Incidência e severidade de mofo cinzento em mamona em Pelotas - RS

Eberson Diedrich Eicholz (Embrapa Clima Temperado, eberson.eicholz@cpact.embrapa.br), Bernardo Ueno (Embrapa Clima temperado, bernardo.ueno@cpact.embrapa.br), Rogério Ferreira Aires (Fepagro Nordeste, rogerio-aires@fepagro.rs.gov.br), Sérgio Delmar dos Anjos e Silva (Embrapa Clima Temperado, sergio.anjos@cpact.embrapa.br), Adilson Harter (FAEM/UFPEL/Embrapa Clima Temperado, adilsonharter@hotmail.com).

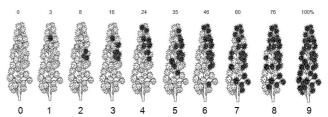
Palavras chave: Ricinus Communis, Amphobotrys ricini, cultivares.

1 - Introdução

A mamona (*Ricinus communis* L.) é cultivada tradicionalmente por agricultores de base familiar, tendo como principal produto o óleo, de excelente qualidade com aplicação industrial diversa, sendo um dos óleos vegetais mais caros do mercado de *commodities*.

Os maiores produtores mundiais de mamona são Índia, China e Brasil¹. No Brasil, a produção está concentrada na região Nordeste, embora apresente potencial de cultivo em todas as regiões do país².

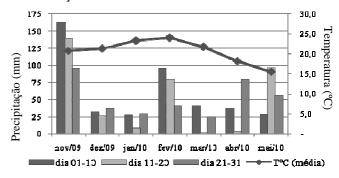
Apesar da rusticidade, a mamona é afetada por diversas doenças que causam prejuízos de grande expressão econômica. O mofo cinzento (*Amphobotrys ricini*) é uma das doenças mais comuns e destrutivas da mamoneira, atingindo inflorescências, cachos e sementes³ com consequências diretas na produção. As sementes apresentam desde redução no teor de óleo até chochamento completo⁴. Se medidas preventivas de controle não forem tomadas no inicio do aparecimento da doença, ela pode levar a perda total da lavoura³.

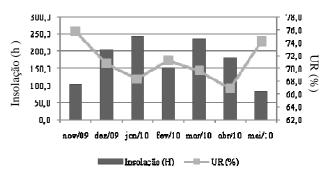

Uma das alternativas de controle do mofo cinzento é utilizar genótipos mais resistentes ou tolerantes ao ataque do fungo. Neste sentido o presente estudo teve com objetivo verificar a incidência e severidade do mofo cinzento em 10 genótipos de mamona na região sul do Rio Grande do Sul.

2 - Material e Métodos

O experimento foi conduzido na safra 2009/10 no campo experimental da Embrapa Clima Temperado em Pelotas/RS. A semeadura foi manual e realizada no final do mês de outubro. O espaçamento utilizado foi 1,6 m entre linhas e 0,80 m entre plantas, exceto para cultivar IAC 80, que foi 1,6 x 1,5 m. O delineamento experimental foi em blocos completos casualizados, com três repetições.

As avaliações de incidência e severidade foram realizados nos meses de março e maio. A doença foi quantificada de acordo com a observação visual de sintomas, examinando-se três plantas por repetição de campo, sendo sua severidade determinada através de escala de notas com 10 níveis (0 a 9) conforme Figura 1. Os resultados da incidência do mofo cinzento foram expressos em porcentagem de racemos com mofo cinzento por ordem de floração. Os dados meteorológicos foram coletados junto a estação meteorológica da Embrapa Clima Temperado – Pelotas/RS.


Os dados obtidos foram submetidos à análise de variância e as médias foram comparadas pelo teste de Duncan ao nível de 5% de significância utilizando o programa SAS^5 .


Figura 1. Escala diagramática para avaliação de danos provocados por *Amphobotrys ricini* em racemos de mamona, indicando níveis de 0 a 100% (Adaptado ⁶).

3 - Resultados e Discussão

Observa-se na Figura 2 que a partir do primeiro decêndio do mês de fevereiro, ocorreram grande volume de chuvas (próximo a 100 mm), e temperaturas amenas (média de 23°C). Também observamos baixa radiação solar e umidade relativa em torno de 72% (Figura 3). Estas condições são propicias para o desenvolvimento e disseminação do mofo cinzento^{7,8}.

Figura 2. Precipitação (mm) por decêndio e temperatura média (°C) mensal durante o ciclo da mamona em Pelotas/RS, safra 2009/10. Embrapa Clima Temperado. 2012.

Figura 3. Insolação (horas) e umidade relativa do ar (UR), mensais, durante o ciclo da mamona em Pelotas/RS, safra 2009/10. Embrapa Clima Temperado. 2012.

5° Congresso da Rede Brasileira de Tecnologia de Biodiesel 8º Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel

Na safra 2009/10 a cv. BRS Energia teve o maior número de racemos (9,1) entre as cultivares testadas, o que é característico para região, verificado também por Aires et al.⁹ (Tabela 1). Esta característica pode ser interessante, pois caso ocorra alta severidade mofo nos primeiros racemos outros poderão compensar a produção.

Todas as cultivares testadas tiveram incidência de mofo cinzento igual ou superior a 90%. Na cultivar Paraguaçu verificou-se incidência de 90%, sendo a menor entre os genótipos estudados. A maioria apresentou 98% ou mais das plantas com sintomas da doença. Estes resultados provavelmente ocorreram devido às condições ambientais favoráveis a doença, descritas anteriormente.

Tabela 1. Número de racemos por planta (NRP) e incidência de mofo cinzento na mamona em Pelotas/RS. Safra 2009/10.

