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Boto, a class II transposable element, was characterized in the Moniliophthora perniciosa

genome. The Boto transposase is highly similar to plant PIF-like transposases that belong to the

newest class II superfamily known as PIF/Harbinger. Although Boto shares characteristics with

PIF-like elements, other characteristics, such as the transposase intron position, the position and

direction of the second ORF, and the footprint, indicate that Boto belongs to a novel family of the

PIF/Harbinger superfamily. Southern blot analyses detected 6–12 copies of Boto in C-biotype

isolates and a ubiquitous presence among the C- and S-biotypes, as well as a separation in the

C-biotype isolates from Bahia State in Brazil in at least two genotypic groups, and a new insertion

in the genome of a C-biotype isolate maintained in the laboratory for 6 years. In addition to PCR

amplification from a specific insertion site, changes in the Boto hybridization profile after the M.

perniciosa sexual cycle and detection of Boto transcripts gave further evidence of Boto activity.

As an active family in the genome of M. perniciosa, Boto elements may contribute to genetic

variability in this homothallic fungus. This is the first report of a PIF/Harbinger transposon in the

genome of a phytopathogenic fungus.

INTRODUCTION

Eukaryotic transposable elements are divided into two
main categories according to their transposition mech-
anism: the class I elements that transpose by an
intermediate RNA and are further divided into the five
orders LTR, DIRS, Penelope-like, LINEs and SINEs
(Wicker et al., 2007); and the class II elements that
transpose directly at the DNA level, not requiring an RNA
transposition intermediate. Class II elements can be further
divided into subclasses, superfamilies and families by the
transposition mechanisms and structural features of the
terminal inverted repeats (TIRs), the transposase and
the target site duplication (TSD) (Daboussi & Capy, 2003;
Wicker et al., 2007). Class II elements belonging to the
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superfamilies Tc1/mariner, hAT, mutator and MITEs
(miniature inverted-repeated transposable elements) have
already been identified in several species of filamentous
fungi (Daboussi & Capy, 2003). Moreover, as new elements
are described and new eukaryotic genomes are sequenced,
new groups of elements are identified (Goodwin & Poulter,
2001; Goodwin et al., 2003).

One of the 10 class II superfamilies identified so far in
eukaryotic organisms is the PIF/Harbinger superfamily.
The first two elements described in this superfamily were
the PIF element (P instability factor) of maize (Walker
et al., 1997) and the Harbinger element of Arabidopsis
thaliana (Kapitonov & Jurka, 1999). PIF/Harbinger ele-
ments share characteristics with other groups of transpo-
sons, such as the small TIRs and the 3 bp TSD. However,
some unique characteristics distinguish PIF/Harbinger
elements from other superfamilies: (i) the presence of
two open reading frames (ORFs), one coding for a
transposase and the other for a protein of unknown
function but showing weak similarity to myb transcription
factors (Jiang et al., 2003); (ii) a distant relationship
between the PIF/Harbinger transposase and the transposase
of bacterial insertion sequences (IS) of the IS5 group; and
(iii) their direct link in origin and mobility of non-
autonomous MITEs (Zhang et al., 2001, 2004; Grzebelus
et al., 2006). The Harbinger and PIF elements, in addition
to the rice element named Pong (Zhang et al., 2004), can be
seen as the founding members of this widespread
superfamily of DNA transposons. A distribution analysis
identified more than 600 PIF-like transposases from 35
species of plants and 19 species of animals (Zhang et al.,
2004), and different PIF/Harbinger families have been
found in protists, plants, insects, worms and vertebrates
(Jurka & Kapitonov, 2001; Kapitonov & Jurka, 2004;
Grzebelus et al., 2006; Zhou et al., 2010, 2012). Curiously,
sequences similar to PIF-like elements were reported in
only two species of fungi, Cryptococcus neoformans and
Neurospora crassa (Zhang et al., 2001, 2004). This
observation is interesting because a great number of
transposable elements from varying superfamilies have
been identified in fungal genomes (Wöstemeyer &
Kreibich, 2002; Daboussi & Capy, 2003; Pereira et al.,
2006).

Mutagenic effects of transposons could be one of the main
mechanisms responsible for the high adaptability and
plasticity exhibited by numerous species of pathogenic
fungi (Daboussi & Capy, 2003; Shnyreva, 2003; Pereira
et al., 2006; Schmidt & Panstruga, 2011). In this context,
studying transposable elements in the plant pathogen
Moniliophthora (formerly Crinipellis) perniciosa, the causal
agent of witches’ broom disease of cacao, is important to
understand the mechanisms related to genetic variability in
this species. This fungus attacks cacao plantations in South
and Central America and represents the main threat in
south-eastern Bahia, the main cacao-producing region in
Brazil (Pereira et al., 1996). In addition to cacao
(Theobroma cacao), M. perniciosa has other plant hosts,

and a classification based on pathological data divides the
species into the following three biotypes: the C-biotype
infects species of the family Sterculiaceae (Evans, 1978;
Bastos et al., 1988), the S-biotype infects plants of the
family Solanaceae (Bastos & Evans, 1985; Bastos et al.,
1988) and the L-biotype is a saprotroph that colonizes a
wide variety of substrates (Evans, 1978; Hedger et al.,
1987). The genetic variability of M. perniciosa has been
evaluated through different molecular studies that revealed
a high degree of variability among isolates of this species
(Andebrhan & Furtek, 1994; Andebrhan et al., 1999; de
Arruda et al., 2003a, b; Rincones et al., 2003, 2006; Ploetz
et al., 2005).

