Arq. Bras. Med. Vet. Zootec., v.64, n.5, p.1246-1255, 2012

Nutritional diversity of agricultural and agro-industrial by-products for ruminant feeding

[Diversidade nutricional de subprodutos agrícola e agro-industrial para alimentação de ruminantes]

J.A.G. Azevêdo¹, S.C. Valadares Filho², D.S. Pina³, E. Detmann², L.G.R. Pereira⁴, R.F.D. Valadares², H.J. Fernandes⁵, L.F. Costa e Silva², P.B. Benedeti²

¹Universidade Estadual de Santa Cruz - Ilhéus, BA
²Universidade Federal de Viçosa, Viçosa, MG
³Universidade Federal do Mato Grosso do Sul - Cuiabá, MT
⁴Embrapa Gado de Leite - Coronel Pacheco, MG
⁵Universidade Estadual do Mato Grosso do Sul - Dourados, MS

ABSTRACT

Fifty-seven by-products were collected from regions throughout Brazil. Chemical composition, in vitro neutral detergent fiber digestibility (IVNDFD), and total digestible nutrients (TDN) were determined with the objective of grouping by-products with similar nutritional characteristics. The by-products belonging to group one (G1) presented the highest content of neutral detergent fiber exclusive of ash and nitrogenous compounds [aNDFom(n)] and lowest energy content, with 42.5% and 38.8% of IVNDFD and TDN, respectively. A new cluster analysis was carried in order to better characterize G2 by-products, six subgroups (SGs) were established (SG1 to SG6). SG1 by-products had the highest and the lowest values for lignin and TDN, respectively. SG2 by-products had the highest aNDFom(n) value, with TDN and IVNDFD values greater than 600 and 700g/kg, respectively, and crude protein (CP) value below 200g/kg in dry matter (DM). Among all the subgroups, SG3 had the highest TDN (772g/kg) and IVNDFD (934g/kg) values and the lowest lignin (23g/kg in DM) value. The ether extract was what most influenced the hierarchical establishment of residual grouping in SG4. SG5 by-products had the highest concentration of non-fibrous carbohydrate. Different from the other subgroups, SG6 by-products had the highest value of available CP.

Keywords: alternative feed, nutritive value, residues, waste

RESUMO

Cinquenta e sete subprodutos foram coletados de diferentes regiões do Brasil. Foram determinados a composição química, a digestibilidade in vitro da fibra em detergente neutro (DIVFDN) e os nutrientes digestíveis totais (NDT), com o objetivo de agrupar os subprodutos com características nutricionais semelhantes. Os subprodutos pertencentes a um grupo (G1) apresentaram maior conteúdo de fibra em detergente neutro corrida para cinzas e compostos nitrogenados (FDNcp) e menor teor energético, e tinham 42,5% e 38,8% de DIVFDN e NDT, respectivamente. Uma nova análise de cluster foi realizada no intuito de melhor caracterizar os subprodutos do G2; seis subgrupos (SG) foram estabelecidos (SG1 a SG6). Os subprodutos SG1 tiveram os maiores e os menores valores de lignina e NDT, respectivamente. Os subprodutos SG2 tiveram o maior valor de FDNcp, com valores de NDT e DIVFDN acima de 600 e 700g/kg, respectivamente, e de proteína bruta (PB) abaixo de 200g/kg de matéria seca (MS). Entre todos os subgrupos, SG3 tiveram os maiores valores de NDT (772g/kg) e DIVFDN (934g/kg) e o menor valor de lignina (23g/kg de MS). O extrato etéreo foi o que mais influenciou no estabelecimento hierárquico de agrupamento em SG4. Os subprodutos SG5 tinham maior concentração de carboidratos não fibriosos. Diferentemente dos demais subgrupos, subprodutos SG6 tinham o valor mais elevado de PB disponível.

Palavras-chave: alimentos alternativos, valor nutritivo, resíduos, perdas

Recebido em 16 de março de 2011

Aceito em 24 de maio de 2012

E-mail: augustog@uesc.br

Apoio financeiro: CNPq/ CT-AGRO/MCT, FAPEMIG e FAPESB

INTRODUCTION

Brazilian agribusiness data obtained by the Brazilian Confederation of Agricultural and Livestock of the University of São Paulo in 2007 reported a crop record of 131.5 million tons of grain, contributing approximate revenue of US\$ 359.9 billion to the gross domestic product (Cieglinski, 2008).

In spite of the optimistic growth of Brazil's agribusiness and its importance to the Brazilian economy, the quality and diversity of generated agricultural and agro-industrial by-products are a concern because its volume is proportional to the agribusiness growth.

