Comportamento de cultivares de girassol no Estado de Sergipe: safra 2011

Hélio Wilson de Lemos Carvalho, Ivênio Rubens de Oliveira (Embrapa Tabuleiros Costeiroshelio@cpatc.embrapa.br); ivenio@cpatc.embrapa.br), Cláudio Guilherme Portela de Carvalho (Embrapa Sojacportela@cnpso.embrapa.br), Francisco Méricles de Brito Ferreira (Secretaria de Agricultura do Estado de Alagoas- franciscomericles@yahoo.com.br), José Nildo Tabosa (IPA- jntabosa@bol.com.br), Marcelo Abdon Lira (EPARN- marcelo-eparn@rn.gov.br), Camila Rodrigues Castro, Cinthia Souza Rodrigues, Vanessa Marisa Miranda Menezes, Marcella Carvalho Meneses, Maitte Carolina Moura Gomes. (Estagiárias Embrapa Tabuleiros Costeiros, camila.rcastro@hotmail.com; cinthia-sr@hotmail.com; vanessammm2003@yahoo.com.br; marcellameneses@hotmail.com; maitte_carolina@hotmail.com).

Palavras Chave: Genótipo, zona Agreste, produtividade, interação genótipo x ambiente.

1 - Introdução

A seleção e a recomendação de genótipos mais produtivos é objetivo básico dos programas de melhoramento genético de qualquer lavoura. O processo de seleção é frequentemente realizado avaliando-se o desempenho dos genótipos em diferentes ambientes (ano, local, épocas de plantio e de colheita, sistemas de plantio, entre outros), (Vencovsky & Barriga, 1992). Em se tratando do girassol, diversas cultivares vem sendo desenvolvidas anualmente por diferentes programas de melhoramento genético e têm sido selecionadas por meio de Rede de Ensaios de Avaliação de Genótipos de Girassol, realizando-se a seleção com base em rendimento de grãos e óleo. No Estado de Sergipe, os ensaios de avaliação vêm sendo realizadas em monocultivo e em consórcio com produtos de grande interesse para a região, a exemplo do milho, feijoeiro comum e mandioca.

Desta forma, realizou-se o presente trabalho objetivando selecionar cultivares de girassol de melhor potencial produtivo para fins de recomendação.

2- Material e Método

Foram utilizados dados de pesos de grãos de 16 cultivares de girassol, da safra 2011, avaliados no Estado de Sergipe, nos municípios de Poço Redondo (em monocultivo, em consórcio com o milho e com o feijão), em Umbaúba (em monocultivo e em consórcio com a mandioca), em frei Paulo (em monocultivo e em consórcio com o milho) e em Carira (em monocultivo). Utilizou-se o delineamento experimental em blocos ao acaso, com quatro repetições. As parcelas constaram de quatro fileiras de 6,0 m de comprimento, espaçadas de 0,8 m e com 0,30 m entre covas, dentro das fileiras. Manteve-se uma planta por cova.

após o desbaste. Em consórcio, os arranjos experimentais variaram de acordo com a cultura consorte. As adubações realizadas nesses ensaios foram de acordo com os resultados das análises de solo de cada área experimental. Foram realizadas análises de variância, por ambiente e conjunta, para o caráter peso de grãos.

3 - Resultados e Discussão

Em Poço Redondo, as cultivares mostraram melhores rendimentos de grãos quando avaliadas em monocultivo e em consórcio com o feijoeiro comum. superando em mais de 50% o rendimento obtido com o ensaio em consórcio com o milho. Em Umbaúba, obteve-se um acréscimo de 7% no rendimento do ensaio consorciado com mandioca quando comparado com o mesmo ensaio em monocultivo, sendo os rendimentos alcançados de 2717kg/ha e 2533 kg/ha, respectivamente, nos sistemas em monocultivo e consorciado, evidenciando a viabilidade do girassol em consórcio com mandioca na região de Umbaúba e adjacência. Em Frei Paulo, o rendimento do ensaio em consórcio com o milho superou em 19 % aquele observado para o ensaio em monocultivo, denotando também a viabilidade de lavouras de girassol em sistema de consórcio com o milho.

Os rendimentos das cultivares na média dos ambientes variaram de 1.513 kg/ha a 2.208 kg/ha, com média geral de 1.889 kg/ha (Tabela 1), evidenciando o bom potencial para a produtividade de grãos do conjunto avaliado, corroborando resultados obtidos em anos anteriores, em ensaios semelhantes de melhoramento (Carvalho et al.. 2009 e Oliveira et al., 2010). A cultivar M 734 apresentou melhor rendimento médio, seguida das cultivares HELIO 251, AGUARÁ 6, BRS G 26 e AGUARÁ 4 (Tabela 1), as quais se constituem em ótimas opções de cultivo para a agricultura sergipana.