In the present work, we describe the isolation and
characterization of a class II transposable element in the
M. perniciosa genome. This element, called Boto, is the first
representative of the PIF/Harbinger superfamily identified
in a phytopathogenic fungus.

METHODS

Fungal strains and growth conditions. Isolates of M. perniciosa

examined in the present study are listed in Table 1. Basidiomata from

isolate 1919 were obtained from mycelial mats as described by Griffith

& Hedger (1993) with the modifications introduced by Niella et al.

(1999).

Isolation of recombinant phages. A sequence showing similarity

to plant PIF-like transposase (e-value 1610229) was obtained from

the database of the Witches’ Broom Genome Project. Primers

CPORT1 (59-TTGCTTGTGAGCTTGGTGTC) and CPORT2 (59-

GCCTGAGCATGTCGAAGATT) were used to amplify a 795 bp

fragment corresponding to part of the transposase coding region that

was subsequently used as a probe for the isolation of recombinant

phages from a genomic library of M. perniciosa cloned into the

lEMBL3 bacteriophage (Benton & Davis, 1977). Hybridizations were

conducted at 65 uC using the Gene Images Random Primer Labelling

Module and the CDP-Star Detection Module (Amersham

Biosciences) according to the manufacturer’s instructions. The plates

containing the positive phages were individually collected, and second

and third screenings were conducted using the same conditions

described above. DNA was extracted from the positive phages

following the protocol described by Felipe et al. (1992). Cleavage of

the phage DNA was performed using different restriction enzymes

according to the manufacturer’s instructions.

Cloning of the Boto element, sequencing and sequence

analysis. Fragments generated from the digestion of the isolated

phages were cloned into the pBluescript II KS+ vector (Stratagene).

DNA sequencing was performed according to the dideoxynucleotide

chain-termination method (Sanger et al., 1977) in a MegaBACE 500

sequencer (Amersham Biosciences). Analyses of DNA and protein

sequences were performed using the BLAST algorithm (Altschul et al.,

1997), CLUSTAL W program (Thompson et al., 1994), the CD-Search

program to identify conserved domains (Marchler-Bauer & Bryant,

2004) and the AUGUSTUS program for gene prediction (Stanke &

Morgenstern, 2005).

Phylogenetic analysis. The sequences of the fungal, oomycete,

plant and animal PIF/Harbinger transposase proteins were obtained

from GenBank. The sequences were aligned using the CLUSTAL W

program, and phylogenetic analyses were performed based on the
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neighbour-joining method (Saitou & Nei, 1987) using bootstrap

values based on 1000 replicates.

Footprint analysis. Primers Boto2.1 (59-TGTAGGCATTCGGACT-

TTCGG) and Boto2.2 (59-TTCGGATGCTCTTGCCGT) were designed

based on the Boto flanking regions present in the l phage 2.1.1.

The expected 185 bp PCR fragment was precipitated and used for

sequencing as described above.

DNA extraction and PCR amplification. Total DNA was extracted
as described by Specht et al. (1982). The PCR amplification was
performed in a thermocycler (PTC-100; MJ Research) with the
following programme: for primers CPORT1 and CPORT2, 40 cycles
of 1 min at 94 uC, 1 min at 55 uC and 1 min at 72 uC, and a final
extension step at 72 uC for 10 min; and for primers Boto2.1 and
Boto2.2, 30 cycles of 30 s at 94 uC, 30 s at 62 uC and 30 s at 72 uC, and
a final extension step at 72 uC for 3 min. The reactions were carried out