One Brazilian estimate, based on 2002/2003 crop data, indicated a waste of 32 million tons of food between production to final consumer, or, in other words, an approximate loss of 150g/kg of the total feedstuff of grains, fruits, vegetables, and animal products produced (CNPq, 2005).

Furthermore, these feedstuffs are not only natural resource losses, when stored in inadequate places they can also lead to serious environmental contamination, mainly of water and soil resources.

Ruminants play a valuable role in sustainable agricultural systems since they are capable of converting renewable natural resources, such as agricultural and agro-industrial by-products, into high quality feed for man (Oltjen and Beckett, 1996).

It is within this context that research on the quality and viability of agricultural and agroindustrial by-products and their use as alternative feed has grown world-wide. However, due to lack of current data, particularly in regard to nutritional value in the alternative feed, the aim of this present study was to estimate the chemical composition, the in vitro neutral detergent fiber digestibility (IVNDFD), the energy value, and the characterization of agricultural and agroindustrial by-products with cluster analysis.

MATERIALS AND METHODS

This study was carried out in the Animal Science Department of the Center of Agrarian Sciences of the Federal University of Viçosa, Viçosa, MG, Brazil.

Fifty-seven samples of agricultural and agroindustrial by-products were collected from different regions throughout Brazil (African oil meal, Manufactures of soap (palm), Palm meal -Elaeis guineensis; Barbados cherry juice residue - Malpighia glabra; Brewer residue - Hordeum vulgare; Carrot discard human residue, Carrot leaf, Carrot shaving, Carrot thick residue -Daucus carota; Cassava flower processing, Cassava foliage, Cassava hull, Cassava hull dirty, Cassava hull thread, Cassava leaf, Cassava shaving, Cassava stalk - Manihot esculenta; Castor bran, Castor detoxicated bran - Ricinus communis; Citrus pulp - Citrus sinensis; Cocoa eed hull, Cocoa meal - Theobroma cacao; Coffee hull, Coffee parchment - Coffea arábica; Cotton bran, Cotton seed – Gossypium hirsutum; Cracked bean - Phaseolus vulgaris; Cracker meal - Triticum vulgare; Genipap juice residue -Genipa americana; Grape wine residue - Vitis labrusca; Guava juice residue - Psidium guajava; Jack fruit, Jack fruit silage -Artocarpus heterophyllus; Mango hull, Mango internal seed, Mango juice residue, Mango outward seed - Mangifera indica; Papaya juice residue, Papaya seed, Papaya without seed -Carica papaya; Passion fruit - Passiflora ligulari, Peach palm - Bactris gasipae; Pearl millet - Pennisetum americanum; Pineapple crown, Pineapple hull, Pineapple juice residue -Ananas comosus; Protein bran - Zea mays; Pumpkin seed - Cucúrbita moschata; Radish biofuel residue - Raphanus sativus; Rice hull -Oryza sativa; Soursop juice residue - Anona muricata; Soybean hull - Glycine Max; Sunflower biofuel residue - Helianthus annuus; Tamarind juice residue - Tamarindus indica; Uricury bran - Syagrus coronata; Wild cabbage residue, Wild cabbage stalk - Brassica oleracea).

The agricultural and agro-industrial by-products were oven dried at 55°C for 48 hours, bulked, sampled, and ground to pass through a 1mm screen for later analysis of the dry matter (DM), crude protein (CP), organic matter (OM), ether extract (EE) and acid detergent fiber (ADF), according to AOAC (Association..., 1990) methods. In the analysis of neutral detergent fiber (NDF) the samples were treated with heatstable alpha-amylase, without sodium-sulfite, and corrected for ash and nitrogenous compounds [aNDFom(n)] (Mertens, 1992). The correction of NDF and ADF for nitrogenous compounds and the estimation of the contents of insoluble nitrogenous compounds in neutral (NDIN) and acid (ADIN) detergents were made according to Licitra *et al.* (1996). Lignin (LIG) contents were obtained through solubilization of cellulose with sulfuric acid (Van Soest and Robertson, 1985).

The non-fibrous carbohydrate (NFC) contents from the DM of the by-products were calculated according to Hall (2000) as 100 - NDF - CP - EE - ash (g/kg in the DM). The contents of available crude protein (ACP) were claculated as (CP - ADIN x 6.25). TDN at maintenance values were estimated according to equations recommended by NRC (National..., 2001).

