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Abstract: The aim of this work was to analyze terpene oil production and terpene 
synthases (TPS) gene expression from leaves at different developmental stages 
of different chemotypes of Lippia alba (Mill.) N.E. Br. ex Britton & P. Wilson, 
Verbenaceae. Hydro-distilled essential oil were used for chemical analysis and gene 
expression of three monoterpene synthase genes called LaTPS12, LaTPS23 and 
LaTPS25 were used for analyses of gene expression associated to oil production. 
The putative genes were associated to TPS-b gene class. Semi-quantitative PCR and 
quantitative PCR (qPCR) analysis were used to investigate the expression profile 
of those three putative genes in different leaf stages and different chemotypes. 
Additionally, total oil production and gene expression of putative TPS genes 
cloned from L. alba chemotype linalool were evaluated at different stages of leaf 
development. The expression level of those three genes was higher when the highest 
oil production was observed, mainly in young leaves at the fourth nodal segment 
for all evaluated chemotypes. Total oil production was higher at leaves that had 
unopened trichomes. We also observed that the 1mM of MeJA treatment increased 
the gene expression in all chemotypes after 24 h elicitation.
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Introduction

 Plants have a wide variety of terpene compounds 
that may produce diverse biological responses with 
differential expression mediated by developmental and 
stress-related programs response synthesized by terpene 
synthase (TPS) (Tholl, 2006). Lippia alba (Mill.) N.E. 
Br. ex Britton & P. Wilson, Verbenaceae, occupies an 
outstanding position among medicinal plants because 
of many therapeutic actions due to terpenic compounds 
(Hennebelle et al., 2008). The essential oil from L. alba has 
additional aromatic properties that could make the specie 
an excellent source of monoterpenes such as geraniol, 
limonene, linalool and others. Some advantages of L. alba 
includes the vegetative propagation (Biase & Costa, 2003) 
and the simplicity of methods used for oil isolation. Some 
chemotypes yields a dextrogen form of linalool, which is 
the main compound of essential oil used in industry, with 
almost 100% of purity (Siani et al., 2002). Tepernes are 
synthesized by terpene synthases (TPS) a class of enzymes 
that carry a motif LQLYEASFLL that seems to be part of 
the active site of those enzymes (Crowell et al., 2002), and 
two other conserved domains DDXXD/E and the "NSE/
DTE" motif (N/D)DXX(S/T)XXXE that are involved in 

magnesium binding during fi xation of pyrophosphate 
substrate (Christianson, 2006). Molecular biology and 
genetic improvement of such enzyme and its genes are 
useful tools to improve the quality and quantity of essential 
oil (Siani et al., 2002). 
 The wealth of terpenic compounds in L. alba 
make relevant the analyses of TPS genes expression to 
improve the quality and quantity of the essential oil. Thus, 
the objective of the present study was to evaluate the oil 
production and TPS gene expression during different leaf 
developmental stages among different chemotypes of L. 
alba.

