Comportamento de Cultivares de Milho no Nordeste brasileiro: Safra 2010/2011

<u>Hélio Wilson Lemos de Carvalho¹</u>, Milton José Cardoso², Leonardo Melo Pereira Rocha³, Cleso Antonio Patto Pacheco⁴, José Nildo Tabosa⁵, Vanessa Marisa Miranda Menezes ⁶, Tâmara Rebecca Albuquerque de Oliveira ⁷, Camila Rodrigues Castro ⁸, Marcella Carvalho Meneses⁹, Cinthia Souza Rodrigues ¹⁰

¹Pesquisador da Embrapa **Tabuleiros** Costeiros. Aracaju, SE. helio.carvalho@embrapa.br, ²Embrapa Meio Norte, Terezina, PI. Milton@cpamn.emprapa.br 3,4 Pesquisadores da Embrapa Milho e Sorgo, Sete Lagoas, MG. ³Leonardo@cnpms.embrapa.br, ⁴cleso@cnpms.embrapa.br, ⁵Pesquisador do IPA, 6,7,8,9,10 Estagiárias da Embrapa Tabuleiros Costeiros Resife, PE. tabosa@ipa.br, ⁶vanessammm2<u>003@yahoo.com.br</u>, tamara rebecca@yhaoo.com.br. ⁸marcellameneses@hotmail.com 8camila.rcastro@hotmail.com ¹⁰cinthiasr@hotmail.com

RESUMO - O objetivo deste trabalho foi averiguar o comportamento produtivo de 79 cultivares de milho em diferentes ambientes do Nordeste brasileiro, para fins de recomendação daquelas de melhor adaptação para exploração comercial nos diferentes sistemas de produção em execução nessa ampla região. Esses materiais foram distribuídos em duas redes experimentais, sendo os ensaios realizados no decorrer do ano agrícola 2010/2011, utilizando-se o delineamento experimental em blocos ao acaso, com duas repetições. Detectaram-se, nas análises de variância conjuntas, diferenças entre as cultivares e os locais e inconsistência no comportamento dessas cultivares na média dos ambientes, nas duas redes experimentais, quanto às características alturas de planta e de inserção da primeira espiga, estande de colheita e peso de grãos. Os híbridos P 3862 H, DKB 390 PR, P 3646 H, 2 b 587 HX, 2 B 688 HX P 30 F 35 H e AG 8088 PR evidenciaram melhor adaptação, consubstancido-se em excelentes alternativas para exploração comercial nos diferentes sistemas de produção em execução no Nordeste brasileiro.

Palavras-chave: Zea mays L, adaptação, semiárido, interação genótipo x ambiente.

Introdução

Ocorrem no Nordeste brasileiro, algumas áreas denominadas de 'bolsões' de milho, aonde o uso de tecnologias de produção vêm aumentando significativamente, a exemplo do uso de híbridos de milho em áreas de cerrados do Oeste baiano, Sul do Maranhão e sudoeste piauiense. Os tabuleiros costeiros e áreas do agreste nordestinos, também se inserem no contexto de áreas promissoras para exploração de híbridos, dada à melhor adaptação desses materiais em relação às variedades (CARVALHO et al.2009 e 2011). Os autores supracitados têm destacado a alta adaptação de híbridos de milho

em áreas de cerrados e do agreste nordestino, ressaltando, ainda, que os rendimentos médios de grãos registrados nesses ambientes, colocam essa região em condições de competir com a exploração de milho em áreas tradicionais de cultivo de milho no país. Alguns híbridos, nesses trabalhos, evidenciaram adaptabilidade ampla, qualificando-se também como alternativas importantes para exploração comercial nos sistemas de produção pouco tecnificados, o que tem ocorrido com sucesso em grandes extensões do Nordeste brasileiro.

Objetivou-se, então, avaliar o comportamento de novas cultivares de milho visando selecionar aquelas de melhor adaptação para fins de recomendação no Nordeste brasileiro.