Table 1. Isolates of Moniliophtora perniciosa used in this study

Isolate

number

Isolate identification Biotype Chromosomal group* LocationD Host

1 FA551 C 2 Tabatinga/AM Theobroma sp.

2 ESJOH1 C 2 Marituba/PA Theobroma cacao

3 ESJOH2 C 2 Ouro Preto do Oeste/RO Theobroma cacao

4 ESJOH3 C 2 Belém/PA Theobroma cacao

5 CP02-1 C CP-C1 Itajaı́pe/BA Theobroma cacao

6 Belmont C CP-C1 Belmonte/BA Theobroma sp.

7 Ilhéus C CP-C1 Ilhéus/BA Theobroma sp.

8 FA563 C CP-C1 Itabuna/BA Theobroma cacao

9 Santo Amaro C CP-C2 Santo Amaro/BA Theobroma sp.

10 FA42 C CP-C2 Itabuna/BA Theobroma cacao

11 FA276 C CP-C2 Itabuna/BA Theobroma cacao

12 FA293 C 2 Gandu/BA Theobroma cacao

13 FA562 C CP-C2 Itabuna/BA Theobroma cacao

14 Lep1 L 2 Pichilingue/Ecuador Arrabidaea verrucosa

15 SCFT L 2 San Carlos/Ecuador Arrabidaea verrucosa

16 SCL4 L 2 San Carlos/Ecuador Arrabidaea verrucosa

17 FA607 S 2 Coimbra/MG Solanum lycocarpum

18 FA609 S 2 Poços de Caldas/MG Solanum sp.

19 DOA-105 S 2 Jataı́/GO Solanum lycocarpum

20 LA17 L 2 Pichilingue/Ecuador Arrabidaea verrucosa

21 RWB500 S 2 Mariana/MG Solanum cernum

22 RWB551 S 2 Juiz de Fora/MG Solanum lycocarpum

23 FA277 C 2 Itabuna/BA Theobroma cacao

24 FA281 C CP-C2 Aiquara/BA Theobroma cacao

25 DOA100 C 2 2 Theobroma cacao

26 CP02d C CP-C1 Itajaı́pe/BA Theobroma cacao

27 ALF42 C 2 Itabuna/BA Theobroma cacao

28 ALF110 C 2 2 Theobroma cacao

29 ALF276 C 2 Itabuna/BA Theobroma cacao

30 ALF277 C 2 Itabuna/BA Theobroma cacao

31 ALF278 C 2 Itabuna/BA Theobroma cacao

32 ALF301 C 2 2 Theobroma cacao

33 ALF305 C 2 2 Theobroma cacao

34 ALF321 C 2 Ilhés/BA Theobroma cacao

35 606GD-W C 2 Itabuna/BA Theobroma cacao

36 676GD-W C 2 Floresta Azul/BA Theobroma cacao

37 896FD-W C 2 Jaguaquara/BA Theobroma cacao

38 948FD-W C 2 2 Theobroma cacao

39 1734D-W C 2 Gandu/BA Theobroma cacao

40 FA317 C 2 2 Theobroma cacao

41 SABA C 2 2 Theobroma cacao

2 1919 C 2 2 Theobroma cacao

*Chromosomal groups 1 or 2 determined according to Rincones et al. (2006).

DAM, Amazonas; BA, Bahia; GO, Goiás; MG, Minas Gerais; PA, Pará; RO, Rondônia.

dIsolate CP02 was used in the Witches’ Broom Genome Project.
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in a final volume of 25 ml containing 16 thermophilic DNA poly
Buffer (Promega), 2.5 mM MgCl2, 400 mM dNTPs, 0.2 mM each
primer, 50 ng total DNA and 1 unit Taq DNA Polymerase (Promega).

Southern hybridization analysis. For phage characterization, the
viral DNA (2 mg) was digested with the restriction enzymes BamHI,
EcoRI, HindIII, KpnI and SalI (data not shown). After the sexual cycle
in the M. perniciosa isolates, the distribution, copy number analyses
and hybridization profiles were performed with total DNA (3 mg)
digested with HindIII or SalI. These enzymes do not cut inside the
795 bp transposase fragment used as the probe. The digested DNA
was then electrophoresed in a 0.7 % agarose gel and transferred to a
Duralon-UV nylon membrane (Stratagene) following standard
procedures (Sambrook et al., 1989). HindIII-cleaved DNA was
hybridized at 58 uC but that temperature exhibited low specificity
for the SalI-cleaved DNA, making the results difficult to interpret.
Subsequently, hybridization with the SalI-cleaved DNA was per-
formed at 65 uC. Probe labelling, hybridization and detection were
performed with the Gene Images Random Primer Labelling Module
and the CDP-Star Detection Module (Amersham Biosciences)
according to the manufacturer’s instructions.

RNA extraction, RT-PCR analysis and cDNA cloning. To obtain
the M. perniciosa mycelial mass for the RT-PCR experiment, five
mycelial discs (7 mm each) were placed in PDA medium at 27 uC for
10 days. Once grown, 10 mycelial discs were cut into smaller
fragments and transferred to 125 ml Erlenmeyer flasks containing
50 ml Pontecorvo’s minimal medium (Pontecorvo et al., 1953) and
incubated for 7 days at 27 uC/180 r.p.m. Mycelia were subsequently
separated from the media, washed three times and frozen in liquid
nitrogen. Total RNA extraction was performed according to TRIzol-
based methods (Invitrogen). For the RT reactions, total RNA was
treated with DNase RQI RNase-Free (Promega) and quantified
spectrophotometrically at 260 nm. To synthesize the first cDNA
strand, the reaction components were mixed as follows: 5 mg total
RNA, 16 RT reaction buffer (Promega), 0.5 mM dNTPs, 500 ng
(dT)15 primer (Promega), 20 units of the RNase inhibitor RNAsin
(Promega) and 10 units AMV Reverse Transcriptase (Promega). The
reaction mixtures were adjusted to a final volume of 20 ml and
incubated at 25 uC for 5 min followed by 60 min at 42 uC. Primers
CPORT1 and CPORT2 were used to amplify a fragment of the Boto
transposase coding region. The expected size of the amplification
product is 795 or 694 bp, depending on whether genomic DNA or
cDNA is used as the template, respectively. The programme used for
this amplification was 25 cycles of 1 min at 94 uC, 1 min at 55 uC and
1 min at 72 uC. The entire 25 ml amplification reaction was
electrophoresed in a 1.5 % agarose gel. To analyse the Boto ORF1
expression, two primer sets, Boto2ORF1F1 (59-AGTCTTCGGCA-
ACCAATGAG) plus Boto2ORF1R1 (59-CCTCGGGTTGGCCTT-
AACATA) and Boto2ORF1F2 (59-CAGAGCCAAACAGTGCAAAA)
plus Boto2ORF1R2 (59-CCGAGACACTCAATCCACCTG), were
used. The size of the PCR product was expected to be either 402 or
347 bp and 896 or 794 bp, depending on whether genomic DNA or
cDNA was used as the template, respectively. The programme used
for this amplification was 35 cycles of 1 min at 94 uC, 1 min at 51 uC
and 1 min at 72 uC. The reaction mixture was electrophoresed in a
2.5 % agarose gel. The amplified cDNA from Boto transposase and
ORF1 was cloned into the pGEM-T Easy vector (Promega) according
to the manufacturer’s instructions. Sequencing and analysis of the
cDNA were performed as described above.