Glass test tubes were used for incubation according to procedures described by Schofield *et al.* (1994). The 50mL glass test tubes were previously washed with distilled water and dried in a sterilizer. Approximately 200mg of substrate (residue to be studied) were subsequently placed in the tubes in three replicates. The buffer solution, as described by Menke and Steingass (1988), was prepared and placed in a water bath at 39°C under continuous flushing with CO₂.

Rumen fluid was manually collected before the morning feeding, stored in insulated flasks, which were preheated at 39°C, and then immediately taken to the laboratory. In the acclimatized room of the laboratory, also at 39°C, the rumen fluid was filtered through four layers of cheese-cloth (gauzes) and subsequently added (1:2 v/v) to the buffered solution under continuous flushing with CO_2 .

Three test tubes per residue were prepared with 30mL of the buffered rumen fluid added to the substrate and immediately sealed with rubber corks and aluminum rings to ensure complete maintenance of gases inside.

Following 48 hours of incubation, the test tubes were removed from the acclimatized room and refrigerated at 4°C to halt the fermentation process. The contents of each test tube were filtered in a Gooch crucible (porosity 0), washed with warm distilled water and acetone. Subsequently 30mL of neutral detergent solution were added to each test tube (Mertens, 2002); the test tubes were sterilized for 60 minutes at 105°C according to the technique proposed by Pell and Schofield (1993); the contents of each test tube were filtered in a Gooch crucible (porosity 0), washed with warm distilled water and acetone, and dried in a sterilizer at 105°C for 16 hours.

Cluster analysis was used to assess the divergence in nutritional value of by-products based on the discriminatory variables included (Johnson and Wichern, 1988). Specifically, the average Euclidean distance between standardized variables was used to measure the disimilarity and the minimum variance. PROC UNIVARIATE by SAS (Statistical , 2000) was used for analysis of descriptive statistics and for cluster analyses we used PROC CLUSTER, METHOD=WARD by SAS (Statistical..., 2000).

RESULTS

The chemical composition, IVNDFD and TDN of fifty-seven by-products is found in Table 1. Based on the discriminatory variables (IVNDFD and TDN) and on the dissimilarity expressed by the average Euclidean distance between variables, a new set of variables establishing hierarchy levels and clustering of the 57 byproducts into two distinct groups was created, such that homogeneity was greatest within each group and heterogeneity was greatest across the groups.

Descriptive statistics for IVNDFD and TDN are listed in Table 2, other than the distribution of the 57 agricultural and agro-industrial byproducts. There was an efficiency in the clustering obtained with the discriminatory variables (IVNDFD and TDN), even though IVNDFD in G1 group presented as heterogeneous with the highest variation coefficient (45.7%) when all other variables presented variation coeficients below 16.1%.

On average, the by-products belonging to G1 contained 425g/kg DM (SD 194) of IVNDFD and 388g/kg TDN (SD 62) respectively.With 17.5% of all by-products clustered, those belonging to G1 can be better visualized from the behavior of the dissimilarity dendogram established (Figure 1).