Material and Methods

 The total oil was extracted from fresh leaves of 
three different chemotypes of Lippia alba (Mill.) N.E. Br. 
ex Britton & P. Wilson, Verbenaceae, citral (CESJ 29423), 
carvone (CESJ 29420) and linalool (CESJ 29422) (Tavares 
et al., 2005) from three leaf positions: i) the second nodal 
segment; ii) the fourth nodal segment; and iii) the eighth 
nodal segment. The essential oil was extracted by hydro-
distillation (Clevenger apparatus) during 2 h. The oil from 
different chemotypes was harvested and injected at GC/
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MS eluted in 200 μL of n-hexane (HPLC grade) followed 
by thin layer chromatography (TLC) T-6520 silica gel 
polyester plate. One microliter of each sample was injected 
in gas chromatograph (Shimadzu GCMS-QP2010 Plus) 
with auto injector (AOC-5000) coupled to the Rtx-5MS 
capillary column (30 m long, 0.25 mm internal diameter, 
0.25 µm film thickness) (Supelco DB 5). The programmed 
temperature began at 50 oC and increased by 4 ºC/min up 
to 220 oC (5 min). Injector and detector temperatures were 
200 and 220 oC, respectively. Helium gas was used as 
carrier. The area of the GC peak was used for quantitative 
determination. Kovats index (KI) was used for essential 
oil identification by comparing their mass spectra with 
NIST98 (National Institute of Standards and Technology, 
Gaithersburg) mass spectral database and by comparing 
their GC retention indexes (RI), related to the retention 
time of a series of n-alkanes with linear interpolation, with 
those of literature data (Adams, 2007).
 Two micrograms of total RNA was used for the 
first strand cDNA synthesis. Reverse transcription reaction 
was done using oligo (dT) anchored primer and the enzyme 
MuMLV (Invitrogen, Carlsbad, CA, USA) in accordance 
to the manufacturer instructions. Genes were amplified by 
Master Cycle Gradient thermocycler (Eppendorf, Westbury, 
USA), using GoTaq DNA polymerase (2.5U) (Promega, 
Madison, USA); MgCl2 (5 mM); dNTP mix (0.4 mM); 
forward primer (4 µM); reverse primer (4 µM) and DNA 
(200 ng) in a 25 µL total reaction volume. Each reaction 
was carried out during 3 min at 94 oC; 34x (94 oC 1 min; 54 
oC 1 min and 72 oC 1 min) followed by final extension with 
10 min at 72 oC. PCR products were cloned into pGEM-T 
Easy Vector (Promega, Madison, USA) and sequenced by 
ABI Prism 7300 Sequence Detection System (Applied 
Biosystems, USA). Leafs from I, II and III position from 
each chemotypes were evaluated by RT-PCR and qPCR 
analysis and the 18S rRNA gene was choose as control 
(Santos et al., 2005). The qPCR reactions were carried 
out using the kit iTaq SYBR Green Supermix with ROX 
(Bio-Rad, Hercules, USA), 50 ng of cDNA and 400 nM of 
specific primer. The conditions of amplification was 95 ºC 
during 3 min; 40 cycles of denaturation at 95 ºC during 15 
s; and annealing and extension at 60 ºC during 60 s. After 
forty amplification cycles, the samples were subjected to 
dissociation curve analysis in order to validate the absence 
of non-specific products and dimmer formation. The 
samples were heated from 60 ºC up to 94 ºC, increasing 1 
ºC at each 30 s.
 Each amplification reaction was carried out in 
ABI Prism 7300 Sequence Detection Systems (Applied 
Biosystems, USA) in separated wells using SYBR Green 
Dye. The results were analyzed using Relative Expression 
Software Tool (REST ©), v. 2.0.

Results and Discussion

 The analyses of gas chromatography coupled 
to a mass spectrometer were carried out and the major 
components of the three evaluated chemotypes and 
the nature of main terpene composition (Figure 1). 
The evaluation of total oil showed that high production 
was concentrated at the fourth leaf nodal segment in all 
evaluated chemotypes. Leaves at the first analyzed stage 
of development do not produced oil (Table 1).

Figure 1. Chromatogram of essential oil analysis from 
chemotypes of Lippia alba: a) linalool; b) carvone and c) 
citral (neral/geranial).

 According to E-values of blast-x algorithm, three 
different putative genes encoding terpene synthases were 
designated LaTPS12 (GQ279096), LaTPS23 (GQ279097) 
and LaTPS25 (GQ279098). The three sequences were 
highly similar to several other monoterpene synthases, 
mainly to limonene synthase of different plant species. 
LaTPS12 showed an E-value ranging from 3 е-47 to 3 
e-37; LaTPS23 showed an E-value ranging from 2 e-45 
to 5 e-37; and LaTPS25 showed an E-value ranging from 
4 е-53 to 2 e-06, but LaTPS25 also showed similarities to 
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linalool synthase.
 Two clones, LaTPS12 and LaTPS23, were 445 pb 
long and encodes 148 aminoacids, whereas LaTPS25 was 
395 pb encoding a putative protein with 122 aminoacids. 
All sequences showed the motifs DDXXD and NSE/DTE 
(N,D)D(L,I,V)X(S,T)XXXE, both highly conserved in 
other terpene synthases, which apparently works as a metal 
ion cofactor and catalysis site (Crowell et al., 2002) in the 
C-terminal domain of these enzymes. Terpene synthase 
class of enzymes is classified from a to g (Dudareva et 
al., 2003) and a phylogenetic tree was generated by the 
neighbor-joining method with 1,000 repetitions containing 
all enzyme class and we observed that the three putative 
TPS clone genes belongs to TPS-b monoterpene class.
 In L. alba most of the production of essential oil 
takes place in leaf trichome (Bolzani et al., 1999) and it 
was verified by semi-quantitative RT-PCR that unexpanded 
leaves at the fourth nodal segment (FNS) showed strongly 
expression followed by leaves situated in the second nodal 
segment (SNS) and leaves in a riper stage situated in the 
eighth node (ENS), respectively (Figure 2) for all genes and 
chemotypes evaluated. LaTPS12, LaTPS23 and LaTPS25 
had already initiated in unexpanded leaves and continue 
up to their complete expansion. The higher expression 
transcription occurred in leaves situated in the fourth nodal 
segment and practically disappeared in riper stage leaves 
at the eighth nodal segment. Riper leaves situated around 
the eighth nodal segment showed little synthesis of mRNA 
and lower oil production. At this stage most of the leaf 
trichomes were collapsed as observed for Mentha (Sharma 
et al., 2003) and Lippia scaberrima (Combrink et al., 2007). 
In Magnolia grandiflora, it was also observed a similar 
pattern of expression of three different TPS genes coding 
for two monoterpene and one sesquiterpene synthase (Lee 
& Chappell, 2008). The younger leaves showed higher 
expression compared to riper leafs for all analyzed genes.