RESULTS

Boto belongs to the PIF/IS5 superfamily

Our group had previously designed a phage (lEMBL3)
genomic library of M. perniciosa aimed at isolating

complete and intact genes when only a partial gene
sequence was available in the Witches’ Broom Genome
Project database, which was common at the beginning of
the project. DNA from isolate CP02, the same isolate used
in the Witches’ Broom Genome Project, was used as the
template for primers CPORT1 and CPORT2. A 795 bp
DNA fragment, amplified by those primers and containing
part of a transposase sequence, was used as a probe to
screen for recombinant phages (data not shown). A 4 kb
EcoRI fragment from phage 2.1.1 was cloned and
sequenced. The resulting sequence corresponds to the
element designated Boto. This element is 3089 bp and has
TIRs of 45 bp (59-GGGCCTGTTCGGTAAAAAAAAGCT-
GTAGCTTTTTCGCAGCTTTTC and 59-GAAAAGCTA-
CGAAAAAGCTGCAGCTTTTTTTTACCGAACAGGCCC)
with 95.55 % identity, varying only in two base pairs. A
3 bp sequence (TAA) was found flanking the Boto TIRs,
thus characterizing the putative TSD. An ORF beginning
127 bp downstream of the 59 TIR codes for a 414 aa
protein, showing high similarity to transposases of plant
PIF-like elements and hypothetical proteins of Cryptococcus
neoformans, Cryptococcus gattii and Ajellomyces capsulatus
(e-values from 2610253 to 7610246). Therefore, although
fungal PIF/Harbinger transposases have been previously
described only for C. neoformans and N. crassa (Zhang
et al., 2001, 2004), new PIF/Harbinger transposases from
two fungal species were found in GenBank. In addition to
the 3 bp TSD and the similarity to PIF-like transposases,
two other characteristics indicate that Boto is a member of
the PIF/Harbinger superfamily: (i) the presence of two
introns at the transposase coding region, and (ii) the
presence of a second ORF coding for a protein of unknown
function (Fig. 1).

Boto transposase contains two introns

Comparison of the Boto transposase with transposases of
plant PIF/Harbinger elements revealed the presence of
some conserved domains (Fig. 1c). These domains have
already been described in transposases of plant PIF-like
elements (Zhang et al., 2004) and correspond to (i) the
HTH domain (helix–turn–helix), which could participate
in DNA binding, and to (ii) the N2, N3 and C1 regions that
probably contain the protein catalytic domain, given that
they contain the characteristic DDE amino acid residues
(Asp, Asp and Glu), with one residue located in each
region. The Boto transposase was found to have the same
DD48E spacing reported for some transposases of plant
PIF-like elements, which can also have the DD47E spacing
(Zhang et al., 2004). For the Harbinger and Pong
transposases, this motif can be seen as DD35E (Kapitonov
& Jurka, 1999, 2004; Zhang et al., 2004).

The first intron (53 bp) in the Boto transposase coding
region interrupts the His133 codon and has an A+T
content of 68 %. The second intron (48 bp) interrupts the
Arg285 codon and has an A+T content of 67 %. The
transposase intron positions of Boto are different from
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those reported for plant PIF-like elements (Zhang et al.,
2004). Introns 1 and 2 in the plant PIF-like transposase
coding region are located 6 aa residues upstream from the
first and second Asp (D) of the DDE domain, respectively
(Zhang et al., 2004), but, in the Boto element, intron 1 was
located 50 aa upstream from the first Asp of the DDE
domain and intron 2 was located 28 aa downstream from
the second Asp of the DDE domain (Fig. 1c).

Boto ORF1 also contains two introns

The sequence downstream of the transposase coding region
contains a second ORF of 1090 bp, interrupted by two
introns and coding for a 328 aa protein with low similarity
to the DNA-binding domain of the myb transcription factor
(Fig. 1b). Comparing that ORF with a sequence (EEB88797)
presented in the Witches’ Broom Genome Project Database
allowed the identification of two additional thymines in the
Boto ORF1 at positions +1067 and +1147 (based on the

first ATG), which are responsible for the appearance of a
premature stop codon. The removal of these additional
thymines resulted in a 1372 bp ORF1 coding for a 422 aa
protein, where the distance from the transposase stop codon
and the ORF1 stop codon was only 16 bases. The presence of
the two introns was confirmed by sequencing of PCR
fragments amplified from ORF1 using cDNA and genomic
DNA as templates (data not shown). These two introns are
55 bp with an A+T content of 58.2 %, and 48 bp with an
A+T content of 75.0 %.