Residue	DM	OM	CP	NDIN		EE	aNDFom(n)	NFC	ADF(n)	LIG	IVNDF	TDN
									-		u	
African oil meal	924	970	161	949	583	107	523	179	266	112	651	530
Barbados cherry juice												
residue	171	971	85	627	26	17	493	376	451	167	607	521
Brewer residue	264	959	345	589	559	92	331	192	138	87	669	580
Carrot discard human residue	89	913	124	151	106	12	141	636	138	1	953	780
Carrot leaf	226	638	145	762	634	10	75	408	311	91	822	446
Carrot shaving	87	894	112	321	273	27	186	570	181	15	939	715
Carrot thick residue	85	881	147	827	228	20	137	578	206	26	933	701
Cassava flower processing	439	988	30	550	146	9	15	935	32	6	982	881
Cassava foliage	219	918	242	598	560	24	404	248	227	96	709	523
Cassava hull	256	966	37	588	74	6	158	766	153	55	872	757
Cassava hull dirty	250	953	34	647	362	2	208	710	246	126	672	670
Cassava hull thread	266	919	34	547	277	11	127	747	246	88	734	706
Cassava leaf	219	929	215	669	406	40	303	371	201	110	746	581
Cassava shaving	918	949	29	242	160	12	175	732	202	43	875	744
Cassava stalk	900	963	54	472	213	9	651	248	560	200	321	412
Castor bran	915	914	397	263	213	25	360	132	294	262	608	453
Castor detoxicated bran	906	924	405	420	38	24	346	1/0	424	313	579	495
Citrus pulp	850	924	40J	587	277	24	206	652	102	27	022	742
Correspond bull	802	026	1/2	551	475	51	200	262	222	195	680	400
Cocoa eeu hun	047	920	145	045	475	166	100	204	220	105	756	499
Cocoa mean	947	909	139	945	320	100	190	394	250	100	/30	425
	905	924	27	300	229	10	571	225	458	1/5	019	425
Collee parchment	917	988	31	320	247	20	905	39	128	221	105	511
Cotton bran	905	955	265	1/1	102	20	516	154	406	96	/09	564
Cotton seed	930	958	205	74	62	182	416	154	344	74	620	635
Cracked bean	872	955	239	358	254	20	295	402	6	2	996	766
Cracker meal	902	978	104	351	14	174	57	642	16	4	960	866
Genipap juice residue	136	965	47	658	556	4	469	445	342	51	812	644
Grape wine residue	892	937	121	861	502	74	458	285	393	315	521	398
Guava juice residue	286	986	86	268	189	77	730	94	581	221	360	383
Jack fruit	342	925	108	830	444	34	427	356	387	19	792	666
Jack fruit silage	278	960	83	381	159	17	161	698	97	36	917	765
Mango hull	204	976	42	974	227	40	366	528	227	59	771	683
Mango internal seed	512	980	55	756	140	78	256	591	38	16	966	787
Mango juice residue	345	976	51	792	226	40	326	560	226	73	753	681
Mango outward seed	349	972	21	565	255	7	674	271	606	136	392	481
Manufactures of soap (palm)	945	943	201	760	244	115	533	94	465	280	518	380
Palm meal	929	976	121	866	225	164	628	63	539	83	629	565
Papaya juice residue	101	949	148	869	274	73	294	435	287	77	961	652
Papaya seed	802	929	259	902	723	229	156	284	134	75	929	642
Papaya without seed	881	936	133	522	51	21	120	662	161	44	676	754
Passion fruit	195	963	100	180	77	122	548	194	419	78	687	591
Peach palm	865	950	60	243	118	13	578	299	389	30	714	643
Pearl millet	892	984	178	851	426	39	205	563	12	12	946	787
Pineapple crown	140	922	91	115	60	15	522	293	266	33	783	626
Pineapple hull	95	959	66	453	80	5	509	381	247	27	830	678
Pineapple inice residue	139	953	71	505	444	8	602	272	310	37	811	616
Protein bran	858	942	219	382	133	28	227	468	96	14	910	754
Pumpkin seed	173	056	176	350	271	20	106	4 00	141	33	046	740
Radish biofuel residue	916	9/3	276	100	187	243	227	107	141	75	816	676
Rice hull	010	830	210	017	500	2+3 7	601	120	751	100	01	275
Sourson inion residue	717 760	037 077	21 104	71/ 401	222	121	270	120	211	199	91 972	213 660
Soursop Juice residue	200	911	104	421	205	151	576	303	511	12	020	000
Supplementation	922	930	120	090	234 57	4	0/5	130	454	10	928	040
Sunnower Dioruel residue	921	949	309	118	50	21	180	312	113	52	882 720	/30
amaring juice residue	400	9/5	131	388	540	26	531	286	252	11/	138	544 256
Uricury bran	891	969	138	/91	464	48	683	100	557	234	65/	356
Wild cabbage residue	806	914	184	486	227	11	257	462	210	22	946	699
Wild cabbage stalk	17	858	183	402	239	11	316	348	233	45	900	591

Table 1. Chemical composition, *in vitro* neutral detergent fiber digestibility (IVNDFD) and total digestible nutrients (TDN) of by-products

^ag/kg; ^bg/kg in DM; ^cg/kg in CP

Dry matter (DM); organic matter (OM); crude protein (CP); neutral detergent insoluble nitrogen (NDIN); acid detergent insoluble nitrogen (ADIN); ether extract (EE); neutral detergent fiber expressed exclusive of ash and nitrogenous compounds [aNDFom(n)]; non-fibrous carbohydrate (NFC); acid detergent fiber expressed exclusive of nitrogenous compounds (ADF(n)); lignin (LIG); in vitro neutral detergent fiber digestibility (IVNDFD); total digestible nutrients (TDN).

Azevêdo et al.

by-products									
Variables	Mean	SD	Minimum	Maximum	CV (%)				
		IVNDFD, g/kg DM							
Group 1	425	194	91	657	45.7				
Group 2	814	119	579	996	14.7				
			TDN, g/k	kg					
Group 1	388	62	275	481	16				
Group 2	663	97	446	881	14.7				

Table 2. Descriptive statistics and distributions of two groups formed from the discriminate analysis of by-products

In vitro neutral detergent fiber digestibility (IVNDFD); total digestible nutrients (TDN).

