Potencialidades e Limitações para o Uso Agrícola de Solos Localizados no Entorno do Lago de Sobradinho em Remanso – BA

<u>Alexsandra Fernandes de Queiroz</u>⁽¹⁾; Tony Jarbas Ferreira Cunha⁽²⁾; Manoel Batista de Oliveira Neto⁽³⁾; Alessandra Monteiro Salviano Mendes⁽²⁾

(1) Mestranda; Programa de Pós-Graduação em Ciência do Solo; Universidade Federal Rural do Semiárido – UFERSA; Av. Francisco Mota, 572, Bairro Costa e Silva, Mossoró, RN CEP: 59.625-900; alexsandrageografia@hotmail.com; (2) Pesquisadores; Embrapa Semiárido; BR 428, km 152, C.P. 23, zona rural, CEP 56302-70, Petrolina, PE; tony@cpatsa.embrapa.br; amendes@cpatsa.embrapa.br; (3) Pesquisador; Embrapa Solos UEP Nordeste; neto-@uep.cnps.embrapa.br; Rua Antônio Falcão, 402, Boa Viagem Recife, PE, CEP 51020-240.

RESUMO – A paisagem do Submédio do Vale do São Francisco vem, ao longo dos anos, passando por constantes alterações, consequência das atividades antrópicas, em que a vegetação original da caatinga vem sendo gradativamente eliminada devido ao uso agrícola das terras. Dessa maneira, muitas áreas sem aptidão ou de aptidão restrita para o uso com lavouras são cultivadas, resultando em grande risco de degradação. Assim, o objetivo desse trabalho foi avaliar as potencialidades e limitações para o uso agrícola de dois solos representativos do município de Remanso - BA a partir de suas caracterizações físicas e químicas de forma a contribuir para a sustentabilidade da atividade agrícola desenvolvida na região. Foram selecionadas duas áreas no município de Remanso - BA, área de entorno do Lago de Sobradinho onde foram abertas trincheiras para estudos morfológicos. Foram feitas observações características gerais dos solos, relevo e vegetação das áreas em estudo. Os dois perfis (P1: Latossolo Amarelo Distrófico típico - LAd; P2: Neossolo Quartzarênico Órtico plíntico - RQo) estão localizados em área de caatinga hiperxerófila pouco densa e com relevo plano. Foram realizadas as descrições morfológicas e coletadas as amostras dos perfis de solos para análises físicas e químicas. Os solos dos dois perfis avaliados apresentam baixa fertilidade, sendo necessária a adoção de práticas de manejo que contribuam com o aumento da matéria orgânica no sentido de melhorar a sua qualidade.

Palavras-chave: Fertilidade; Latossolo; Neossolo; Qualidade do Solo.

INTRODUÇÃO - A região de entorno do Lago de Sobradinho caracteriza-se pelo aumento intensivo de atividades agropecuárias, tendo como destaque a agricultura irrigada, com o cultivo de oleráceas, principalmente a cebola. Além destas atividades, o município de Remanso, destaca-se pela criação de caprinos, ovinos, gado de corte e leite.

A agricultura é muito importante para a economia local, além de gerar diversos empregos e fixar o homem à

terra. No entanto, as atividades antrópicas desenvolvidas neste local, combinadas com as características físicas do ambiente e dos solos, causam significativa degradação dos recursos naturais existentes, comprometendo a qualidade ambiental da região. O uso indiscriminado de pesticidas e fertilizantes químicos nesta região é motivo constante de preocupação com o meio ambiente, principalmente quando as áreas utilizadas estão bem próximas das fontes hídricas, que também são utilizadas para consumo humano e animal.

Todavia, na busca pela sustentabilidade torna-se cada vez mais imperativa a necessidade de estabelecerem-se critérios e metodologias para a avaliação e monitoramento do efeito da atividade antrópica sobre o ambiente, buscando, dentre outros aspectos, reorientá-las. Assim, para contribuir no sentido de se ter um uso mais adequado e racional do solo, é necessário conhecer bem seus atributos químicos, físicos e morfológicos, e a partir disso propor as técnicas de manejo mais adequadas para as condições locais visando melhorar a qualidade do solo e da água do Lago de Sobradinho.

