

EFEITO DE BIOESTIMULANTES SOBRE OS ATRIBUTOS QUÍMICOS DO SOLO CULTIVADO COM MUDAS DE VIDEIRA 'THOMPSON SEEDLESS'

JULIANNA MATOS DA SILVA¹; LAYANA ALVES DO NASCIMENTO¹; SAMARA FERREIRA DA SILVA¹; LUIZ FRANCINÉLIO CAVALCANTE JÚNIOR²; PATRÍCIA COELHO SOUZA LEÃO³; DAVI JOSÉ SILVA³

INTRODUÇÃO

A viticultura é uma atividade bastante diversificada no mundo, e também no Brasil. A finalidade da exploração, a região de cultivo, o solo e o clima predominantes influenciam diretamente na escolha das cultivares a serem utilizadas. A diversidade genética encontrada tanto dentro as espécies do gênero Vitis como entre elas é grande, permitindo quase sempre a escolha do material mais adequado, entre as centenas de cultivares existentes na cultura (POMMER, 2003).

A cultivar Thompson Seedless, apesar de ser cultivada desde tempos antigos, pode ser considerada, ainda hoje, a mais importante uva sem sementes no mundo, sendo utilizada também como um dos principais genitores em cruzamentos para a obtenção de novas cultivares. Como as plantas de 'Thompson Seedless' apresentam vigor elevado, deve-se utilizar uma combinação copa x porta-enxerto que proporcione um melhor equilíbrio vegetativo. Os cachos de Thompson Seedless possuem bagas pequenas, exigindo a aplicação de doses elevadas de ácido giberélico isolado ou associado a outros bioestimulantes ou reguladores de crescimento, para atingirem o padrão comercial de tamanho de bagas e peso de cachos (LEÃO et al., 2009).

O uso de reguladores de crescimento na viticultura já vem sendo utilizado ao longo de muitos anos, associados ou não a outras práticas culturais. Essas substâncias quando aplicadas exogenamente, podem atuar de maneira diferenciada sobre os órgãos da videira e os seus efeitos variam (BERNARDO, 2009).

O objetivo deste trabalho foi avaliar o efeito de fertilizantes comerciais contendo bioestimulantes sobre os atributos químicos do solo cultivado com mudas de videira 'Thompson Seedless'.

¹ Estudante de graduação em Ciências Biológicas, Bolsista PIBIC CNPq/Embrapa Semiárido, Petrolina-PE, e.mail: julianna.bolsista@cpatsa.embrapa.br, layana. bolsista@cpatsa.embrapa.br, samara.bolsista@cpatsa.embrapa.br

² Eng. Agr., estudante de Mestrado em Ciência do Solo, Universidade Federal do Ceará, Fortaleza-CE, e.mail: jr_agronomo@hotmailcom

³ Eng. Agr., pesquisador Embrapa Semiárido, Petrolina-PE, e.mail: patricia@cpatsa.embrapa.br, davi@cpatsa.embrapa.br

MATERIAL E MÉTODOS

O experimento foi instalado em viveiro, na Embrapa Semárido, município de Petrolina-PE, em 15 de fevereiro de 2011. As estacas dos porta-enxertos de videira foram plantadas em tubetes (25 cm de altura por 8 cm de diâmetro) contendo como substrato uma mistura composta por 50% de solo e 50% do substrato comercial Tropstrato[®].

Foram avaliados os porta-enxertos 'SO4', 'Paulsen 1103', 'IAC 572' e 'Harmony', enxertados na cultivar Thompson Seedless, e sete fertilizantes comerciais. Estes produtos foram aplicados nas doses recomendadas pelos fabricantes (Tabela 1).

Tabela 1 - Produtos comerciais, dosagens e épocas de aplicação em mudas de videira 'Thompson Seedless' enxertadas em diferentes porta-enxertos.

Produto	15 dias após o	15 dias após o	30 dias após o	60 dias após o	
	plantio transplantio		transplantio	transplantio	
Soilplex Root®	5 mL/L	1 mL/planta	1 mL/planta	1 mL/planta	
Fert Actyl GZ®	0,5 mL/planta	3 mL/planta	3 mL/planta	3 mL/planta	
Rutter AA®	2 mL/L	2 mL/planta	2 mL/planta	2 mL/planta	
Acadian [®]	2 mL/L	3 mL/planta	3 mL/planta	3 mL/planta	
Codamin Radicular®	2,5 mL/L	10 mL/planta	10 mL/planta	10 mL/planta	
Aminoagro Raiz®	0,5 mL/planta	1 mL/planta	1 mL/planta	1 mL/planta	
Bioradicant [®]	10 mL/L	3 mL/planta	3 mL/planta	3 mL/planta	

Após um período de 45 dias de cultivo em viveiro foram selecionadas as mudas que iriam compor o ensaio em casa de vegetação. Antes do transplantio em casa de vegetação, o solo utilizado nos vasos foi submetido a calagem e adubação de nivelamento com macro e micronutrientes.

O ensaio constituiu um fatorial 4 x 8 (quatro porta-enxertos, sete bioestimulantes e uma testemunha), disposto no delineamento de blocos ao acaso, com cinco repetições. A unidade experimental foi constituída por um vaso de polietileno com 7,5 dm³ de solo contendo uma estaca enxertada.

O ensaio em casa de vegetação foi conduzido por um período de 120 dias. Após a colheita das plantas, o solo de cada vaso foi retirado, secado e amostrado para caracterização química (EMBRAPA, 1997). Os dados obtidos foram submetidos a análise de variância e teste de médias (Tukey, 5%) por meio do programa SAS.

