

DESENVOLVIMENTO DE PORTA ENXERTOS DE Eugenia uniflora L. (MYRTACEAE) EM DIFERENTES SUBSTRATOS

BRUNA SANTANA MORAIS ¹; OSCAR JOSÉ SMIDERLE²; EDVAN ALVES CHAGAS²; CHRISTINNY GISELLY BACELAR-LIMA³; RICARDO MANUEL BARDALES LOZANO⁴; ALINE DAS GRAÇAS SOUZA PEREIRA³

INTRODUÇÃO

A pitangueira, *Eugenia uniflora* L. (Myrtaceae), é originária da região que vai do Brasil Central até o norte da Argentina e distribui-se ao longo de quase todo o território brasileiro e várias partes do mundo (DONADIO et al., 2002). O fruto é uma baga, sendo a polpa a principal parte comestível *in natura* ou através da exploração agroindustrial para a obtenção da polpa integral congelada, suco engarrafado, fabricação de sorvete, picolé, licor, geleia, vinho, dentre outros (ARAÚJO, 1995).

A pitangueira tem na propagação por sementes, o método mais utilizado, que apresenta como inconveniente a grande variabilidade entre as plantas e na produção, frutificação baixa e mais tardia, qualidade de frutos, entre outros. Por outro lado, a propagação é uma importante ferramenta no melhoramento de espécies lenhosas e herbáceas que proporciona a formação de pomares uniformes, com populações de plantas homogêneas, e vem sendo amplamente utilizada, visando melhorar e manter variedades de importância econômica e medicinal.

No Brasil, alguns trabalhos com propagação vegetativa da pitangueira, através de enxertia, vêm sendo conduzidos no nordeste e sul do país (FACHINELLO et al., 2005). Ainda assim, são consideradas escassas as pesquisas sobre o manejo da espécie, principalmente no norte do Brasil, requerendo para maiores avanços encontrar alternativas viáveis para a propagação vegetativa, pois um dos principais problemas para a expansão do cultivo é a produção de mudas.

Segundo Pezzutti et al. (1999), o conhecimento do crescimento das plantas no viveiro, em resposta a fatores como água, luz, temperatura, fertilizantes e restrição radicular, reveste-se de

¹Acadêmica do Curso de Agronomia da UFRR e Bolsista PIBIC/CNPq. Email: penelope_santana@hotmail.com;;
²Pesquisador da Embrapa-RR. Email: oscar.smiderle@embrapa.br, edvan.chagas@embrapa.br. Bolsista Produtividade em Pesquisa do CNPq;

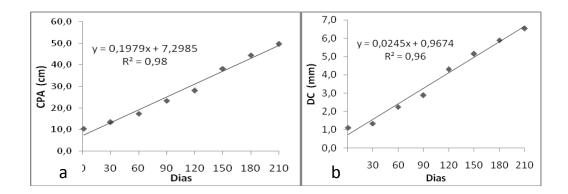
³Pesquisadora da Embrapa Roraima, Programa de Pós-Doutoramento (CAPES/PNPD). Email: christinnyg@hotmail.com; alineufla@hotmail.com;

⁴Mestrando POSAGRO/UFRR. E-mail: pecoss_2@hotmail.com

importância para produzir mudas de qualidade, em quantidade suficiente e a custo menor. Mudas aptas ao plantio no campo devem ser sadias e possuir resistência a estresses que lhe permitam sobreviver às condições adversas do meio (GOMES et al., 1996).

Para a Pitangueira ainda não se conhece o tipo de substrato ideal para a produção de mudas e com o objetivo de aprimorar as técnicas de cultivo desta espécie, avaliou-se neste trabalho o efeito de diferentes substratos sobre o desenvolvimento de porta enxertos de *Eugenia uniflora* em casa de vegetação.viveiro sem cobertura.