A Qualidade do Solo (QS) pode ser conceituada como a capacidade que um determinado tipo de solo apresenta, em ecossistemas naturais ou agrícolas, para desempenhar uma ou mais funções relacionadas à sustentação da atividade, da produtividade e da diversidade biológica, à manutenção da qualidade do ambiente, à promoção da saúde das plantas e dos animais e à sustentação de estruturas socioeconômicas e de habitação humana (KARLEN et al.,1997).

Com isso, o objetivo desse trabalho foi avaliar as potencialidades e limitações para o uso agrícola de dois solos representativos do município de Remanso – BA a partir de uma caracterização física e química.

MATERIAL E MÉTODOS - Foram selecionadas duas áreas no município de Remanso - BA, área de entorno do Lago de Sobradinho onde foram abertas trincheiras para realização de estudos morfológicos e coleta de amostras para fins analíticos. Foram feitas observações das características dos solos, relevo e vegetação das áreas em

estudo. De acordo com a classificação de Köppen, o clima predominante na região é do tipo BSw'h', caracterizado por ser muito quente e semiárido Os dois perfis (P1: Latossolo Amarelo Distrófico típico – LAd; P2: Neossolo Quartzarênico Órtico plíntico – RQo) estão localizados em área de caatinga hiperxerófila pouco densa de relevo plano (local e regional). O Perfil 1 está situado sob vegetação secundária de caatinga sem uso na atualidade, já o Perfil 2 está situado em uma área com cultivo de mandioca.

Foram realizadas as descrições morfológicas e coletadas as amostras dos perfis de acordo com o Sistema Brasileiro de Classificação de Solos (EMBRAPA, 2006) e o Manual de Descrição e Coleta de Solo no Campo (Santos et al., 2005). As análises físicas e químicas realizadas seguiram as recomendações do Manual de Métodos de Análise de Solo (EMBRAPA, 1997).

RESULTADOS E DISCUSSÃO - O solo identificado no Perfil 1 corresponde a um Latossolo amarelo distrófico típico (Figura 1), caracterizado por apresentar o horizonte B latossólico imediatamente abaixo de qualquer tipo de horizonte A, pela presença de minerais em estágio muito avançado de intemperismo e baixa saturação por bases (EMBRAPA, 2006).

Os Latossolos de maneira geral possuem boas condições físicas que aliadas ao relevo plano como é o caso do Perfil 1 favorecem a sua mecanização e utilização com as mais diversas culturas adaptadas à região (Cunha et al., 2008). No entanto, apresentam como limitação a baixa disponibilidade de nutrientes.

Figura 1: Ambiente de vegetação secundária de caatinga com Latossolo amarelo distrófico típico (Perfil 1).

O Perfil 2 corresponde a um Neossolo quatzarênico órtico plíntico (Figura 2), caracterizado por apresentar um material pouco evoluído com relação a sua gênese e a ausência de um horizonte B diagnóstico. Este solo apresenta 5 % ou mais de plintita e/ou petroplintita, em um ou mais horizontes, mas que não preenche os requisitos para se caracterizar com um horizonte plíntico (EMBRAPA, 2006).

Figura 2: Ambiente de cultivo de mandioca com Neossolo

Com relação à granulometria (Tabela 1) do Perfil 1, observa-se que o Perfil 1 apresenta distribuição das frações granulométricas sem grandes variações, conferindo uma classe textural do tipo areia-franca nos horizontes A, Bw1 e Bw2 e franco-arenosa nos horizontes Bw3 e Bw4. Assim como no Perfil 1, no Perfil 2 apresenta os teores de areia em relação aos de silte e argila são muito elevados em todos os horizontes, havendo uma pequena variação somente do horizonte A, mudando da classe textural areia para areia-franca nos demais horizontes subjacentes.

O Perfil 1 apresenta valores de pH considerados ideais nos horizontes A1, Bw1 e Bw2. Já no Perfil 2 os valores de pH são baixos em todos os horizontes (variando de entre 4,3 a 4,9), sendo o solo portanto ácido (Tabela 2).

De maneira geral nos Latossolos distróficos, os valores para soma de bases (SB) e saturação por bases (V) são bastante baixos, variando, no horizonte superficial, entre 0,3 cmol_c.kg⁻¹ e 3,0 cmol_c.kg⁻¹ e entre 3,0 cmol_c.kg⁻¹ e 12,0 cmol_c.kg⁻¹ para SB e capacidade de troca catiônica (CTC), respectivamente, características de solos desenvolvidos de materiais arenoquartzosos. (Jacomine et al., 1973). Os valores de SB do Perfil 1 nos horizonte A e Bw1 ficaram um pouco acima da média citada. Os valores de CTC estão dentro da média, apresentando no horizonte A e Bw1 7,22 cmol_c.dm⁻³ e 6,49 cmol_c.dm⁻³ respectivamente (Tabela 2).