RESULTADOS E DISCUSSÃO

A análise de variância mostrou efeitos significativos dos bioestimulantes sobre a maior parte das características avaliadas, exceto para pH, Ca e Mg. (Tabela 2). Os bioestimulantes afetaram apenas os teores de sódio (Na) e H+Al nos porta-enxertos, e houve interação entre os dois fatores

em estudo apenas para os teores de Na. Assim, apenas os efeitos dos bioestimulantes serão discutidos.

Tabela 2 - Resumo da análise de variância (Quadrado Médio) para os atributos químicos do solo em função da aplicação de fertilizantes contendo bioestimulantes.

	Quadrado Médio									
FV	GL	pН	C.E.	P	Ca	Mg	K	Na	H+A1	CTC
Bloco	4	2,8 ^{ns}	$0,02^{ns}$	138,9 ^{ns}	0,21 ^{ns}	$0,3^{ns}$	$0,002^{ns}$	$0,0001^{\text{ns}}$	0,27+	7,7 ^{ns}
Bio	7	2,6 ^{ns}	0,35**	12103,6**	0,25 ^{ns}	$0,2^{ns}$	0,04**	0,0111**	0,34*	6,8 ^{ns}
P.E.	3	4,3 ^{ns}	0.05^{ns}	$186,0^{\text{ns}}$	0,13 ^{ns}	0,5 ^{ns}	$0,005^{ns}$	0,0020**	0,54**	$0,7^{ns}$
Bio x P.E.	21	1,3 ^{ns}	$0,03^{ns}$	401,5 ^{ns}	$0,18^{ns}$	$0,1^{ns}$	0,004 ^{ns}	0,0008*	$0,13^{ns}$	4,0 ^{ns}
Resíduo	124	2,8	0,03	313,9	0,29	$0,3^{ns}$	0,003	0,0004	0,13	6,2
CV (%)		26,08	44,75	31,01	28,57	27,80	32,59	43,34	56,73	52,17

Bio= bioestimulante; P.E.= porta-enxerto

O Codamin Radicular® proporcionou teores de P e K significativamente maiores que os demais bioestimulantes e também promoveu aumentos na condutividade elétrica e teor de Na do solo. Este bioestimulante foi utilizado em maior quantidade que os demais produtos, de três a dez vezes maiores. Após os 15 primeiros dias do plantio foram utilizados 2,5 mL/planta, a partir dos 15, 30 e 60 dias após o transplantio foram utilizadas 10 mL/planta, e por possuir na sua composição maior concentração de nutrientes como, 114 g L⁻¹ de P₂O₅, foi o bioestimulante que apresentou os maiores valores para condutividade elétrica (C.E.), P, K e Na.

Tabela 3 - Atributos químicos do solo em função da aplicação de fertilizantes contendo bioestimulantes.

Tratamento	pН	C.E.	P	Ca	Mg	K	Na	H+Al	CTC
	-	dS m ⁻¹	mg dm ⁻³			cmolc dm ⁻³			
Fert Actyl GZ	6,2 a	0,4 bc	44,4 b	1,84a	1,77a	0,19bc	0,03 cd	0,6 a	4,4 a
Soil Plex Root	6,9 a	0,3 bc	51,5 b	2,03a	1,97a	0,18cd	0,03 cd	0,6 ab	4,8 a
Rutter AA	6,2 a	0,3 c	53,3 b	1,77a	1,67a	0,16cd	0,05 bc	0,7 ab	4,3 a
Bioradicant	6,6 a	0,5 b	45,7 b	1,93a	1,93a	0,14cd	0,05 bc	0,9 a	4,9 a
Acadian	6,7 a	0,4 bc	49,9 b	1,87a	1,90a	0,24ab	0,06 b	0,5 ab	4,6 a
Aminoagro Raiz	6,6 a	0,3 bc	47,5 b	2,01a	1,93a	0,16cd	0,04 bcd	0,5 b	4,6 a
Codamin Radicular	5,8 a	0,7 a	117,6 a	1,71a	1,95a	0,26 a	0,10 a	0,8 ab	6,1 a
Testemunha	6,3 a	0,2 c	47,2 b	1,89a	1,88a	0,13d	0,03 d	0,6 ab	4,3 a

Médias seguidas de mesma letra nas colunas não diferem entre si a 5% de probabilidade pelo teste Tukey.

CONCLUSÕES

A partir dos resultados obtidos, conclui-se que, nas condições estudadas, o bioestimulante

^{**, *, =} significativo a 1% e 5 % de probabilidade, respectivamente, pelo teste F; ns = não significativo.

Codamin Radicular[®] alterou os atributos químicos do solo, aumentando não somente os teores dos nutrientes fósforo e potássio, mas também o sódio e a condutividade elétrica.

REFERÊNCIAS

BERNARDO, S.; SOARES, A. A.; MANTOVANI, E. C. **Manual de irrigação**. 8. ed. atual. e ampl. Viçosa, MG: UFV, 2009. 625 p.

EMBRAPA. **Manual de métodos de análise de solo**. 2. ed. rev. atual. Rio de Janeiro: EMBRAPA-CNPS, 1997. 212 p. (EMBRAPA-CNPS. Documentos, 1).

FERREIRA, D. F. SISVAR: um programa para análises e ensino de estatística. **Revista Symposium**, Lavras, v. 6, p. 36-41, 2008.

POMMER, C.V. **Uva**: tecnologia de produção, pós-colheita, mercado. Porto Alegre: Cinco Continentes, 2003. 778 p.

LEÃO, P. C.de S.; SOARES, J. M. (Ed.). **A vitivinicultura no Semiárido brasileiro**. Petrolina: Embrapa Semiárido, 2009. 756 p.