 
Figure 2. Expression of the genes LaTPS12, LaTPS23 and 
LaTPS25 in different leaf stages of three chemotypes. ENS: Leaf 
of eight nodal segment; SNS: leaf of second nodal segment; FNS: 
leaf of fourth nodal segment.

 Comparing linalool and carvone chemotypes, 
LaTPS12 and LaTPS23 gene expression by qPCR 
analysis showed that they were down-regulated in linalool 
chemotype with a relative expression ratio of 0.351 and 
0.339, respectively and LaTPS25 gene was up regulated 
in the linalool chemotype showing around 16.42 more 
transcripts (Figure 3a).

 The analysis between the chemotypes linalool and 
citral showed differential expression between LaTPS12 
and LaTPS25 genes. The first was down-regulated whose 
ratio of relative expression was 0.248 and the second was 
up-regulated in linalool type, with relative expression 
ratio of 6.496. The gene LaTPS23 did not show significant 
difference between these chemotypes (P (H1) =0.950) 
(Figure 3b).
 The comparison between the chemotypes 
carvona and citral resulted in similar relative expression 
between the samples of all the genes and its expression 
was not statistically different between the analyzed 
chemotypes (Figure 3c). The values of P (H1) were 
0.575 for LaTPS12; 0.878 for LaTPS23; and 0.740 for 
LaTPS25. 

 
Figure 3. Relative expression of TPS between chemotypes of 
L. alba a) linalool and carvone; b) linalool and citral; c) carvone 
and citral. Red (18S); Blue LaTPS12; yellow LaTPS22; green 
LaTPS25.

 The LaTPS25 that showed highly similarity to 
linalool enzymes also showed higher expression in the 
chemotype linalool compared to the chemotypes carvone 
and citral. External biotic and abiotic factors affect total 
secondary metabolite production, such as tissue damage, 
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attack by pathogens and herbivores, drought, and excessive 
exposure to ultraviolet rays can induce the production of 
several defense substances, such as polyphenol oxidase. 
Under these conditions, different classes of secondary 
metabolites are produced as phenolic compounds, alkaloids 
and terpenic compounds (Bennett & Wallsgrove, 1994; 
Kessler & Baldwin, 2002). The leaves of L. alba were 
collected at the same time and under the same conditions 
from a greenhouse to avoid environmental influence 
and the results are a consequence of genetic variation 
among the chemotypes. These results are in accordance 
to previous studies with these chemotypes of L. alba that 
when cultivated at different conditions did not affected the 
composition of essential oil from leaves (Tavares et al., 
2005) showing the same composition of main components 
of terpenes. Similar studies by our group showed that 
the quality of essential oil was not affected by dry or 
wet season in Lippia and Lantana species reinforcing 
genetic control of essential oil production (Silva et al., 
2010). The addition of kinetin, an artificial cytokinin type 
of plant growth regulator in culture medium increased 
terpene production (Tavares et al., 2004). Increasing 
activity of FPP, the central precursor of terpenes, reduced 
the cytokinin level production since they share the same 
methabolic pathway (Masferrer et al., 2002). In Ocimum 
basilicum, the spraying of methyl jasmonate induced the 
production of several secondary metabolites, including 
linalool and other terpenoids (Zhigang et al., 2007). To test 
if elicitors may affect the putative TPS gene expression we 
also evaluated the expression of those cloned genes under 

MeJA treatment and we observed an increase of 2-3 times 
on transcription levels when treated with 1 mM methyl 
jasmonate solution of. It was observed that developmental 
stage such as flowering and vegetative growth affect the 
total oil production but not the quality of oil in leaves of L. 
alba (Siani et al., 2002; Tavares et al., 2005), reinforcing 
the suggestion of genetic control of oil production.
 Thus, the selection of genotypes showing 
higher linalool gene expression and oil production can 
help the development an elite cultivar for oil production. 
Moreover, the results of TPS gene expression may 
contribute to better understand how to increase the 
essential oil production, mainly linalool. It also helps 
to plan future strategies regarding L. alba breeding 
programs using biotechnological applications.
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