Material e Métodos

Foram realizadas duas redes experimentais, no Nordeste brasileiro, ano agrícola de 2010/2011, sendo os ensaios da rede composta por variedades e híbridos (39 materiais) distribuídos em três ambientes dos Estados do Maranhão, Piauí e Sergipe, dois ambientes, no Estado da Bahia e um ambiente, Alagoas (Tabela 1); os ensaios da rede formada por 40 híbridos (Tabela 2) foram implantados nos estados do Maranhão (3 ambientes), Piauí (3 ambientes), Pernambuco (3 ambientes), Alagoas (1 ambiente), Sergipe (3 ambientes) e Bahia (2 ambientes). As parcelas foram formadas por quatro fileiras de 5,0m de comprimento, espaçadas de 0,8m e com 0,2m entre covas, dentro das fileiras, correspondendo a uma população de 62500 plantas.ha⁻¹. As adubações realizadas nesses ensaios obedeceram aos resultados das análises de solo de cada área experimental.

Os dados de altura de plantas e de inserção da primeira espiga, estande de colheita, número de espigas colhidas e peso de grãos de cada tratamento foram submetidos à análise de variância por ambiente e conjunta, conforme Vencovsky e Barriga (1992).

Resultados e Discussão

No que se refere à rede de ensaios composta por 39 cultivares (Tabela 1), detectaram-se diferenças significativas, na análise de variância conjunta, para os efeitos de cultivares, locais e interação cultivar x local, evidenciando diferenças entre as cultivares e os locais, além de denotar que as cultivares apresentaram comportamento

diferenciado diante na média dos locais, quanto ás características alturas da planta e da inserção da primeira espiga, estande de colheita e peso de grãos, exceção feita à interação cultivar x local para a característica estande de colheita, onde as cultivares mostraram o mesmo comportamento na média dos locais.

As médias de alturas de planta e de inserção da primeira espiga foram de 201 cm e 101 cm, respectivamente, os híbridos SOMMA TL, SHS 5560, SHs 4090, entre outros, com menores de alturas para essas características. Ressalta-se que menores alturas de planta conferem maior tolerância ao acamamento e quebramento e permitem o plantio de um maior número de plantas por unidade e área. As médias de produtividades de grãos das cultivares variaram de 5.699 kg.ha⁻¹ a 8.864 kg.ha⁻¹, com média geral de 7.521 kg.ha⁻¹, evidenciando o alto potencial para a produtividade do conjunto avaliado. As cultivares com rendimentos médios de grãos superiores à média geral exibiram melhor adaptação (VENCOVSKY e BARRIGA, 1992), destacando-se, nesse grupo, os híbridos P 3862 H, DKB 390 PR, P 3646 H, 2 b 587 HX e 2 B 688 HX, os quais se consubstanciam em excelentes alternativas para exploração comercial nos diferentes ambientes do Nordeste brasileiro.

No tocante à rede formada por 40 materiais, detectaram-se, à semelhança da rede anterior, diferenças entre as cultivares, os locais e inconsistência no comportamento dessas cultivares na média dos locais, para as características avaliadas (Tabela 2). Os coeficientes de variação obtidos nessas análises conferiram boa precisão aos ensaios (LÚCIO et al., 1999). As médias de alturas de planta e de inserção da primeira espiga foram, respectivamente, de 209 cm e 105 cm, com menores valores registrados para as cultivares AG 8088 PR, 2 B 707 HX, 30 A 25 HX, apesar de não diferirem de outras, estatisticamente. Os rendimentos médios de grãos oscilaram de 5.897 kg.ha⁻¹ a 8.719 kg.ha⁻¹, com média geral de 7.397 kg.ha⁻¹, denotando o alto potencial produtivo das cultivares avaliadas. Aquelas cultivares com rendimentos médios de grãos acima da média geral mostraram melhor adaptação, sobressaindo, nesse grupo, os híbridos P 30 F 35 H e AG 8088 PR, seguidos dos 2 B 655 HX, 30 A 37 HX, 2 B 433 HX, como excelentes alternativas para uso nos diferentes sistemas de produção regionais de milho.

Conclusão

Os híbridos P 3862 H, DKB 390 PR, P 3646 H, 2 b 587 HX, 2 B 688 HX P 30 F 35 H e AG 8088 PR evidenciaram melhor adaptação, consubstancido-se em excelentes alternativas para exploração comercial nos diferentes ambientes do Nordeste brasileiro.