The Boto ORF1 intron position could not be compared
with other fungal ORF1 sequences, and, although introns
have been described in other PIF/Harbinger ORF1
sequences, the presence of two introns appears to be
unusual. Analysis of the Boto ORF1 protein along with
ORF1 proteins of plant PIF/Harbinger elements revealed
the presence of some conserved blocks (Fig. 1b) previously
identified by Zhang et al. (2004).

Fig. 1. (a) Schematic representation of the Boto element. The dotted arrow indicates the presence of ORF1 exhibiting low
sequence similarity to the myb transcription factor. Grey boxes represent introns; small black arrows represent primers
CPORT1 and CPORT2 used in the Southern blot, PCR and RT-PCR analyses; and small light and dark grey arrows represent
primers Boto2ORF1F1, Boto2ORF1R1, Boto2ORF1F2 and Boto2ORF1R2 used to analyse ORF1 intron size and position. (b)
Multiple alignments of the selected PIF/Harbinger ORF1. A and B indicate the two most conserved blocks identified by Zhang
et al. (2004). ‘Consensus’ indicates the consensus amino acid residues obtained by the alignment of some plant myb

transcription factors (Oryza sativa, AY398581; Arabidopsis thaliana, NM_114482; and Glycine max, DQ822919). The
residues highlighted in grey are conserved among the analysed ORF1 proteins (Os-PIF, AC078977; Zm-PIF, EU949209; and
At-PIF, NM_122608). (c) Multiple alignments of the Boto transposase protein with transposases described for plant PIF/
Harbinger elements (Os-PIF, AAP52086; Zm-PIFa, AF412282; and DC-Master, ABB83644). Only the most conserved
regions are presented. The horizontal lines indicate the HTH domain (H) and the three regions of conserved amino acids (N2,
N3 and C1) that must contain the catalytic domain of the enzyme (Zhang et al., 2004). The residues highlighted in grey are
conserved among the analysed transposases. The DDE domain is indicated by (q); (Y) indicates the position of the following
elements: YB1, intron 1 of the Boto element; YB2, intron 2 of the Boto element; YP1, intron 1 of plant PIF-like elements; and
YP2, intron 2 of plant PIF-like elements.
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Fig. 2. Phylogenetic tree for Boto transposase. Trees were built with fungal and oomycete PIF/Harbinger-like transposases (a),
and fungal, oomycete, plant and animal PIF-like tranposases (b). The trees were constructed by using the neighbour-joining
method (Saitou & Nei, 1987). Numbers indicate the percentage of bootstrap replicates from a sample of 1000 that support the
branches. Sequences are named according to the species or the elements. GenBank accession nos: Acyrthosiphon pisum

(AC202214), Ajellomyces capsulatus (XM_001541700), Aphanomyces euteiches (CU363155), Arabidopsis thaliana

(AC005850), Boto (EU218539), Caenorhabditis elegans (NM_062114), Cryptococcus gatti (XM_003102814),
Cryptocossus neoformans (NC_006670, 787098–788500; NC_009177, 778738–779561; NC_009180, 174072–
175467), Danio rerio (XM_001921333), DcMaster-a (DQ250806), Neurospora crassa (AL670543, 39714–39364;
AL356834, 64784–64443), Oryza sativa (NM_001070615), OsPIF (NM_001070686) and Strongylocentrotus purpuratus

(XM_788866).
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Boto and other fungal PIF-like transposases
belong to the same phylogenetic cluster

A phylogenetic tree was constructed based on the trans-
posase protein deduced from Boto and the transposases and
putative proteins of fungi and an oomycete (Fig. 2a), and

plants and animals (Fig. 2b). The sequences from N. crassa

and one from C. neoformans (NC_009180), when analysed

together with the putative transposases of plants and

animals, resulted in branches with low bootstrap values

(data not shown). Boto, the oomycete (Aphanomyces

Fig. 3. PCR and hybridization analyses of the C-, S- and L-biotype isolates of M. perniciosa. (a) Amplification of a 795 bp
fragment containing part of the Boto transposase coding region. (b, c) Hybridizations, performed at 58 6C, of M. perniciosa total
DNA cleaved with HindIII. (d) Hybridizations, performed at 65 6C, of M. perniciosa total DNA digested with SalI. White
rectangle indicates the new Boto insertion in the CP02 isolate. In all hybridization experiments, the 795 bp Boto transposase
fragment was used as the probe. See Table 1 for identification of isolates 1–39.
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euteiches) protein, and the four other fungal transposases
(C. neoformans NC_006670, C. neoformans NC_009177, C.
gattii and A. capsulatus) grouped in the same branch (Fig.
2b).

