificada por titulometria com NaOH 0,0025 mol/L. O Fósforo e o Potássio foram extraídos com Mehlich e determinados por colorimetria e fotometria de chama respectivamente. O Ca e o Mg foram extraídos com KCl 1 mol L⁻¹ e determinados por titulometria (Embrapa, 1997).

3 - RESULTADOS E DISCUSSÃO

Os valores dos atributos químicos do solo Neossolo Litolico, das quatro áreas avaliadas e em diferentes profundidades, com as suas respectivas médias e desvio padrão, encontram-se na Tabela 1.

II CONGRESSO BRASILEIRO DE PESQUISAS DE PINHÃO-MANSO

Tabela 1. Atributos químicos das diferentes áreas (talhões) de um Neossolo Litólico no município de Gilbués, PI, 2009.

	MO	pН	P	K	Ca	Mg			Al H+		CTC	V	m
Área	g.kg	H ₂ O	mg dm ⁻³ %										
Profundidade (0,0 – 0,05 m)													
1	4,68	7,08	163,00	0,37	28,15	2,35	0,08	0,00	0,00	30,95	30,95	100,00	0,00
2	11,12	6,84	119,00	0,37	20,77	4,27	0,06	0,00	1,09	25,47	26,56	95,90	0,00
3	8,11	7,59	76,20	0,33	27,32	3,87	0,22	0,00	0,00	31,74	31,74	100,00	0,00
4	8,43	8,20	12,70	0,12	33,59	1,96	0,34	0,00	0,00	36,01	36,01	100,00	0,00
Media	8,08	7,43	92,73	0,30	27,46	3,11	0,18	0,00	0,27	31,04	31,31	98,97	0,00
DV	2,64	0,60	64,05	0,12	5,25	1,13	0,13	0,00	0,54	4,33	3,87	2,05	0,00
Profundidade (0,05 – 0,10 m)													
1	4,96	7,38	14,30	0,31	29,69	2,51	0,10	0,00	0,00	32,61	32,61	100,00	0,00
2	6,85	6,89	115,00	0,29	27,89	3,84	0,07	0,00	0,99	32,09	33,08	97,01	0,00
3	6,16	7,96	4,20	0,15	32,50	2,80	0,35	0,00	0,00	35,80	35,80	100,00	0,00
4	5,68	8,24	12,60	0,12	32,15	2,33	0,34	0,00	0,00	34,94	34,94	100,00	0,00
Media	5,91	7,62	36,53	0,22	30,56	2,87	0,22	0,00	0,25	33,86	34,11	99,25	0,00
DV	0,79	0,60	52,50	0,10	2,17	0,68	0,15	0,00	0,50	1,79	1,51	1,50	0,00
Profundidade (0,10 – 0,20 m)													
1	6,79	7,47	138,00	0,30	33,23	2,89	0,15	0,00	0,00	36,57	36,57	100,00	0,00
2	6,85	7,04	10,60	0,25	27,44	4,15	0,10	0,00	0,00	31,94	31,94	100,00	0,00
3	5,56	8,24	6,30	0,11	31,95	2,65	0,36	0,00	0,00	35,07	35,07	100,00	0,00
4	7,54	8,34	10,80	0,10	32,53	2,11	0,35	0,00	0,00	35,09	35,09	100,00	0,00
Media	6,69	7,77	41,43	0,19	31,29	2,95	0,24	0,00	0,00	34,67	34,67	100,00	0,00
DV	0,83	0,62	64,42	0,10	2,62	0,86	0,13	0,00	0,00	1,95	1,95	0,00	0,00
Profundidade (0,20 – 0,40 m)													
1	7,85	7,93	79,10	0,19	34,19	3,90	0,33	0,00	0,00	38,61	38,61	100,00	0,00
2	5,20	7,86	64,70	0,14	28,06	2,61	0,37	0,00	0,00	31,18	31,18	100,00	0,00
3	6,10	8,18	4,50	0,13	30,12	3,40	0,37	0,00	0,00	34,02	34,02	100,00	0,00
4	6,55	8,32	10,30	0,11	33,37	1,43	0,36	0,00	0,00	35,27	35,27	100,00	0,00
Media	6,43	8,07	39,65	0,14	31,44	2,84	0,36	0,00	0,00	34,77	34,77	100,00	0,00
DV	1,10	0,21	37,77	0,03	2,86	1,08	0,02	0,00	0,00	3,08	3,08	0,00	0,00

O teor de matéria orgânica (MO), importante indicador da qualidade do solo, foi baixo para todas as profundidades avaliadas, apresentando valores médios de 8,08, 5,91, 6,69 e 6,43 g kg⁻¹, para os diferentes talhões, respectivamente. Os principais fatores nesta região, que podem ter contribuído para esses baixos valores foram o uso irracional do fogo, superpastejo, ausência de resíduo vegetal e o manejo inadequado dos bovinos nesta região. Segundo Mielniczuk (2008) as perdas de carbono dependem das condições climáticas, das espécies e sistema de cultivo utilizado. Para fins práticos, a MO varia de 5 a 50 g kg⁻¹ (Camargo & Ceretta, 2000). O C e o N é um dos principais problemas do solo para a revegetação da região.