Group 1 = Cassava stalk, castor bran, coffee hull, coffee parchment, grape, guava, mango seed outward, manufactures of soap (palm), Rice hull, uricury bran.

Group 2 = African meal, barbados cherry, brewer residue, carrot discard from human residue, carrot leaf, carrot shaving, carrot thick residue, cassava dirty hull, cassava flower processing, cassava foliage, cassava hull of the thread, cassava hull, cassava leaf, cassava shaving, castor detoxicated bran, citrus pulp, cocoa bran, cocoa seed hull, cotton bran, cotton seeds, cracked meal, cracker, genipap, jack fruit silage, jack fruit, mango fruit from juice industry residue, mango hull, mango internal seed, palm, papaya fruit from juice industry residue, papaya seed, papaya without seed, passion fruit from juice industry residue, peach palm, pearl millet, pineapple crown, pineapple hull, pineapple, protein bran corn, pumpkin, radish biofuel residue, soybean hull, sunflower biofuel residue, tamarind fruit from juice industry residue, wild cabbage residue, wild cabbage stalk.

Figure 1. Dissimilarity dendogram of the nutritional value between 10 by-products.

The two subgroups were formed by considering 48% of the dissimilarity due to the short distance between the melting points of the groups by performing a section of the dendrogram as presented in Figure 1, carried out subjectivly according to Johnson and Wichern (1988). In these two subgroups, by-products of rice hull and parchment coffee were hierarchically clustered in a different subgroup compared to the other G1 by-products since they exhibited low IVNDFD and TDN values (Table 1).

Clustering techniques minimize the variability within a group. However, if the estimate of the

distance between pairs of individuals within a group is high, sub-clustering is justified (Abreu *et al.*, 2004). Due to the large number of discriminatory variables, sub-clustering better stratifies the by-products of G2. As the byproducts of G2 represented 82.5% of all the byproducts studied, a new cluster analysis was performed using the following as discriminatory variables: ACP, EE, NFC, aNDFom(n), LIG, IVNDFD, and TDN (Figure 2). Subsequently, this hypothesized section in the dendogram of dissimilarity improved the characterization of G2 through the formation of six subgroups (SG1 to SG6). Nutritional diversity of agricultural...

Average Euclidean distance

3.14 4.67 6.21 7.75 9.28 10.82 12.36 13.89 15.43 16.97 18.50

Dissimilarity percentage

Figure 2. Dissimilarity dendogram of the nutritional value of 47 by-products.

Arq. Bras. Med. Vet. Zootec., v.64, n.5, p.1246-1255, 2012

Although SG1 by-products had the second highest average protein values amongst the subgroups, and the highest content of ACP (castor bean detoxicated with 389g/kg of ACP in DM), they also had the highest and the lowest value, respectively, for LIG and TDN (Table 1). SG1 was the most heterogeneous subgroup, which had by-products with the highest average Euclidean distance of 4.23 (Figure 2). However, the discriminatory variable that most influenced the cluster analysis was TDN, which was substantiated by the coefficient of variation (CV) of 6.16% obtained by the same subgroup (Table 1). SG2 by-products had the highest average values of aNDFom(n) and values greater than 600 and 700g/kg of TDN and IVNDFD, respectively (Table 1). SG3 by-products had the highest average values for TDN (772g/kg) and IVNDFD (934g/kg) and the lowest average value for LIG (23g/kg in DM). Among the discriminatory variables, EE content mostly influenced the hierarchical grouping of byproducts in SG4 (Table 1).

The three by-products of SG5 were very homogeneous and had the highest concentration of NFC. The main characteristic that distinguished SG5 was lower values of IVNDFD. However, the by-products of this subgroup are essentially energy. Differently from the other subgroups, SG6 by-products had the highest average ACP value, suggesting their use as protein concentrates (Table 1).

DISCUSSION

The low digestibility of NDF in the by-products of G1 for rice hull and parchment coffee was mainly due to the high concentration of LIG, as LIG is one of the main limiting factors of fibrous carbohydrate digestion (Jung and Allen, 1995).

In addition to the factors inherent in the chemical composition of the fiber fraction and in addition to LIG operating as the main limiting factor in the availability of its chemical contents, other factors also interfere with a better usage of the nutritional value of the other by-products of G1.

In general, the by-products belonging to SG1 group had high aNDFom(n) values, which resulted in lower energy content. Due to the high degree of association of aNDFom(n) to LIG, a lower residue availability was observed, thus

reducing the fraction of the feed that could potentially be digestible.