Boto is ubiquitously distributed among M.
perniciosa

The distribution analyses of Boto throughout the genomes
of isolates from C-, S- and L-biotypes from the Amazon
region and the states of Bahia and Minas Gerais, in Brazil,
were performed by PCR and Southern hybridization (Fig.
3). In the PCR analysis, primers CPORT1 and CPORT2
were not able to amplify the 795 bp fragment in some
isolates (Fig. 3a) but Boto was detected in those same
isolates by hybridization analysis (Fig. 3b, c). This is
probably due to mutations in the annealing sites of the
primers. DNA quality did not interfere in the PCR analysis
once we were able to amplify the internal transcribed

spacer region (ITS) in all isolates (data not shown).
Southern hybridization did not detect any Boto sequences
in isolate 20, belonging to the L-biotype, and only one copy
was found in the S-biotype isolates (Fig. 3d). The C-
biotype strains, when analysed with the SalI enzyme,
exhibited from six to 12 copies of the Boto element (Fig.
3d). When analysed with the HindIII enzyme, the C-
biotype isolates from Bahia State were divided into two
groups by the presence of a 1.68 kb fragment according
to their chromosomal groups (Fig. 3b). This fragment was
not detected in the Amazon isolates or in the L- and S-
biotype isolates analysed (Fig. 3b, c). Two different cultures
of isolate CP02, the same isolate used in the Witches’
Broom Genome Project, were analysed: cultures CP02 and
CP02-1. Culture CP02 was maintained as a stock in tubes
with water, and culture CP02-1 was successively grown in
PDA medium in the laboratory for 6 years. Fig. 3(d) shows
the variation in the Boto element profiles of these two
cultures.

Fig. 4. (a) PCR analysis (separated on a 1.5 % agarose gel) for detection of regions without Boto insertion. The annealing sites
for primers Boto2.1 and Boto2.2 flank the region where Boto was characterized, and a 185 bp PCR fragment is expected if
Boto is not present in that region. ‘M’ indicates the molecular size marker (50 bp ladder). (b) ITS amplification as a DNA quality
control. ‘M’ indicates the molecular size marker (1 kb ladder). The reaction control without DNA is denoted by ‘w’, and numbers
indicate M. perniciosa isolates (see Table 1). (c) Sequence analysis for detection of Boto excision footprints. ‘TSD’ indicates the
target site duplication. Underlined ‘G’ indicates the G : C transversion in isolate SCL4.
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Boto excision is not perfect

Based on the flanking regions of the Boto transposon, a
primer set was designed to analyse the putative excision
footprints. The extension time used to amplify that specific
region was short (30 s), and was less than the time
necessary for the amplification of the whole element
(3089 bp). In the analyses of 22 M. perniciosa isolates, the
expected PCR fragment (185 bp) was detected in 14
isolates belonging to C-, S- and L-biotypes (Fig. 4a).
Among those isolates, the cultures CP02 (maintained in
stock) and CP02-1 (cultivated in our laboratory for
6 years) were negative and positive, respectively, indicating
that Boto transposed from that site in culture CP02-1.
Sequence analysis of the 185 bp fragment in isolate CP02-1
with Boto flanking regions revealed that (i) the TAA is not

duplicated and (ii) the first adenine, downstream of the
duplicated TAA in the Boto element, is not present in the
CP02-1 isolate (Fig. 4c). Those same characteristics were
found in all of the other 13 sequences, in addition to a G : C
transversion in isolate SCL4, three bases downstream of the
TAA. Once Boto was identified through the genome
sequencing of isolate CP02, analysis of isolates CP02 and
CP02-1 provided evidence that Boto removes one copy of
the 3 bp (TAA) target site duplication and just one other
base during transposition. This finding is different from
those reported for the mPing and Harbinger elements
where a high proportion of ‘perfect’ excision (when, after
the excision, the sequence at the insertion site is the same
as before the insertion) was found (Yang et al., 2007;
Sinzelle et al., 2008).

Fig. 5. Hybridization profile of an M. perniciosa

parental isolate and six isolates from its
progeny after the sexual cycle. Total DNA from
M. perniciosa was cleaved with SalI, and
hybridization was performed at 65 6C. The
795 bp PCR fragment containing part of the
Boto transposase was used as a probe. ‘P’
indicates the parental isolate (1919; see Table
1 for more details), and ‘P1–P6’ indicate the
six isolates obtained from its offspring after the
M. perniciosa sexual cycle.

Fig. 6. Partial RT-PCR amplification of Boto transposase (with primers CPORT1/2) (a) and ORF1 (with primers
Boto2ORF1F1/R1 and Boto2ORF1F2/R2) (b) genes using genomic DNA (g) and cDNA (c) from isolate CP02-1. The
expected sizes for the PCR products are 795 or 694 bp (for primers CPORT1/2), 402 or 347 bp (for primers Boto2ORFF1/
R1) and 896 or 794 bp (for primers Boto2ORFF2/R2) using genomic DNA or cDNA, respectively. ‘wX’, Molecular size marker
(DNA from wX174 phage cleaved with HaeIII).
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A different Boto hybridization pattern is detected
after the M. perniciosa sexual cycle

To analyse Boto transposition during the M. perniciosa
sexual cycle, isolate 1919 was used to compare the Boto
hybridization pattern with the pattern of its progeny (Fig.
5). Using the 795 bp Boto transposase fragment as a probe,
six Boto copies were detected in the parental isolate, and a
modified hybridization pattern was observed in some of its
progeny. Isolates P1 and P3 had lost the 8.99 kb fragment,
and two new fragments (3.44 and 5.13 kb) were detected,
while isolate P6 had lost the 6.55 kb fragment. The
variation in the hybridization pattern of these isolates
could be explained by (i) Boto transposition to a new site
(in isolates P1 and P3) and Boto excision without
reinsertion (in isolate P6), (ii) recombination or (iii) a
combined action of the two mechanisms.

