

DESIDRATAÇÃO DE GRÃOS DE PÓLEN DE DIFERENTES SUBESPÉCIES DE M. esculenta.

Renata R. Passos¹, Lívia de J. Vieira², Tainan da S. Oliveira³, José Raniere F. Santana⁴, Carlos Alberto da Silva Ledo⁵, Alfredo A. C. Alves⁵ e Fernanda V. D. Souza⁵

Resumo: A assincronia de florescimento é um fator limitante no melhoramento genético de muitas espécies e por isso a importância dos estudos direcionados para a conservação de pólen. Este trabalho teve como objetivo avaliar a tolerância do pólen das subspécies *Manihot esculenta* à desidratação por diferentes períodos de exposição em câmara de fluxo laminar, visando a estratégia de criopreservação. Como material vegetal foram utilizados anteras do acesso de *M. esculenta* (BGM 260), *M. flabelifollia* (FLA 029V-01) e *M. peruviana* (PER 002V), mantidos no Banco de Germoplasma de Mandioca da Embrapa Mandioca e Fruticultura. Para a avaliação da tolerância à desidratação do pólen as anteras foram depositadas em envelopes abertos de papel alumínio e foram submetidas diretamente à exposição por diferentes períodos (15, 20, 25 e 30 minutos). Para avaliação da viabilidade polínica após a desidratação foi utilizado o método de reação fluocromática. O teor de umidade após desidratação variou de 88% (15 minutos de exposição) a 77% (30 minutos de exposição). O teste de viabilidade possibilitou a visualização de tubos polínicos em todos os tratamentos, com exceção dos grãos de pólen desidratados por 30 minutos da subespécie *M. esculenta*. Os resultados apontaram que a medida que o teor de umidade é reduzido, os grãos de pólen das subespécies de *Manihot esculenta* perdem drasticamente a sua capacidade de germinação.

Palavras-chave: polinização, viabilidade polínica, mandioca.

Introdução

A conservação de pólen é importante para subsidiar novos cruzamentos, para pesquisas básicas, assim como para o intercâmbio e preservação de germoplasma (FERES, 2009). Dentre as técnicas de conservação,

^{1.} Aluna de Bacharel em Ciências Agrárias da Universidade do Recôncavo da Bahia. E-mail: renatarpassos_@hotmail.com

² Aluna de doutorado Biotecnologia - Universidade Estadual de Feira de Santana. E-mail: liviabiol@gmail.com

³ Aluna de Bacharel em Ciências Exatas e Tecnológicas da Universidade do Recôncavo da Bahia. E-mail: tainantso@gmail.com

⁴ Professor da Universidade Estadual de Feira de Santana. E-mail: jose.raniere@gmail.com

⁵ Pesquisador da Embrapa Mandioca e Fruticultura. E-mail: ledo@cnpmf.embrapa.br; alfredoalves3@gmail.com; fernanda@cnpmf.embrapa.br.

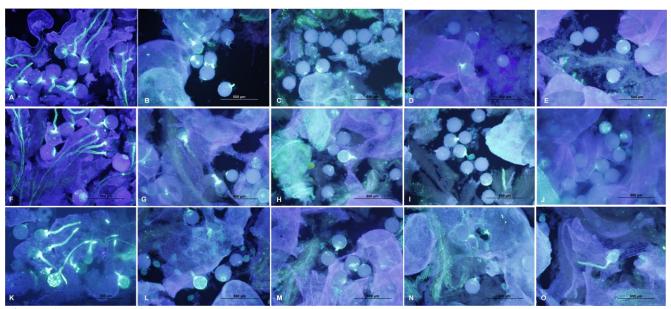
somente a criopreservação (armazenamento em nitrogênio líquido a -196 ° C) pode garantir um armazenamento de germoplasma em longo prazo. Protocolos de criopreservação de pólen de diversas espécies como *Mangifera indica, Carica papaya, Carica cauliflora, Citrus limon, Vitis vinifera, Vitis labrusca*, entre outra, já foram estabelecidos (SHIVANNA & SAWHNEY, 1997). O sucesso da conservação do pólen depende de vários fatores, como o estádio fisiológico da flor, a temperatura e umidade relativa do ambiente de armazenamento, assim como do grau de umidade do grão de pólen (GIORDANO et al., 2003). A desidratação é uma das etapas de maior importância nos sistemas experimentais utilizados na criopreservação, sendo que o teor de umidade da célula tem que compreender uma taxa específica capaz de garantir a integridade celular no ultracongelamento e na reidratação sem comprometer as funções celulares. Neste sentido o objetivo deste trabalho foi avaliar diferentes tempos de exposição em câmara de fluxo laminar para a desidratação de grãos de pólen de mandioca como estudo preliminar para os trabalhos de criopreservação de pólen de mandioca.

Material e Métodos

Como material vegetal foram utilizadas anteras do acesso de *Manihot esculenta* spp. *esculenta* (BGM 260), *Manihot esculenta* spp. *flabelifollia* (FLA 029V-01) e *Manihot esculenta* spp. *peruviana* (PER 002V), mantidos no Banco de Germoplasma de Mandioca da Embrapa Mandioca e Fruticultura. As flores foram coletadas durante a antese e levadas ao Laboratório de Cultura de Tecidos Vegetais. Para a avaliação da tolerância do pólen à desidratação, anteras de cada subespécie foram depositadas em envelopes abertos de papel alumínio e submetidas diretamente à exposição em câmara de fluxo laminar por diferentes períodos (15, 20, 25 e 30 minutos). Foram utilizados 50 anteras para cada tratamento. Como controle da viabilidade polínica foram utilizadas anteras sem desidratação.