MATERIAL E MÉTODOS


Este trabalho foi realizado em casa de vegetação, no setor de Fruticultura da Embrapa em Boa Vista, Roraima-RR. No laboratório de sementes, o endocarpo de sementes de aproximadamente 300 frutos de pitanga, foi extraído manualmente , por meio de lavagem em água corrente. Após secagem à sombra por 24 h, as sementes foram semeadas em leito de areia. O transplantio de 270 plântulas ocorreu com 90 dias para sacos com tamanho de 20 x 28 cm contendo os substratos: T1: solo + areia (3:1); T2: substrato comercial (vivato 100%); T3: 25% solo+areia + 75% esterco de bovino; T4: 50% solo+areia + 50% esterco de bovino; T5: 75% solo+areia + 25% esterco de bovino; T6: 25% solo+areia + 75% palha de arroz carbonizada; T7: 50% solo+areia + 50% palha de arroz carbonizada e T9: 50% solo+areia + 25% esterco de bovino + 25% palha de arroz carbonizada.

As avaliações foram realizadas a cada 30 dias após a instalação do experimento, sendo medidos com auxílio de régua e paquímetro digital, o comprimento da parte aérea (cm) e diâmetro do caule (mm) das plantas, totalizando sete avaliações até aos 210 dias. O delineamento utilizado foi inteiramente casualizado em esquema fatorial simples, com 3 repetições e cada repetição composta por 10 mudas. Foi feita análise de variância, comparações teste de Scott & Knott (P≤0,05) e por regressão (GOMES, 2000). As análises foram realizadas pelo programa computacional SISVAR (FERREIRA, 2008).

RESULTADOS E DISCUSSÃO

Observou-se de maneira geral, a existência de diferenças significativas entre os tratamentos nas variáveis diâmetro do caule (DC) e comprimento da parte aérea (CPA), de acordo com a análise de variância. De acordo com a curva de crescimento, houve um crescimento linear para o comprimento da parte aérea (Figura 1a). As mudas atingiram altura media de 13,38 cm aos 30 dias de transplantio e aos 210 dias, 39,27 cm no CPA, atingindo os 49,67 cm em relação às medias dos tratamentos. Para o DC, as mudas de *E. uniflora*, apresentaram inicialmente média de 1,33 mm e aos 210 dias atingiram diâmetro de 6,53 mm, tendo incremento de 5,42 mm. Segundo Fachinello

(2005), plantas lenhosas, à medida que o diâmetro do tronco aumenta, maior é o estado de lignificação do lenho e maior é a dificuldade de cicatrização. Na pitangueira, pode-se optar, para a realização de enxertia, por mudas com diâmetro de 2 a 4mm (Figura 1b).

Figura 1- Curvas médias de incremento mensal do comprimento da parte aérea – CPA (figura 1a) e o diâmetro de caule –DC (figura 1b), obtidos para porta-enxertos de pitanga por 120 dias de monitoramento.

Os tratamentos 2, 3, 4, 5 e 9 diferiram significativamente dos tratamentos 6, 7 e 8 quanto ao comprimento da parte aérea (CPA) a partir dos 150 dias em diante (Tabela 1), indicando que os constituintes vivato, solo, areia e esterco de bovino destes substratos são essenciais no desempenho da CPA das mudas. Composições contendo palha de arroz carbonizada e esterco de bovino parecem não influenciar no desenvolvimento inicial das plântulas, mas, mostraram relação com o aumento do diâmetro do caule (DC), nos tratamentos 2, 4, 5 e 9 a partir dos 150 dias (Tabela 2).

O que provavelmente justifica os melhores resultados quanto ao CPA e ao DC neste trabalho pode ser explicado por Silva et al. (2000) ao relatarem que os substratos que contém maior teor de matéria orgânica e também possuem elevada porosidade, apresentam boa capacidade de retenção de água e aeração, produzindo assim mudas mais desenvolvidas, resultantes de manifestações da raiz.

Tabela 1 - Valores médios obtidos para o comprimento da parte aérea (CPA) da pitangueira (*Eugenia uniflora*) por 120 dias de monitoramento.

	Dias												
Tratamentos	30	60	90	90		120		150		180			
T1	13,14 a	14,9	b 18,53	a	20,87	a	26,00	c	29,33	c	32,93	c	
T2	18,87 a	22,07	a 26,73	a	32,15	a	42,00	a	50,07	a	58,33	a	
T3	11,82 a	15,85	b 21,94	a	28,61	a	41,09	a	51,33	a	58,06	a	
T4	12,17 a	15,77	b 24,27	a	31,47	a	46,13	a	54,90	a	62,10	a	
T5	9,93 a	14,14	b 20,54	a	26,97	a	40,41	a	50,08	a	56,52	a	
T6	14,2 a	18,85	a 25,93	a	28,50	a	36,25	b	40,77	b	45,77	b	
T7	12,73 a	18,85	a 25,90	a	29,35	a	36,97	b	40,13	b	42,93	b	
T8	14,27 a	17,53	a 23,67	a	26,78	a	34,28	b	38,05	b	40,93	b	
T9	13,27 a	18,7	a 22,37	a	27,70	a	40,75	a	45,04	a	49,50	a	
Media geral	13,38	17,41	23,32		28,04		38,21		44,41		49,67		
CV	14,90	12,38	12,98		11,96		11,23		9,58		9,07		