Amplification of Boto transcripts

The activity of Boto in M. perniciosa was also analysed by
RT-PCR (Fig. 6). RNA was extracted from a culture grown
in minimal media, and Boto transcripts related to the
transposase and ORF1 genes were amplified (Fig. 6). The
sizes of the DNA fragments amplified from the cDNA were
smaller than those amplified from genomic DNA, thus
confirming the presence of the introns (Fig. 6).

DISCUSSION

Even though in silico analysis has revealed a higher number
of class I than class II transposable elements in M.
perniciosa (Mondego et al., 2008), we were able to identify,
at the start of the Witches’ Broom Genome Project, a rare
transposase sequence for a phytopathogenic fungus. This
paper describes the complete characterization of that class
II element, named Boto, in the M. perniciosa genome. Some
characteristics of the Boto transposon are similar to those
of PIF/Harbinger elements, including: (i) 3 bp (TAA) target
site duplication; (ii) small TIRs (45 bp); (iii) a second ORF
(at the 22 frame) that codes for a protein exhibiting low
sequence similarity to the plant myb transcription factor;
(iv) sequence similarity of Boto transposase as well as the
DD48E spacing; and (v) two introns at the transposase
coding region. PIF-like and Pong-like elements of plants
also have a 3 bp TSD, which is usually TTA or TAA,
although the PIF-like element TSD was characterized as
AAT in C. neoformans (Zhang et al., 2001). A 3 bp TSD was
also characterized in all autonomous and non-autonomous
Harbinger elements analysed by Kapitonov & Jurka (2004).
Although the length of TIRs for Harbinger elements may
vary from 10 to 700 bp (Kapitonov & Jurka, 2004), the size
varies from 10 to 45 bp in the PIF-like elements of rice
(Zhang et al., 2004), similar to the 45 bp size determined
for the Boto element TIRs. As described for TIRs from most
OsPIFs and OsPongs elements, the Boto TIRs also begin
with 59-GGSG-39 (where S represents G or C). Specific PIF
or Pong inner TIR motifs were not identified, although

bases 6–14 in the Boto TIRs (59-TGTTCGGTA-39) are
more similar to PIF (59-TGTTTGGTT-39) than Pong
elements (Zhang et al., 2004). ORF1 exhibits weak
similarity to transcription factors that may have a possible
role in the transposition mechanism (Kapitonov & Jurka,
2004; Zhang et al., 2004; Yang et al., 2007; Sinzelle et al.,
2008; Hancock et al., 2010). Assuming a role of ORF1 in
transposition, it is possible that Boto transposition could be
achieved by cross-mobilization if the Boto ORF1 protein
fails to produce a functional protein due to the presence of
two additional thymines in its coding region.

The PIF/Harbinger elements are not abundantly distributed
in fungal genomes. This fact is not a reflection of the
number of fungal genomes currently available because
close to 500 genomes, including yeasts, are sequenced or
near completion (Keyhani, 2011). At least two hypotheses
can explain the low distribution of the PIF/Harbinger
elements in fungal genomes: (i) these elements have been
lost during evolution in the majority of the fungal species
studied so far or (ii) horizontal transfer spreads these
elements to only some fungal genomes. The hypothesis of
horizontal transfer is supported by the sporadic and non-
homogeneous distribution of PIF/Harbinger transposases
observed in fungi, having only been detected in three
human-pathogenic fungi (C. neoformans, C. gattii and A.
capsulatus), one saprotrophic fungus (N. crassa) and one
phytopathogen (M. perniciosa). Such non-uniform distri-
bution of an element within isolates of a single species (or
within the same group, as in the present case) may reflect
the recent acquisition of this element (Daboussi & Capy,
2003). Horizontal transfer was hypothesized to have a role
in the distribution of Harbinger transposons in plants
(Kapitonov & Jurka, 2004) and in some fungal transposons
from different classes and superfamilies (Dobinson et al.,
1993; Daboussi & Langin, 1994; He et al., 1996; Shull &
Hamer, 1996; Nakayashiki et al., 1999; Shim & Dunkle,
2005). Although in the phylogenetic analysis of Boto, one
oomycete and four fungal transposases grouped in the
same branch (Fig. 2b), Zhang et al. (2004) reported that
PIF-like transposases in C. neoformans and N. crassa
formed two distinct species-specific groups that failed to
show a common ancestor when analysed with 600 other
PIF-like transposases of plants and animals. Undoubtedly,
more detailed analyses are necessary to elucidate the
polyphyletic nature of fungal PIF-like transposases, but
the role of horizontal transfer cannot be ruled out.

MITEs are present in high copy numbers in plant genomes
(Wessler et al., 1995). Given that PIF/Harbinger elements
are present in several plant species and are directly linked
to the origin and mobilization of MITEs in plants (Zhang
et al., 2001, 2004; Kapitonov & Jurka, 2004; Grzebelus et al.,
2006), the wide distribution of MITEs in plants can be
expected. Therefore, the low distribution of PIF/Harbinger
elements in fungal genomes may be related to the small
number of MITE-like elements found in filamentous fungi
(Yeadon & Catcheside, 1995; Hua-Van et al., 2000;
Fleetwood et al., 2007, 2011). Although the PIF/Harbinger
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elements have been identified as sources of transposases for
Tourist-like MITEs in maize and rice (Zhang et al., 2001;
Jiang et al., 2003), the cross-mobilization of the mimp
elements from Fusarium oxysporum was linked to the
impala transposase, an element of the TC1/Mariner
superfamily (Dufresne et al., 2007; Bergemann et al., 2008).