Referências Bibliográfica

CARVALHO, H. W. L.de.; CARDOSO, M. J.; GUIMARÃES, P. E. °; PACHECO, C. A. P.; LIRA, M. A. L.; TABOS, J. N.; RIBEIRO, S. S.; OLIVEIRA, V. D de. Adaptabilidade e estabilidade de cultivares de milho no Nordeste brasileiro no ano agrícola de 2006. Agrotópica, Ilhéus, v. 21, n. 1, p. 25-32, 2009.

CARVALHO, H. W. L.de.; CARDOSO, M. J.; OLIVEIRA.I.R.; PACHECO, C. A. P.; LIRA, M. A. L.; TABOS, J. N.; RIBEIRO, S. S. Adaptabilidade e estabilidade de milho no Nordeste brasileiro . Revista Científica Rural, URCAMP, Bagé, v. 13, n. 1, p. 15-29, 2011.

LÚCIO, A.D.; STORCK, L.; BANZATTO, D. A. Classificação dos experimentos de competição de cultivares quanto à sua precisão. Pesquisa Agropécuária Gaúcha, v. 5, p.99-103, 1999.

VENCOVSKY. R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Ribeirão Preto: Sociedade Brasileira de Genética, 1992. 496p.

Tabela 1: Médias e resumos das análises de variância conjuntas para as características : altura da planta, altura da espiga, estande de colheita, número de espigas colhidas e rendimento de grãos. Nordeste, 2011.

Nordeste, 2011.	Altura	Altura	Estande de —	Rendimento de grãos	
Híbridos	da planta (cm)	da espiga (cm)	colheita	Kg.ha ⁻¹	Saco/há
2B 688 HX	205b	105b	46a	8864a	148
2 B 587 HX	206b	101c	48a	8755a	146
P 3646 H	209b	101c	46a	8651a	144
DKB 390 PR	205b	109a	48a	8640a	144
P 3862 H	221a	112a	47a	8551a	143
30 A 91 HX	205b	98c	46a	8413b	140
2B 710 HX	199c	100c	47a	8402b	140
30 A 95 HX	203b	102b	46a	8323b	139
DKB 175	214a	106b	45a	8261b	138
AG 8060 YG	215a	108a	48a	8188b	136
MAXIMUS TLTG	203c	100c	48a	8150c	136
PENTA TL	200c	101b	47a	8113c	135
P 4285 H	208b	103b	48a	8031c	134
IMPACTO TL	202c	103b	47a	8006c	133
BMX 944	200c	107b	46a	7846d	131
AG 5055	213a	109a	46a	7837d	131
2B 604 HX	208b	106b	43a	7829d	130
AG 5030 YG	207b	100c	47a	7815d	130
FORMULA TL	204b	94d	48a	7738d	129
P 30F 80Y	209b	103b	47a	7731d	129
GARRA TL	198c	104b	48a	7606d	127
SOMMA TL	183e	96c	48a	7573d	126
SYN 7G 17	206b	105b	46a	7568d	126
NBX 1280	205b	105b	45a	7348e	122
SHS 5560	187e	92d	62a	7261e	121
NBX 970	200c	97c	46a	7165e	119
BRS 1030	192d	99c	46a	7152e	119
PL 1335	216a	112a	44a	7047f	117
BRS 1035	202c	103b	44a	7012f	117
BRS 3040	196d	96c	47a	6952f	116
SHS 4090	184e	89d	41a	6678f	111
SHS 7090	180e	92d	41a	6516g	109
DKB 330 YG	188e	91d	39a	6413g	107
BRAS 3010	199c	100c	45a	6384g	106
ORION	204b	103b	45a	6249g	104
SHS 7770	187e	96c	44a	6217g	104
BRS 2022	205b	103b	40a	6125g	102
ALFA 10	198c	100c	40a	5949h	99
BRS 3035	189d	93d	39a	5699h	95
Média	201	101	46	7521	125
C.V. (%)	6,6	10,9	33,3	9,2	-
F (cultivar)	15,2**	7,6**	1,8**	46,2**	_
F (Local)	260,6**	189,5**	14,4**	515,7**	-
F (Interação)	1,6**	1,4**	1,1ns	2,5**	_

^{**, *}e ns Significativos a 1% e5% de probabilidade pelo teste F. As médias seguidas pelas mesmas letras não diferem entre se pelo teste Scott-Knott.