O teor de fósforo (P) para esse tipo de solo é normalmente baixo, mas nesse perfil, principalmente nos horizontes A e Bw1 os teores encontrados foram muito alto, 66,96 mg dm⁻³ e 26,01 mg dm⁻³ respectivamente, provavelmente devido ao efeito residual de adubações anteriores.

Como esse solo apresenta ao longo de seus horizontes altos teores de areia e se faz necessária a fertilização no sentido de melhorar a qualidade química é preciso propor práticas conservacionistas e manejo da água da irrigação adequados para minimizar os impactos destas práticas sobre o lençol freático e, consequentemente na própria água do lago.

O Perfil 2 é caracterizado pela pouca presença de matéria orgânica, devido à baixa produção de resíduos orgânicos pelas plantas, uma consequência advinda das condições físicas e climáticas da região. Apresenta capacidade de troca catiônica (CTC) e saturação por bases (V) baixas. Os horizontes A e C1 apresentaram valores de CTC um pouco maiores do que os demais horizontes subjacentes, (5,00 cmol_c.dm⁻³ e 5,38 cmol_c.dm⁻⁵ respectivamente). Sua pobreza em nutrientes torna imprescindível a aplicação de fertilizantes, principalmente os orgânicos que promovem o aumento da CTC e oferecem menos impactos neste tipo de solo, para que sejam possíveis produções satisfatórias. (Tabela 2). A baixa CTC aponta para que as aplicações de fertlizantes sejam efetuadas de maneira parcelada, de forma a evitar saturação do complexo sortivo, minimizando as perdas por lixiviação, principalmente de nitrato e potássio (Cunha et al., 2008). A quantidade adequada e a forma de efetuar a aplicação de fertilizantes se faz importante nesse tipo de solo, devido a sua baixa capacidade de retenção de água e nutrientes adicionados, que podem contaminar o lençol freático e outros tipos de reservatórios de água como é o caso do Lago de Sobradinho.

CONCLUSÕES – Os solos dos dois perfis avaliados apresentam baixa fertilidade, sendo necessária a adoção de práticas de manejo que contribuam com o aumento da matéria orgânica no sentido de melhorar a sua qualidade.

AGRADECIMENTOS - À CHESF, Embrapa e CNPq pela concessão de recursos financeiros e à CAPES pela concessão da bolsa de mestrado.

REFERÊNCIAS

CUNHA, T. J. F. et al. **Solos da margem esquerda do Rio São Francisco**: Município de Petrolina, Estado de Pernambuco. Petrolina: Embrapa Semiárido, 2010. (Embrapa Semiárido. Documentos, 236).

CUNHA, T. J. F. et al. **Solos do Submédio do Vale do São Francisco**: potencialidades e limitações para uso agrícola. Petrolina, PE: Embrapa Semiárido, 2008. (Embrapa Semiárido. Documentos, 211).

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. **Manual de métodos de análise de solo**. Rio de Janeiro, Centro Nacional de Pesquisa de Solos, 1997.

EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA – EMBRAPA. Centro Nacional de Pesquisas de Solos. **Sistema Brasileiro de Classificação de Solos.** 2.ed. Rio de Janeiro, Embrapa Solos, Brasília, Sistema de Produção de Informação, 2006.

JACOMINE, P.K.T. et al. **Levantamento Exploratório-Reconhecimento de Solos do Estado de Pernambuco**. Recife: DNPEA: SUDENE-DRN, 1973 (Boletim Técnico, 26).

KARLEN, D.L.; MAUSBACH, M.J.; DORAN, J.W.; CLINE, R.G.; HARRIS, R.F. &SCHUMAN, G.E. Soil quality: a concept, definition, and framework for evaluation (a guest editorial). **Soil Sci. Soc. Am. J.**, 61: 4-10, 1997.

SANTOS, R.D.; LEMOS, R.C.; SANTOS, H.G.; KER, J.C. & ANJOS, L.H.C. **Manual de descrição e coleta de solo no campo**. Viçosa, MG, Sociedade Brasileira de Ciência do Solo, 2005.