Tabela 2 - Valores médios obtidos para o diâmetro do caule (DC) da pitangueira (*Eugenia uniflora*) por 210 dias de monitoramento

Tratamentos	Dias													
	30		60 90		120		150		180		210			
T1	1,21	a	2,09	b	2,59	a	3,27	a	3,70	b	3,97	a	4,40	a
T2	1,63	a	2,37	a	3,08	a	4,40	a	5,95	a	6,78	a	7,17	a
T3	1,30	a	1,87	b	2,78	a	3,77	a	5,37	a	6,00	a	6,30	a
T4	1,39	a	2,18	b	3,08	a	4,96	a	5,81	a	6,38	a	6,83	a
T5	1,23	a	1,81	b	2,51	a	5,22	a	5,90	a	6,53	a	6,77	a
T6	1,31	a	2,49	a	3,13	a	4,20	a	4,65	b	5,31	a	5,73	a
T7	1,25	a	2,55	a	3,27	a	4,62	a	5,13	a	5,87	a	6,27	a
T8	1,38	a	2,24	a	2,72	a	3,93	a	4,58	b	5,87	a	6,50	a
T9	1,30	a	2,58	a	2,73	a	4,26	a	5,25	a	6,27	a	6,70	a
Media geral	1,33		2,24		2,88		4,29		5,15		5,89		6,30	
CV	10,98		7,96		11,9		12,67		11,57		10,8		10,72	

Letras distintas na coluna, indicam diferenças significativas pelo teste de Scott - Knott (p<=0.05).

CONCLUSÕES

O substrato a base de misturas com solo (latossolo) + areia + matéria orgânica (esterco de bovino) é o mais indicado para a produção de mudas de *Eugenia uniflora* a partir de 150 dias, influenciando nos aumentos do comprimento da parte aérea e do diâmetro do caule.

A presença de esterco de bovino e/ou palha de arroz carbonizada na composição do substrato não influencia no aumento do diâmetro do caule na fase inicial de desenvolvimento de mudas de *Eugenia uniflora*, mas por se constituem em importantes componentes do substrato na fase de estabelecimento das mudas.

REFERÊNCIAS

ARAÚJO. J. M. A. Química de alimentos: teoria e prática. 19. ed. Viçosa: Impressa Universitária, 1995. 335p.

DONADIO, L.C.; MÔRO, F.V.; SERVIDONE, A.A. **Frutas Brasileiras**. Jaboticabal: Ed. Novos Talentos, 2002. 288p.

FACHINELLO, J.C.; HOFFMANN, A.; NACHTIGAL, J.C. (Eds). Propagação de plantas frutíferas. Brasília, DF, Embrapa Informações Tecnológicas. 221p, 2005.

FERREIRA, D.F. SISVAR: um programa para análises e ensino de estatística. **Revista Symposium** (Lavras), v. 6, p. 36-41, 2008.

GOMES, F.P. Curso de estatística experimental. 14 ed. Piracicaba: USP/ESALQ, 2000. 477p.

GOMES, J.M.; PAIVA, H.N.; COUTO, L. Produção de mudas de eucalipto. **Informe Agropecuário**, v. 18, n. 185, p. 15-23, 1996.

PEZZUTTI, R. V. et al. Crescimento de mudas de *Eucalyptus globulus* em resposta a fertilização. **Ciência Florestal**, v.9, n.2, p.117-125, 1999.

SILVA, A. C. R.; FERNANDES, H. S.; MARTINS, S. R. et al. Produção de mudas de alface com vermicomposto em diferentes tipos de bandejas. **Horticultura Brasileira**, Brasília, v.18, p.512-513, 2000. (Suplemento julho).