Determinou-se o grau de umidade do grão de pólen na base úmida para todos os tratamentos, adotando a mesma metodologia utilizada para determinação do grau de umidade de sementes (BRASIL, 1992). Para avaliação da viabilidade polínica após a desidratação foi utilizado o método de reação fluocromático. Para visualização dos tubos polínicos os estigmas foram depositados em lâminas de vidro, com três gotas do corante anilina azul e cobertos com lamínulas de vidro. As lâminas foram levadas ao microscópio óptico de fluorescência OLYMPUS U-RFL-T.

Resultados e Discussão


O teor de umidade após desidratação variou de 88% (após 15 minutos de exposição) a 77% na subespécie (após 30 minutos de exposição). Os resultados da viabilidade polínica obtidos pelo método

de reação fluorocromática mostrou grande variação entre os tratamentos nas três sub-espécies avaliadas e possibilitou a visualização de tubos polínicos em todos os tratamentos, com exceção dos grãos de pólen desidratados por 30 minutos da subespécie *M. esculenta* (Tabela 1 e Figura 1).

Tabela 1. Teor de umidade - TU (%) e porcentagem de pólen viável (PV) de grãos de pólen de diferentes subespécies de *Manihot* após diferentes períodos de exposição em câmara de fluxo laminar.

	M. esculenta		M. flabellifolia		M. peruviana	
Tempo de Exposição	TU(%)	PV	TU(%)	PV	TU(%)	PV
0 minuto	100	71	100	81	100	78
15 minutos	88	33	88	72	82	27
20 minutos	81	20	83	28	84	36
25 minutos	83	38	78	27	80	38
30 minutos	78	0	77	3	79	14

Figura 1. A – Pólen de *M. esculenta* controle (sem desidratação); B – pólen após 15 minutos de desidratação; C – pólen após 20 minutos de desidratação; D - pólen após 25 minutos de desidratação e E - pólen após 30 minutos de desidratação. F – Pólen de *M. flabellifolia* controle (sem desidratação); G – pólen após 15 minutos de desidratação; H - pólen após 20 minutos de desidratação; I - pólen após 25 minutos de desidratação e J - pólen após 30 minutos de desidratação. K – Pólen de *M. periviana* controle (sem desidratação); L – pólen após 15 minutos de desidratação; M - pólen após 20 minutos de desidratação; N - pólen após 25 minutos de desidratação e O - pólen após 30 minutos de desidratação.

Os resultados mostram que mesmo no tratamento controle não há 100% de polens viáveis, o que pode estar relacionado a diferentes fatores, como etapa do desenvolvimento floral, hora de coleta,

temperatura, etc. Por outro lado, à medida que se submete o pólen ao tratamento de desidratação, a viabilidade cai drasticamente, comprometendo severamente qualquer tentativa de conservação, nestas condições. Prováveis danos à membrana, causados pelo tratamento de desidratação, podem estar relacionados e esta queda abrupta da viabilidade com a manutenção de um teor de umidade considerado ainda relativamente alto. Diferenças entre as três espécies foram observadas, sendo a *M. flabellifolia* mais resistente à desidratação, pelo menos nos primeiros 15 minutos e *M. esculenta* mais susceptível ao tratamento de 30 minutos e a *M. peruviana*, que apesar da queda de viabilidade aos 15 minutos ter sido a mais marcante, foi das três variedades, a que se manteve com índices de viabilidade mais estáveis entre os três últimos tempos de desidratação.

Conclusão

Os acessos de *M. esculenta* avaliados neste trabalho demostraram-se pouco tolerantes à desidratação já no tempo mínimo de 15 minutos proposto no trabalho, demandando estudos relativos a estrutura da membrana do pólen da mandioca, assim como novas estratégias de desidratação para subsidiar sua conservação.

Agradecimentos

À CAPES pela bolsa concedida à L. de J. Vieira e ao CNPq pela bolsa concedida à T. da S. Oliveira.

Referências Bibliográficas

BRASIL. Ministério da Agricultura e Reforma Agrária. Secretaria Nacional de Defesa Agropecuária. **Regras para análise de sementes**. Brasília: SNAD/DNDV/CLAV, 1992. 365p.

FERES, J. M. Diversidade genética, sistema reprodutivo e fluxo de pólen em duas populações de *Tabebuia roseo-alba* (Ridl.) Sand.: Implicações para a conservação. Dissertação (Mestrado em Ciências Biológicas) –Universidade de São Paulo, 2009.

GIORDANO, L. B. ARAGÃO, F. A. S., BOITEUX, L. S. **Melhoramento genético do tomateiro.** Informe Agropecuário, Belo Horizonte, v. 24, n.219, p. 43-57, 2003.

SHIVANNA, K. R.; SAWHNEY, V. K. Pollen biotechnology for crop production and improvement. SHIVANNA, K. R.; CRESTI, M.; CIAMPOLINI, F. (ed), Pollen development and pollen-pistil interaction. Cambridge. p. 15-39. 1997.