

Análise da ação de filmes de quitosana e micro/nano partículas de própolis sobre colônias de bactérias gram-positivas

Rejane Celi Goy¹, Jessica Valéria de Campos¹, Rubens Bernardes Filho¹, Humberto de Mello Brandão²

> ¹ Embrapa Instrumentação Agropecuária ² Embrapa Gado de Leite rejanegoy@cnpdia.embrapa.br

Projeto Componente: PC3

Plano de Ação: PA2

Resumo

A quitosana é um material muito conhecido pelo seu efeito antibacteriano e pela capacidade de formar filmes. Com o intuito de melhorar as propriedades inibidoras de crescimento bacteriano, estudos com a incorporação da própolis e também de partículas nanoestruturadas dessa matéria prima aos filmes de quitosana foram realizados para observar o comportamento desses novos filmes. A própolis também possui efeito contra bactérias bastante conhecido, sendo amplamente utilizado em indústrias farmacêuticas e cosméticas. O objetivo é chegar numa combinação que favoreça a capacidade inibitória do crescimento bacteriano utilizando concentrações adequadas de quitosana e própolis para aplicação em revestimento de alimentos (frutas, por exemplo) que seja eficiente sem alterar sua cor e sabor, bem como não prejudicar as propriedades filmogências da quitosana pela adição da própolis.

Palavras-chave: Filmes comestíveis, quitosana, própolis

Publicações relacionadas

Goy, R. C.; Britto, D.; Assis, O. B. G. A review of the antimicrobial activity of chitosan. Polímeros (São Carlos. Impresso), v. 19, p. 241-247, 2009.

Britto, D.; Celi Goy, Rejane; Campana Filho, Sergio Paulo; Assis, Odilio B. G. . Quaternary Salts of Chitosan: History, Antimicrobial Features, and Prospects. International Journal of Carbohydrate Chemistry, v. 2011, p. 1-12, 2011.

Introdução

A preocupação com a saúde e a utilização de matérias primas naturais é o foco desse início de século XXI. Após décadas de utilização de matérias sintéticos, defensores agrícolas materiais altamente poluentes, surgiu conscientização mundial para preservação do meio ambiente e utilização de produtos de fonte renovável e biodegradáveis. Com potencial de aplicação a própolis é muito conhecida por sua ação bactericida pode com a conservação de alimentos contribuir inibindo desenvolvimento hortifrutis 0 patógenos. Quitosana é um polissacarídeo que

ocorre na natureza, comumente obtido via desacetilação da quitina em meio alcalino, um abundante subproduto da indústria pesqueira. Ela é composta por co-polímeros com várias frações de unidades acetiladas com estrutura básica poli[$(1 \rightarrow 4)$ - β -2-amino-2-dioxi-D-glucose] e apresentam boa capacidade de formação de filmes estáveis e com boa plasticidade [1].

A atividade antimicrobiana dessa família de polímeros já é conhecida a bom tempo [2,3], sendo a quitina, a quitosana e seus derivados diversos, testados contra diferentes grupos de microrganismos sempre com resultados positivos [4,5]. A quitosana possui ótima propriedade

filmogênica, por isso tem sido muito explorada como membranas e películas, principalmente para o revestimento de produtos agrícolas em processos pós-colheita como embalagens e outros meios de separação. Filmes de quitosana obtidos por casting a partir de soluções ácidas têm sido caracterizados quanto às suas propriedades diferentes comportamentos mecânicas com dependentes do solvente empregado na solução precursora [6,7]. A hidrofobicidade dos filmes é uma das propriedades mais importantes, que pode ser relacionada com a transferência de umidade entre o produto e o seu entorno. A perda de água para o meio ambiente nem sempre é desejável considerando que na maioria das aplicações esta característica diminui a qualidade do produto, reduzindo não só sua vida útil, como alterando suas características iniciais [8,1].

Estudos com quitosana para combater proliferação de bactérias no processo de pós estão sendo desenvolvidos, porém, os mecanismos dessa inibição microbiana ainda está sendo definido, mas os modelos aceitos são os relacionados à natureza policatiônica desses polissacarídeos, que interage com os sítios aniônicos nas proteínas dos micro-organismos. Tal interação é mediada por forças eletrostáticas entre os grupos NH2 protonados na quitosana e os resíduos negativos nas paredes celulares. Essa interação interfere com as paredes celulares causando alterações na permeabilidade membrana, promovendo desbalanços osmóticos internos [2,3]. É igualmente esperado que quanto maior o grau de desacetilação, maior a densidade superficial de cargas que induzirá a atividade antimicrobiana [3,9]. Segundo Jung et al., 1999, o por mecanismo trás dessa atividade antimicrobiana pode ser descrito como dois efeitos atuantes de forma simultânea: i) os grupos amino positivamente carregados ligam-se aos sialícos nos fosfolipídeos conseguinte, inibem o movimento das substâncias microbianas internas; ii) oligômeros de quitosana penetram nas células dos micro-organismos e restringem o crescimento celular através do bloqueio da transcrição do DNA em RNA, segundo modelos adotados por Hadwiger et al., 1989, e mais recentemente descritos em detalhes por Rabea et al., em 2003 [2,10].