Tabela 2: Médias e resumos das análises de variância conjuntas para as características : altura da planta, altura da

espiga, estande de colheita, número de espigas colhidas e rendimento de grãos. Nordeste, 2011.

Altura Altura Numero de Rendim Rendimento de grãos

	Altura	Altura Altura		Numero de	Rendimento de grãos	
Híbridos	da planta	da espiga	Estande de colheita	espigas	Kg.ha ⁻¹	Saco/há
	(cm)	(cm)	Comena	colhidas	Kg.IIa	Saco/iia
P 30F 35H	216a	105b	46a	47b	8719a	145
AG 8088 PR	203c	97c	46a	47a	8570a	143
2B 655 HX	213b	109a	46a	48a	8347b	139
30 A 37 HX	193d	96c	45b	47b	8250b	137
2B 433 HX	209b	104b	45a	47b	8230b	137
20 A 55 HX	216a	106a	46a	46b	8190b	137
2B 707 HX	207c	104b	46a	48a	8126b	135
30 A 25 HX	204c	100c	45b	46b	8096b	135
20 A 78 HX	206c	103b	45a	47a	8082b	135
CELERON TL	217a	105b	46a	47a	8027b	134
AG 7000 YG	198d	107a	44b	46b	8013b	134
30 A 86 HX	209b	108a	45b	46b	7973b	133
2B 512 HX	205c	103b	46a	47a	7962b	133
BMX 790	217a	114a	46a	48a	7741c	129
TRUCK TL	207c	105b	45a	49a	7729c	129
DKB 370	215a	106a	43c	43c	7712c	129
P 30K 73H	218a	110a	45b	48a	7682c	128
STATUS TL	208c	108a	45a	48a	7645c	127
30 A 70	206c	103b	45b	45b	7614c	127
AG 8061 PR	204c	108a	44b	45c	7534c	126
NBX 1200	210b	109a	44b	44c	7528c	125
BRS 1060	203c	99c	45a	47b	7468c	124
MAXIMUS TL	205c	101b	45b	47a	7440c	124
BRS 1055	220a	110a	45b	47b	7374c	123
BM 502	205c	106a	43c	43c	7200d	120
SPEED TL	208c	101b	45a	48a	7195d	120
BRS 1040	215a	107a	42d	43c	7117d	119
ALFA 905	224a	114a	41e	43c	6834e	114
NBX 1293	214b	110a	43c	43c	6825e	114
DKB 615	199d	99c	43c	44c	6786e	113
BM 207	206c	110a	44b	45b	6767e	113
BM 620	210b	99c	45b	46b	6701e	112
SHS 5550	202c	102b	44b	44c	6683e	111
NH 289688	210b	108a	42d	42d	6587e	110
AG 6040	195d	101b	45b	45b	6585e	110
TAURUS	210b	113a	44b	44c	6356f	106
ALFA 20	213b	110a	42d	43c	6347f	106
BRS 3025	210b	103b	39f	40e	6053g	101
CAIMBÉ	211b	111a	42d	41d	5905g	98
BRS 4103	210b	102b	41e	40e	5897g	98
Média	209	105	44	45	7397	123
C.V. (%)	5,6	9,8	5,6	6,4	8,8	-
F (cultivar)	7,8**	4,8**	11,5**	15,3**	31,6**	_
F (Local)	336,1**	170,0**	232,4**	140,0**	249,0**	_
F (Interação)	1,9**	1,5**	1,8**	1,6**	2,6**	-

F (Interação) 1,9** 1,5** 1,8** 1,6** 2,6**
**, * e ns Significativos a 1% e5% de probabilidade pelo teste F. As médias seguidas pelas mesmas letras não diferem entre se pelo teste Scott-Knott.