In M. perniciosa, Boto elements were found to be
ubiquitous among the analysed isolates belonging to the
C-, L- and S-biotypes (Fig. 3). Although a 2.5 kb HindIII
DNA fragment is conserved in the M. perniciosa isolates
analysed (Fig. 3b, c), a 1.68 kb HindIII fragment did
distinguish the C-biotypes from Bahia State, the major
state of cacao production in Brazil, into two different
groups related to the chromosomal groups described by
Rincones et al. (2006). Genetic variability studies in M.
perniciosa, using several different molecular techniques,
have revealed two different genotypic groups in Bahia State
and genetically close relationships between a number of
isolates from that state with isolates from the Amazon
region. Those data have been used to propose (Andebrhan
et al., 1999) and to corroborate the hypothesis (de Arruda
et al., 2003a, b; Rincones et al., 2003) that the witches’
broom outbreak in Bahia State occurred by two independ-
ent focal points of introduction. Moreover, a reverse
transcriptase sequence, part of a putative gypsy-like retro-
transposon, and a transposase sequence, belonging to the
TC1-Mariner superfamily, also distinguished C-biotype
isolates from Bahia in two genotypic groups (Pereira et al.,
2007; Ignacchiti et al., 2011). Thus, some transposable
elements appear to spread through the M. perniciosa
genome in accordance with some chromosomal groups.

Different strategies could be used to demonstrate transpo-
son activity such as gene inactivation (Daboussi et al., 1992;
Langin et al., 1995; Maurer et al., 1997; Gómez-Gómez
et al., 1999; Ogasawara et al., 2009), detection of new
insertions in the genome (Anaya & Roncero, 1996; Mes et
al., 2000) or through expression analyses (Okuda et al.,
1998; Kaneko et al., 2000; Kito et al., 2003; Rep et al., 2005;
Ogasawara et al., 2009). For Boto elements of M. perniciosa,
the last two strategies were used to give experimental
support to their expression and activity, including (i)
variation found in the hybridization profiles in different
cultures of isolate CP02 (Fig. 3d); (ii) PCR amplification
from the specific site where Boto was characterized (Fig. 4);
(iii) different hybridization patterns in three isolates
originated after the M. perniciosa sexual cycle (Fig. 5);
(iv) successful amplification of Boto transcripts (Fig. 6);
and (v) variation in the copy number and location in
different isolates of this fungus (Fig. 3). Thus, we conclude
that the Boto family is active and may contribute to the
genetic variability in M. perniciosa.

One possible explanation for the Boto activity observed
when M. perniciosa was subjected to the sexual cycle is
based on the idea that transposable elements could be
activated under stress conditions. That idea is supported by
the fact that transposition contributes to the generation of

genetic variability, which could confer adaptive advantages
to the organism under environmental stress (McClintock,
1984). Other genes involved in transposition and retro-
transposition appear to be activated during the M.
perniciosa life cycle and were found among the 189 genes
that showed significantly different expression between
biotrophic-like and saprotrophic mycelia (Rincones et al.,
2008). Moreover, transposition activity is not necessary for
the mutagenic effects of transposable elements, as the
copies throughout the genome can be used for reorgan-
ization through ectopic recombination (Daboussi & Capy,
2003; Shnyreva, 2003).

The presence of the two introns in the Boto transposase
coding region was confirmed by RT-PCR. Sequencing data
revealed that these introns are small and show a high A+T
content, thus resembling the introns found in plant PIF-
like elements. However, the intron position found in the
Boto element differs from that reported for plant PIF-like
elements. The first intron (53 bp) is located 50 aa residues
upstream of the first Asp (D) of the DDE domain, and the
second intron (48 bp) is located 28 aa residues down-
stream of the second Asp (D) of the DDE domain. In PIF/
Harbinger elements, different arrangements are found for
the ORFs that code for the transposase and the protein of
unknown function (Kapitonov & Jurka, 2004; Zhang et al.,
2004). These ORFs may be oriented in the same or in
opposite directions, and the transposase ORF can be found
upstream or downstream of the unknown protein ORF.
The arrangement found in the Boto transposon (ORFs in
opposite directions and the transposase ORF upstream of
the unknown protein ORF) has not been described for
plant PIF/Harbinger elements (Zhang et al., 2004) but
is similar to the arrangements found in some families
of Harbinger elements in animals (Anopheles gambiae
and zebrafish) and a protist (Thalassiosira pseudonana)
(Kapitonov & Jurka, 2004).

Considering our results, the Boto element of M. perniciosa
has evolved differently from previously described PIF/
Harbinger elements, and a few differences are thus expected
between the transposases of these elements. Given the
particular characteristics with regard to transposase intron
position, the organization of the second ORF and the
footprint, the Boto element of M. perniciosa belongs to a
new family of transposable elements of the PIF/Harbinger
superfamily. This is an active family of transposable
elements in M. perniciosa that may contribute to the
genome plasticity and adaptability of this phytopathogenic
fungus.
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