Os valores médios de pH dos diferentes talhões aumentaram com a profundidade, variando de 7,43 a 8,07 para as profundidades de 0,0-0,05 m e 0,20-0,40 m, considerado adequado para o cultivo de plantas de um modo geral, sem fazer calagem do solo, ou seja, acidez muito baixa (>6) (Raij, 2011).

O fósforo (P) foi o nutriente que apresentou maior variabilidade no solo, entre os talhões e as profundidades avaliadas, com valores médios de desvio padrão de 92,73±64,05, 36,53±52,50, 41,43±64,42 e 39,65±37,77 cmol_c dm⁻³, respectivamente, para as profundidades 0-0,05, 0,05-0,10, 0,10-0,20 e 0,20-0,40 m. Raij (2011) considera para fins prático para plantas perenes o valor alto variando de 31 a 60 mg dm⁻³.

O teor de potássio (K) em todos os talhões e profundidades, é médio, com valores médios dos diferentes talhões de 0.30 ± 0.12 , 0.22 ± 0.10 , 0.19 ± 0.10 e 0.14 ± 0.03 cmol_c dm⁻³, para as diferentes profundidades respectivamente, tornando-se um fator que pode limitar o cultivo das culturas nessa região, caso não seja corrigido. Raij (2011) considera para fins prático o valor médio variando de 1.6 e 3.0 mmol_c dm⁻³.

Os valores dos teores médios de cálcio (Ca²⁺) aumentaram com a profundidade do solo, variando de 27,46 e 31,44 cmol_c dm⁻³, para as profundidades de 0,0-0,05 e 0,20-0,40 m. Já o teor de magnésio (Mg²⁺) variou entre 3.11 e 2,84 cmol_c dm⁻³ nas mesmas profundidades. Nestas profundidades, houve uma relação entre Ca²⁺ e Mg²⁺ de 8,9:1,0 e 11,06:1, respectivamente.

O teor médio de sódio (Na), aumentou com a profundidade, passando de 0,18 para 0,36 cmol_c dm⁻³, para profundidades de 0,0-0,05 e 0,20-,0,40 m, respectivamente. Os teores de Al e H+Al foram praticamente zero.

Com base nos teores de Ca²⁺, Mg²⁺, K⁺ e P, encontrados nas áreas estudadas, pode-se considerar de maneira geral que este solo caracteriza-se como de alta fertilidade, avaliados de acordo com a classificação constante da tabela de referência para interpretação dos resultados de análise do solo, proposta por ALVARES et al. (1999).

4 - CONCLUSÕES

O solo analisado tem boa qualidade química e apresenta como principal problema o baixo teor de matéria orgânica.

5 - AGRADECIMENTOS

Ao CNPq, FINEP/Projeto BRJATROPHA e PETROBRAS/Projeto Fontes Alternativas pelo financiamento.

6 - REFERÊNCIAS

ALVARES V. V.H.; NOVAES, R.F.; BARROS, N.F.; CANTARUTTI, R. B.; LOPES, A.S. Interpretação dos resultados das análises de solos. In: RIBEIRO, A.C.; GUIMARAES, P.T.G.; ALVAREZ, V.H. (Ed.). Recomendação para o uso de corretivos e fertilizantes em Minas Gerais: 5. Aproximação. Viçosa: Comissão de Fertilidade do Solo do Estado de Minas Gerais, 1999. p. 25-32. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA-EMBRAPA. Centro Nacional de pesquisa de solos. Sistema brasileiro de classificação de solos. Rio de Janeiro, Embrapa solos, 2006, 306p.

EMBRAPA. Centro Nacional de Pesquisa de Solo (Rio de Janeiro, RJ) **Manual de métodos de análise de solo**. 2 ed. rev. Rio de Janeiro, 1997. 212p.

FERTILIDADE DO SOLO – RS/SC. Manual de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. SBCS. Comissão de Química e Fertilidade do Solo. 10 ed. Porto Alegre, 2004. 394p.

LEITE, L. F. C.; OLIVEIRA, F.C.; ARAÚJO, A. S. F.

OLMOS, F. e SOUZA, R. C. R. Um mosaico de unidade de conservação para o leste do estado do Tocantins, 2006

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Indicadores de Desenvolvimento Sustentável Brasil 2004. Disponível em:

http://www.libge.gov.br/home/geociencias/recursos naturais/ids/terra. pdf. Acesso em: 10 mar. 2004.

MEDEIROS, R. M. Isoietas mensais e anuais do Estado do Piauí. Teresina: Secretaria de Agricultura, abastecimento e Irrigação – Departamento e Hidrometeorologia, 1996. 24p.

MIELNICZU, J. Matéria orgânica e a sustentabilidade de sistemas agrícolas. In: Fundamentos da matéria orgânica do solo: ecossistemas tropicais & subtropicais. SANTOS et al. Porto Alegre, 2008.

RAÍJ, B. Fertilidade do solo e manejo de nutrientes. Piracicaba. 2011. 420p.

SALES, M. C. L. Estudo da degradação ambiental em Gilbués, PI: reavaliando o "Núcleo de desertificação". Dissertação de Mestrado, Departamento de Geografia, USP/FFLCH, São Paulo. 1998

SIQUEIRA, O.J.W. Diagnostico da fertilidade dos solos do estado de Sergipe. In: Recomendações para o uso de corretivos e fertilizantes no estado do Sergipe. Ed. SOBRAL, (et al.) – Aracajú: Embrapa Tabuleiros Costeiros, p. 49-79, 2007