Cultivar	NRP*	Incidência (%)
BRS Energia	9,1 a	100 a
IAC 80	3,1 d	100 a
IAC 2028	4,3 cd	100 a
IAC 266	4,4 cd	98 a
IAC guarani	4,7 cd	100 a
AL Guarany 2002	6,6 b	98 a
Nordestina	3,2 d	96 ab
CPACT 040	4,4 cd	94 ab
Paraguaçu	6,0 bc	90 b
Média	5,1	97
CV (%)	31	7,2

^{*}Médias seguidas de mesma letra minúscula, na coluna, não diferem entre si pelo teste Duncan (α =0,05).

A severidade do mofo cinzento (Tabela 2) aumentou da primeira para terceira ordem de racemo, onde a segunda e terceira floração não diferiram entre si, com exceção das cultivares BRS Energia e AL Guarany 2002. Para BRS Energia, houve diferenças somente para terceira ordem e para AL Guarany 2002 todas diferiram. A cultivar IAC 80, por ser de ciclo longo, possivelmente a floração e o enchimento do grão da primeira ordem de floração coincidiu com condições ambientais mais propicias para o desenvolvimento da doença. Deve-se também levar em consideração que após a presença, do inóculo na área, qualquer condição ambiental favorável a doença, pode causar grandes danos.

Tabela 2. Notas de severidade do mofo cinzento por ordem de floração, na mamona em Pelotas/RS. Safra 2009/10.

Cultivar	1° Flor*		2º Flor			3° Flor			
BRS Energia	6,7	a	В	7,2	ab	В	8,1	a	Α
IAC 80	6,4	a	Α	4,4	d	В			
IAC 2028	5,4	a	В	8,1	a	Α	8,7	a	Α
IAC 266	5,2	ab	В	8,1	a	Α	8,3	a	Α
IAC guarani	3,4	cb	В	7,5	ab	В	8,3	a	В
AL Guarany 2002	3,3	cb	C	6,4	bc	В	8,1	a	Α
Nordestina	3,3	cb	Α	6,7	bc	В			
CPACT 040	3,2	cb	В	5,8	c	A	6,5	b	Α
Paraguaçu	2,2	c	В	5,6	cd	Α	5,7	b	Α
Média	4,4			6,7			7,7		
CV (%)	45			18			11		

^{*}Médias seguidas de mesma letra minúscula, na coluna, não diferem entre si pelo teste Duncan (α =0,05).

Os genótipos CPACT 040 e Paraguaçu tiveram menor severidade de mofo cinzento. Possivelmente alguma característica da planta, como arquitetura e racemos mais abertos, podem ter influenciado na ventilação e secagem dos frutos, reduzido as condições favoráveis ao desenvolvimento do patógeno.

4 - Agradecimentos

Ao CNPQ, FINEP e Petrobras pelo financiamento do projeto.

5 - Bibliografia

¹ FAO (Organização das Nações Unidas para Agricultura e Alimentação). Disponível em https://www.fao.org.br. Acesso em 10/12/2011.

² IBGE (Instituto Brasileiro de Geografia e Estatística). Disponível em <www.ibge.gov.br>. Acesso em 28/07/2011.

³ LIMA, E.F.; ARAÚJO, A.E.; BATISTA, F.A.S. Doenças e seu controle. In: AZEVEDO, D.M.P.; LIMA, E.F. (Eds.). **O agronegócio da mamona no Brasil**. Brasília: Embrapa Informação Tecnológica, 2001. p.191-212.

⁴ MASSOLA JÚNIOR, N.S.; BEDENDO, I.P. Doenças da mamoneira (*Ricinus communis* L.). In: KIMATI, M.; AMORIM, L.; REZENDE, J.A.M.; BERGAMIM FILHO, A.; CAMARGO, L.E.A. **Manual de fitopatologia. Doenças das plantas cultivadas.** V.2. Ed.4. São Paulo: CERES, 2005.

⁵ SAS Institute Inc. SAS/STAT ® 9.2 User's **Guide**, **Second Edition.** Cary, NC: SAS Institute Inc. 2009.7869p.

⁶ CHAGAS, H.A. Controle de mofo-cinzento (*Amphobotrys ricini*) da mamoneira (*Ricinus communis* I.) por métodos químico, biológico e com óleos essenciais. Botucatu, 2009. 67p. Dissertação (Mestrado em Agronomia) Faculdade de Ciências Agronômicas, Universidade Estadual Paulista "Júlio de Mesquita Filho" – Campus de Botucatu.

⁷ LIMA, J.S.; ASSUNÇÃO, I.P.; CRUZ, M.M.; AMORIM, E.P.; LIMA, G.S.A. Efeito da temperatura no crescimento micelial e na esporulação de *Amphobotrys ricini*. In: **XXXIX Congresso Brasileiro de Fitopatologia**, 2006, Salvador - BA. Fitopatologia Brasileira, 2006.

⁸ UENO, B. Manejo integrado de doenças. In: SILVA, S. D. dos A.; CASAGRANDE JUNIOR, J.G.; SCIVITTARO, W. B. **A cultura da mamona no Rio Grande do Sul.** Pelotas: Embrapa Clima Temperado, 2007. p.61-67. (Embrapa Clima Temperado. Sistemas de Produção, 11).

⁹ AIRES, R.F. et al. Ensaio de variedades de mamona no Rio Grande do Sul nas safras 2008/09 e 2009/10. In: Simpósio Estadual de Agroenergia, Reuniões Técnicas de Agroenergia 3.; da Mandioca, 10.; e Batata-Doce, 2., 2010, Pelotas, RS. **Anais...** Pelotas: Embrapa Clima Temperado, 2010. 1 CD.

^{*}Médias seguidas de mesma letra maiúscula, na linha, não diferem entre si pelo teste Duncan (α =0,05).