In our present study, all SG1 by-products had TDN values below 600g/kg and NDFap values greater than 300g/kg in DM. This finding is supported by results from other researches that have already tested the by-products classified in our SG1 as roughages.

Modesto *et al.* (2008) concluded that up to 600g/kg of cassava foliage silage can be substituted for corn silage in the diets of non-lactating cows without modifing consumption, ruminal parameters, or nutrional digestibility. Cabral Filho *et al.* (2007), evaluating possible alterations in feed intake and digestibility by substituting an exclusively hay only diet with wet brewer's grain (a silage by-product) in sheep, observed that the inclusion of 330g/kg of this by-product stored based on DM improved the digestibility of the diet and thereby demonstrated the usefulness of this feed resource.

As can be seen in Table 1, all representative byproducts of SG2 had CP values below 200g/kg in the DM, and, in spite of having NDFap values greater than 320g/kg, all can be considered partial energy concentrate substitutes.

Among the SG2 by-products, the soybean hull obtained from soybean milling has been greatly highlighted in the national scenery due to high Brazilian soybean production. The soybean hull represents 70-80g/kg of the bean's weight (Restle et al., 2004). Due to its high NDF content, the soybean hull was initially evaluated as a roughage substitute in diets (Azevedo, 1998). confirming However, results the high digestibility of NDF in this residue led to studies of the use of soybean hull as a substitute for cereal bran in the concentrated fraction of the diet (Bach et al., 1999).

Animals that receive diets containing soybean hull, partially substituting for corn or sorghum, have demonstrated high levels of diet fiber digestion (Mendes *et al.*, 2005) and have demonstrated improvement in weight gain and feed conversion (Restle *et al.*, 2004). Additionally, this residue resulted in high production of volatile fatty acids (Bach *et al.*, 1999) and in ideal pH supporting the action of ruminal microorganisms (Ludden *et al.*, 1995).

Since high energy contributions supporting ruminal microorganisms were found for SG3 byproducts, a protein source of compatible degradation rate should be considered when formulating diets with these by-products. Synchronization of energy fermentation and CP degradation is essential for efficient use of energy and protein by ruminal microorganisms.

Assis *et al.* (2004), substituting corn meal for citrus pulp in the diet of milking cows, observed that the apparent digestibility of the nutrients did not vary with the substitution. The authors explained their finding as a result of the high degradability of citrus pulp fiber preventing differences in the digestibility of the nutrients.

Studies conducted by Milton and Brandt (1993) and Passini *et al.* (2001) have shown that 300g/kg of crack meal can be substituted for corn in ruminant diets. However, since this residue in our present study presented 174g/kg of EE in DM (Table 1), it is advised that attention be paid to EE content of any diet. As dietary proportion of lipids exceeds 60g/kg in DM, they may cause negative effects on ruminal environment, including reduction in fiber digestibility (Palmquist and Jenkins, 1980).

Care should be taken with all by-products in SG4 as this subgroup demonstrated the highest average value of EE with soursop juice residue possessing the lowest value (131g/kg in DM).

In a study that compared levels of 0, 120, 180 and 240g/kg of cotton seed in feedlot diets, Brosh *et al.* (1989) concluded that this residue caused a reduction in weight gain without a change in DM intake. Ludovico and Mattos (1997) observed a quadratic effect of cotton seed (i.e., 0, 100, 200 or 300g/kg) on DM intake in cows on sugar cane and cotton seed diets. Cooke *et al.* (2007) reported that diets containing cotton seed did not affect DM intake or milk production, but they did reduce milk fat content due to reduced unsaturated lipids. Therefore, it is suggested that the use of SG4 by-products be limited due to their EE concentration.

Several of the SG5 by-products with NFC concentrations of 707g/kg in DM have been

tested as partial substitutes for energy concentrates. Marques *et al.* (2000), studying the effect of cassava hull as a substitute for corn, observed that, although cassava hull reduced DM intake, it did not alter weight gain, feed conversion, or income from the animals' carcasses. However, they suggest caution with the substitution to avoid problems with intake and acidosis.

With average CP values of 212g/kg in DM, SG6 by-products have been evaluated as partial substitutes for protein concentrates (Table 1). Studies involving young ruminants and milking cows have indicated that the nutritional value of sunflower meal is equivalent to soybean and cotton meal (Vincent *et al.*, 1990; Milton *et al.*, 1997). Macedo *et al.* (2003), substituting soybean meal for corn gluten, observed a reduction in the production of milk, fat, NDF intake, and plasmatic urea levels.