Quando aplicada sobre superfície vegetal, a quitosana também ativa enzimas como as quitanases, β-glucanases e lipoxigenases, que estimulam a geração de espécies oxidativas. A ativação desses mecanismos protetores inibe o crescimento de patógenos e organismos

parasitários [11]. Com o objetivo de melhorar as propriedades antimicrobianas dos filmes de quitosana foi acrescentado própolis na composição dos filmes de quitosana. A própolis foi adicionada na forma de nanopartículas.

Materiais e métodos

Os testes de inibição bacteriana utilizaram filmes de quitosana pura e também combinações desse material com extrato alcoólico de própolis e nanoparticulado. Os filmes foram própolis preparados empregando a técnica de "casting" sob superfície apolar a partir de géis de quitosana na concentração 2,0g/L. A quitosana foi diluída em ácido acético 1% sob agitação magnética constante por 24h. A seguir foram adicionados o extrato puro ou as nanopartículas de própolis nas concentrações de 25 e 15%. As misturas obtidas foram vertidas sobre placas acrílicas e deixadas numa temperatura de 35-45°C sob circulação de ar na máquina para desenvolvimento de filmes comestíveis e recobrimento com sistema não contínuo Mathis LTE-S para evaporação dos solventes. Após a secagem as películas foram destacadas e recortadas em pequenos retângulos e armazenadas em dessecador. A bactéria utilizada foi a gram-positiva Staphylococcus aureus em meio de cultura TSB (Triptic Soy Broth) não seletivo.

Resultados e discussão

Os testes de inibição foram feitos com os filmes previamente descritos para estudos com a bactéria numa concentração de aureus bactérias/mL, que foram inoculadas em placas de Petri e particões dos filmes foram colocadas na superfície do meio de cultura. As placas ficaram 24h a 32°C em estufa de circulação para observarmos a inibição ou não dos filmes sobre o crescimento bacteriano. Após esse período de 24h foi observada a formação de halos de inibição de crescimento bacteriano principalmente pela ação dos filmes com 15% de extrato alcoólico e também pelos filmes com 25% de nanopartículas de própolis (Fig.1):

Fig. 1 - Halos de inibição

Foram realizadas análises das nanopartículas de própolis por microscopia de força atômica e foi observada a formação dessas partículas com diâmetro médio de 447±141nm (Fig. 2).

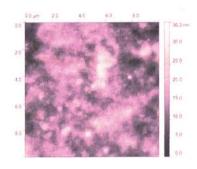


Fig.2– Imagens de MFA de nanopartículas de própolis

Conclusões

Apesar da eficiência já conhecida da quitosana e da própotis como agentes bactericidas ou bacteriostáticos, a união desses dois materiais para confecção de filmes é um estudo inovador e nas análises preliminares se mostrou eficiente, inibindo o crescimento das bactérias nas proximidades dos filmes observado pela formação dos halos de inibição ao redor das películas e mostrando que essa combinação é favorável para o desenvolvimentos de filmes comestíveis para preservação de frutos pós colheita.

Agradecimentos

CNPQ, FINEP, EMBRAPA, CAPES, PROJETO COMPONENTE 3 DA REDE AGRONANO.

Referências

 ASSIS, O. B. G.; HOTCHKISS, J. H. Surface Hydrophobic Modification of Chitosan Thinfilms by HMDS Plasma Deposition: Effects on Water Vapor, CO₂ and O₂ Permeabilities, Packaging Techology and Science, v. 20, p. 293-297, 2007.

- HADWIGER, L. A., et al. Chitosan both activated genes in plants and inhibits RNA synthesis in fungi. In: RAA Muzzarelli, C. Jeuniaux, G. W. Gooday (eds.): Chitin in nature and technology. Plenum, New York, 209-214, 1981.
- TSAI, G.J.; SU, W.H. Antibacterial activity of shrimp chitosan against Escherichia coli, Journal of Food Protection, v. 62, p. 239– 243, 1999.
- DEVLIEGHERE, F., et al. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables, Food Microbiology, v. 21, p. 703–714, 2004.
- MÖLLER, H., et al. Antimicrobial and Physicochemical Properties of Chitosan-HPMC-Based Films, Journal of Agricultural Food Chemistry, v. 52, p. 6585-6591, 2004.
- BÉGIN, A.; CALSTEREN, M. R. V. Antimicrobital films produced from chitosan, International Journal of Biological Macromolecules, v. 26, p.63-67, 1999.
- BRITTO, D.; et al. Mechanical properties of N,N,N-trimethylchitosan chloride films, Polímeros, v. 15, n. 2, p. 129-132, 2005.
- ASSIS, O. B. G., SILVA, V. L. Caracterização Estrutural e da capacidade de absorção de água em filmes finos de quitosana processados em diversas concentrações, Polímeros, v.13, n. 4, p. 223-228, 2003.
- 9. CHUNG, Y.-C.; et al. Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens, *Bioresource Technology*, v. 88, p.179-184, 2003.
- RABEA, E.I.; et al. Chitosan as Antimicrobial Agent: Applications and Mode of Action, Biomacromolecules, v. 4, n. 6, p. 1457-1465, 2003.
- VASYUKOVA, N.I.; et al. Modulation of Plant Resistance to Diseases by Water-Soluble Chitosan, Applied Biochemistry and Microbiology, v. 37, n. 1, p.103-109, 2001.