5º Congresso da Rede Brasileira de Tecnologia de Biodiesel 8º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

Tabela1. Médias e resumos das análises de variância, por local e conjunta, referentes ao peso de grãos de 16 cultivares de girassol avaliadas em 8 ambientes do Estado de Sergipe, na safra 2011.

Cultivares	Poço Redondo - Monocultivo	Poço Redondo x Milho	Poço Redondo x Feijão	Umbaúba - Monocultivo	Umbaúba x Mandioca	Frei Paulo - Monocultivo	Frei Paulo x Milho	Carira - Monocultivo	Análise conjunta
M 734	1754a	1069b	1611a	2862a	3056a	2244a	3017a	2056a	2208a
HELIO 251	1483b	1031b	1600a	2916a	3236a	1842b	2898a	1554b	2070b
AGUARÁ 6	1773a	1231 ^a	1725a	2554b	3018a	1715b	2892a	1640b	2068b
BRS G26	1659a	1272ª	1819a	2656b	3001a	2217a	2233b	1482b	2042b
AGUARÁ 4	1673a	1062b	2009a	2684b	2839b	1712b	2721a	1562b	2033b
BRS 322	1515a	1015b	1722a	2859a	2797b	2060a	2386b	1585b	1992c
HELIO 253	1657a	1102b	1791a	2570b	2569b	1931a	2996a	1271c	1986c
AGUARÁ 5	1743a	966c	1659a	2338c	2639b	1678b	2819a	1828a	1959c
OLISUN 3	1698a	1088b	1706a	2464c	3187a	1746b	1949c	1535b	1921c
BRS 323	1786a	1006b	1579a	2543b	2826b	2118a	1809c	1560b	1903c
HELIO 250	1640a	943c	1490b	2638b	2666b	1844b	2135b	1713b	1883c
CATISSOL	1346b	858c	1503b	2102c	2885b	1988a	2167b	1483b	1791d
BRS 321	1338b	949c	1391b	2405c	2222c	2007a	1899c	1685b	1737d
MULTISSOL	1286b	896c	1512b	2355c	1936c	1962a	1528d	1145c	1577e
BRS 324	1173b	813c	1261c	2359c	2448c	1687b	1393d	1200c	1542e
EMBRAPA 122	1231b	788c	1155c	2220c	2139c	1825b	1433d	1315c	1513e
Média	1547	1005	1596	2533	2717	1911	2267	1538	1889
C.V. %	9	10	11	8	9	12	10	13	10
F(cultivar)	10,1**	6,6**	5,7**	5,0**	9,0**	2,7**	23,7**	5,3**	34,2**
F(Sistema)	-	-	2-1	-	-	-	=	-	547,5**
F(interação CxS)	-	-	(=)		-	-	-	-	5,6**

^{*, *} e ns Significativos a 1% e5% de probabilidade pelo teste F. As médias seguidas pelas mesmas letras não diferem entre se pelo teste Scott-Knott.

4 - Conclusão

As cultivares M 734, HELIO 251, AGUARÁ 6, BRS G26 e AGUARÁ 4 apresentam melhor adaptação e se constituem em ótimas opções de cultivo , tanto em monocultivo, quanto consorciadas com milho, feijão e mandioca.

5 - Bibliografia

CARVALHO H. W. L.de., OLIVEIRA, I.R.; CARVALHO, C. G. P. de., FERREIRA, F. M,. de B., LIRA, M, A., RANGEL, J. H. de A. Adaptabilidade e estabilidade de genótipos de girassol do ensaio final do primeiro ano no Nordeste brasileiro. In: REUNIÃO NACIONAL DE PESQUISA DO GIRASSOL, 18°; SIMPÓSIO NACIONAL SOBRE A CULTURA DE GIRASSOL, 6°, 2009,

OLIVEIRA, I.R.; CARVALHO H. W. L.de., CARVALHO, C. G. P. de., FERREIRA, F. M., de B., LIRA, M, A., TABOSA, J. N. Comportamento de genótipos de girassol do ensaio final do primeiro ano no Nordeste brasileiro: safra 2009. In: IV CONGRESSO BRASILEIRO DE MAMONA, I SIMPÓSIO INTERNACIONAL DE OELAGINOSAS ENERGÉTICAS. Anais. João Pessoa . 2010.

VENCOVSKY. R.; BARRIGA, P. **Genética biométrica no fitomelhoramento.** Ribeirão Preto: Sociedade Brasileira de Genética, **1992**. 496p