Considering that soybean meal is the main and most used protein ingredient in ruminant rations, limitations on partial substitution should be imposed due to soybean meal offerring a better biological protein value when compared to other by-products, which are typically inferior due to their inbalance of essential amino acids. Additional factors such as low palatability and low digestibility of the cracked beans should also be considered.

As can be seen in Table 1, the lowest CP value among SG6 by-products was for carrot leaf at 145g/kg in DM. Carrot and wild cabbage byproducts have high mineral content, resulting in ash in DM values of 362 and 142g/kg, respectively.

CONCLUSION

Results support the hypothesis that the byproducts belonging to G1 had limited characteristics for their use in animal feeding. The SG1 by-products could preferably be used as partial roughage substitutes. The by-products of subgroups SG2, SG3, SG4, and SG5 could be used as partial energy concentrate substitutes, and the SG6 by-products could be used as partial protein concentrate substitutes.

REFERENCES

ABREU, F.B.; LEAL, N.R.; RODRIGUES, R. *et al.* Divergência genética entre acessos de feijão-de-vagem de hábito de crescimento indeterminado. *Hort. Bras.*, v.22, p.547-552, 2004.

ASSIS, A.J.; CAMPOS, J.M.S.; QUEIROZ, A.C. *et al.* Polpa cítrica em dietas de vacas em lactação. 2. Digestibilidade dos nutrientes em dois períodos de coleta de fezes, pH e nitrogênio amoniacal do líquido ruminal. *Rev. Bras. Zootec.*, v.33, p.251-257, 2004.

ASSOCIATION of official analytical chemistry -AOAC. *Official Methods of Analysis*, 15.ed. Arlington: AOAC International. 1990.

AZEVEDO, P.S. A casca do grão de soja em substituição ao feno de gramíneas nas rações com diferentes fontes proteicas para bovinos. 1998. 53f. Tese (Doutorado). Universidade Estadual Paulista, Jaboticabal, SP.

BACH, A.; YOON, I.K.; STERN, M.D. *et al.* Effects of type of carbohydrate supplementation to lush pasture on microbial fermentation in continuous culture. *J. Dairy Sci.*, v.82, p.153-160, 1999.

BROSH, A.; HOLZER, Z.; LEVY, D. Cottonseed for protein and energy supplementation of high – roughage diets for beef cattle. *Anim. Prod.*, v.48, p.513-518, 1989.

CABRAL FILHO, S.L.S.; BUENO, I.C.S.; ABDALLA, A.L. Substituição do feno de tifton pelo resíduo úmido de cervejaria em dietas de ovinos em mantença. *Cienc. Anim. Bras.*, v.8, p.65-73, 2007.

CIEGLINSKI, A. *PIB do agronegócio em 2007 bate recorde, com crescimento de 7,89%.*. Brasília: Agência Brasil, 2008. Disponível em: http://agenciabrasil.ebc.com.br/noticia/2008-03-19/pib-do-agronegocio-em-2007-bate-recorde-com-crescimento-de-789. Acesso em: 19 mar. 2008.

CONSELHO Nacional de Desenvolvimento Científico e Tecnológico - CNPq. Apoio ao Desenvolvimento de Tecnologias para Redução e Utilização de Resíduos Rurais e Agroindustriais e Redução das Perdas na Produção Agropecuária. Edital CT-AGRO/MCT/CNPq n.08/2005. Lançamento do edital no D.O.U.. Brasília, 29 mar. 2005.

COOKE, K.M.; BERNARD, J.K.; WILDMAN, C.D. *et al.* Performance and ruminal fermentation of dairy cows fed whole cottonseed with elevated concentrations of free fatty acids in the oil. *J. Dairy Sci.*, v.90, p.2329-2334, 2007.

HALL, M.B. Neutral Detergent-Soluble Carbohydrates. *Nutritional Relevance and Analysis.*, Gainesville: University of Florida, 2000. 77p.

JOHNSON, R.A.; WICHERN, D.W. *Applied multivariate statistical analysis.* 2nd. ed. Wisconsin: Prentice Hall, 1988. 607p.

JUNG, H.G.; ALLEN, M.S. Characteristics of plant cell wall affecting intake and digestibility of forages by ruminants. *J. Anim. Sci.*, v.73, p.2774-2790, 1995.

LICITRA, G.; HERNANDEZ, T.M.; VAN SOEST, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. *Anim. Feed Sci. Technol.*, v.57, p.347-358, 1996.

LUDDEN, P.A.; CECAVA, M.J.; HENDRIX, K.S. The value of soybean hulls as a replacement for corn in beef cattle diets formulated with or without added fat. *J. Anim. Sci.*, v.73, p.2706-2711, 1995.