Tabela 1: Atributos físicos de dois solos representativos localizados no entorno do Lago de Sobradinho em Remanso – BA.

Hor	Prof		Areia ⁽¹⁾		Silte	Ar	gila	Classe Textural ⁽²⁾	Grau de Floc.	Relação Silte/Alg.		
	_	G	F	Total	-	Total	Água	_				
	cm	vv.								%		
			P1: I	ATOSSOLO A	MARELO Dis	trófico típico – l	LAd					
A1	0-20	532	337	869	37	94	0,10	ar. fr.	99	0,39		
A2	20-70	444	387	831	54	115	0,27	ar. fr.	99	0,47		
A3	70-110	449	353	802	69	129	0,20	ar. fr.	99	0,53		
Bw1	110-160	357	372	729	112	159	0,13	fr-ar.	99	0,70		
Bw2	160-200+	359	354	714	119	167	0,21	fr-ar.	99	0,71		
			P2: NEO	OSSOLO QUAI	RTZARÊNICO	Órtico plíntico	– RQo					
A	0-15	453	439	892	65	43	0,10	ar.	99	1,49		
C1	15-50	406	403	809	120	71	0,06	ar. fr.	99	1,70		
C2	50-90	409	404	813	115	72	0, 22	ar. fr.	99	1,60		
C3	90-140	407	414	821	99	80	0,20	ar. fr.	99	1,24		
C4	140-180+	350	423	773	136	91	0,22	ar. fr.	99	1,50		

(1) Areia G: grossa; F: fina. (2) Classe Textural: ar.fr.: areia franca; fr. ar.: franco-arenosa; ar.: areia.

Tabela 2: Atributos químicos de dois solos representativos localizados no entorno do Lago de Sobradinho em Remanso – BA.

		pН			Complexo sortivo															
Hor	Prof	(1:2,5)	CE	MO																
	-	H ₂ O	_		P	Ca ²⁺	Mg^{2+}	Na ⁺	K ⁺	Al ³⁺	H+Al	SB	CTC	V	PST	m	Fe	Mn	Cu	Zn
	cm		dS m ⁻¹	g Kg ⁻¹	mg dm ⁻³				cmol _c dm	3					···%			mg d	m ⁻³	
				P1: LATOSSOLO AMARELO Distrófico típico – LAd																
A1	0-20	6,7	0,07	7,53	66,96	2,40	0,60	0,02	0,24	0,05	3,96	3,26	7,22	45	0	2	10,8	27,6	0,40	3,70
A2	20-70	6,3	0,10	1,10	26,01	2,40	0,50	0,02	0,11	0,05	3,46	3,03	6,49	47	0	2	18,8	1,60	0,70	0,60
A3	70-110	6,7	0,37	0,50	3,19	0,62	0,28	0,02	0,10	0,05	3,13	1,02	4,15	25	0	5	5,30	0,90	0,80	0,40
Bw1	110-160	4,9	0,18	0,20	0,57	1,40	0,40	0,03	0,31	0,15	2,97	2,14	5,11	42	0	7	7,60	0,70	0,20	0,20
Bw2	160-200 ⁺	4,9	0,13	0,40	0,46	0,41	0,34	0,05	0,53	0,10	2,80	1,33	4,13	32	1	7	12,50	1,60	0,20	0,20
					P2: NEOSSOLO QUARTZARÊNICO Órtico plíntico – RQo															
A	0-15	4,6	0,19	2,41	2,85	0,60	0,35	0,01	0,08	0,40	3,96	1,04	5,00	21	0	28	31,50	1,80	0,10	0,20
C1	15-50	4,3	0,34	0,70	0,80	0,45	0,10	0,01	0,04	1,10	4,78	0,60	5,38	11	0	65	110,00	1,60	0,10	0,20
C2	50-90	4,4	0,15	0,20	0,68	0,29	0,11	0,01	0,04	1,10	3,46	0,45	3,91	12	0	71	95,10	1,30	0,10	0,10
C3	90-140	4,6	0,07	0,10	0,57	0,32	0,26	0,01	0,02	0,05	2,80	0,61	3,41	18	0	8	96,00	1,20	0,10	0,30
C4	140-180 ⁺	4,9	0,06	0,10	0,57	0,80	0,30	0,18	0,04	0,35	1,98	1,33	3,31	40	5	21	48,60	86,00	0,10	0,20

- Resumo Expandido -