LUDOVICO, A.; MATTOS, W.R.S. Avaliação de dietas à base de cana-de-açúcar (*Saccharum officinarum* L.) e diferentes níveis de semente de algodão (*Gossypium hirsutum* L.). *Rev. Bras. Zootec.*, v.26, p.403-410, 1997.

MACEDO, L.G.P.; DAMASCENO, J.C.; MARTINS, E.N. *et al.* Substituição do farelo de soja pela farinha de glúten de milho na alimentação de cabras leiteiras. *Rev. Bras. Zootec.*, v.32, p.992-1001, 2003. MARQUES, J.A.; PRADO, I.N.; ZEOULA, L.M. *et al.* Avaliação da mandioca e seus resíduos industriais em substituição ao milho no desempenho de novilhas confinadas. *Rev. Bras. Zootec.*, v.29, p.1528-1536, 2000.

MENDES, A.R.; EZEQUIEL, J.M.B.; GALATI, R.L. *et al.* Consumo e digestibilidade total e parcial de dietas utilizando farelo de girassol e três fontes de energia em novilhos confinados. *Rev. Bras. Zootec.*, v.34, p.679-691, 2005.

MENKE, K.H.; STEINGASS, H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. *Anim. Res. Dev.*, v.28, p.7-55, 1988.

MERTENS, D.R. Analysis of fiber in feeds and its use in feed evaluation and ration formulation. In: SIMPÓSIO INTERNACIONAL DE RUMINANTES, 1992, Lavras. *Anais...* Lavras: Sociedade Brasileira de Zootecnia, 1992. p.1-32.

MERTENS, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. *J. AOAC Int.*, 85, p.1217-1240, 2002

MILTON, C.T.; BRANDT, R.T. Utilization of dried bakery product by finishing beef steers. Kentucky: Cattlemen's Day, 1993. v.1, p.104-106.

MILTON, C.T.; BRANDT JR.R.T.; TITGEMEYER, E.C. *et al.* Effect of degradable and escape protein and roughage type on performance and carcass characteristics of finishing yearling steers. *J. Anim. Sci.*, v.75, p.2834-2840, 1997.

MODESTO, E.C.; SANTOS, G.T.; ZAMBOM, M.A. *et al.* Consumo, digestibilidade e parâmetros ruminais em vacas gestantes alimentadas com silagem de rama de mandioca. *Rev. Bras. Zootec.*, v.37, p.944-950, 2008.

NATIONAL research council - NRC. *Nutrient requirements of dairy cattle*. 7.ed. Washington, DC: National academic press, 2001. 381p.

OLTJEN, J.W.; BECKETT, J.L. Role of ruminant livestock in sustainable agricultural systems. *J. Anim. Sci*, v.74, p.1406-1409, 1996.

PALMQUIST, D.L.; JENKINS, T.C. Fat in lactation rations: review. *J. Dairy Sci.*, v.63, p.1-14, 1980.

PASSINI, R.; SPERS, A.; LUCCI, C.S. Efeitos da substituição parcial do milho na dieta pelo resíduo de panificação sobre o desempenho de novilhos da raça Holandesa. *Pesq. Agropec. Bras.*, v.36, p.689-694, 2001.

PELL, A.N.; SCHOFIELD, P. Computerized monitoring of gas production to measure forage digestion in vitro. *J. Dairy Sci.*, v.76, p.1063-1073, 1993.

RESTLE, J.; FATURI, C.; ALVES FILHO, D.C. *et al.* Substituição do grão de sorgo por casca de soja na dieta de novilhos terminados em confinamento. *Rev. Bras. Zootec.*, v.33, p.1009-1015, 2004.

SAVY FILHO, A.; BENZATTO, N.V. O mercado está para a mamona. *Cas. Agric.*, v.5, p.12-15, 1983.

SCHOFIELD, P.; PITT, R.E.; PELL, A.N. Kinetic of fiber digestion from in vitro gas production. *J. Anim. Sci.*, v.72, p.2980-2991, 1994.

STATISTICAL Analysis Sistem. SAS/STAT User's guide, Version 8. SAS Institute Inc., Cary, NC. 2000.

VAN SOEST, P.J.; ROBERTSON, J.B. Analysis of forages and fibrous foods. Ithaca: Cornell University, 1985. 202p.

VINCENT, I.C.; HILL, R.; CAMPLING, R.C. A note on the use of rapeseed, sunflower and soyabean meals as protein sources in compound foods for milking cattle. *Anim. Prod.*, v.50, p.541-543, 1990.