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Abstract. The goal of the present study was to evaluate techniques for modeling the physiological
responses, rectal temperature, and respiratory rate of black and white Holstein dairy cows. Data from
the literature (792 data points) and obtained experimentally (5.884 data points) were used to fit and
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validate the models. Each datum included dry bulb air temperature, relative humidity, rectal
temperature and respiratory rate. Three models based on artificial intelligence - fuzzy logic, artificial
neural networks, and neuro-fuzzy networks - and one based on regression were evaluated for each
response variable. The adjusted models predict rectal temperature and respiratory rate as a function
of dry-bulb air temperature and relative humidity. The adjusted models were compared using

statistical indices. The model based on artificial neural networks showed the best performance,
followed by the models based on neuro-fuzzy networks, fuzzy logic, and regression; the last two

performed similarly.
Keywords. Physiological performance, computational models, dairy cattle.
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Introduction

In 2009, Brazil was considered the fifth leading producer of milk in the world, with an annual
production of 30.4 billion liters of milk, and the state of Minas Gerais led production for the
country (EMBRAPA, 2011). The previously mentioned growth was accompanied by an increase
in internal consumption per capita of approximately 1.59% annually and by an increase in
exports (Gama, 2010). Brazil is located in an intertropical zone, with hot and humid climates,
where the likelihood of animals suffering thermal stress is high, especially for bovines of
European breeds (Souza et al., 2004).Therefore, there is great interest in the development of
tools that can aid in decision making with regard to environmental conditions that directly or
indirectly affect milk production, as is the case for thermal stress.

New models being developed for the livestock industry are characterized by the adoption of
technologies based on principles of sustainable production, with an emphasis on animal comfort
and well-being, considering that these animals were chosen for their ability to adapt to the soil
and climate conditions (edaphoclimatic conditions) of each region (Pires and Campos, 2008).
According to Silva et al. (2002), environmental conditions are directly related to the
microclimate in facilities, thus influencing the thermal comfort of the animals that are housed
there. The ideal temperature for milk production varies according to the breed of the cattle, its
level of production, and its level of tolerance to heat or cold; Holsteins, in particular, reduce
production beginning at 24°C.

The environment for dairy cattle plays a fundamental role in obtaining the proper climatic
conditions for animal production, the limits of which bound the zone of thermoneutrality (Curtis,
1983 ). Within this zone, the animal reaches its maximum potential, and body temperature is
maintained with minimal use of thermoregulatory mechanisms. When conditions are not within
these proper limits, the environment becomes uncomfortable. Under conditions of heat stress,
which are more frequent in Brazil and intertropical countries, dairy cows reduce their feed intake
and consequently their milk production (Harner et al., 2009). Sweating and panting are some of
the mechanisms these animals use to relieve thermal stress.

In addition to these consequences, the animals lose considerable amounts of sodium and
potassium through sweat and urine (Pires and Campos, 2008) and suffer changes in rectal
temperature (tex2) @and in respiratory rate (RR) (Perissinotto and De Moura, 2007). Also, there is
evidence that heat stress on cattle reduces future productivity, even if environment conditions
are returned to acceptable levels (Curtis, 1983; Kazdere et al., 2002; West, 2003).

For these reasons, the development of models that assist dairy producers in making decisions
to maintain the production environment within the zone of thermoneutrality for the animals, thus
obtaining maximum production, is critical. The tools include empirical mathematical models,
such as regression models (RMs), fuzzy models (FMs) (Perissinotto, 2007; Perissinotto et al.
2009), artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs), and can assist in the
control of ventilation and evaporative cooling systems.

Regression models

RMs use direct observation or the results of experiments concerning a particular phenomenon
to demonstrate a correlation between input and output variables, without explaining the
phenomena or processes involved (Baldwin, 1995). Thus, RMs consist of fitting statistical
models to the data, with the goal of describing the behavior of dependent variables (output
variables) as a function of a set of independent variables (input variables).




RMs have been applied in various studies, for example, to predict the growth of broilers (lvey,
1999), thermal indices for the productivity of broilers (Medeiros et al., 2005), the surface area of
broilers (Silva et al., 2009), t .0t/ OF broilers (Ponciano et al., 2012), and thermal comfort in cattle
(Brown-Brandl et al., 2005).

Fuzzy models

FMs are based on fuzzy logic (FL), which is founded in the theory of fuzzy sets (Gomide and
Gudwin, 1994) introduced by Zadeh (1965). FL works with approximate rather than exact
information (Ferreira, 2009), similar to human reasoning (imprecise reasoning), to achieve
precision in various applications to reduce the time needed for modeling. Having defined the
study to be performed, it is necessary to define the input and output variables that will constitute
the FM (Perissinotto, 2007; Pereira et al., 2008). For each variable, fuzzy sets are developed to
characterize it, so that a pertinence function is created for each fuzzy set. These functions
indicate to what degree of pertinence a particular element belongs to a fuzzy set. Next, rules are
defined (system of rules or inference), through which a relationship exists between the input and
output variables with their respective fuzzy sets. Software can be used to perform all of the
procedures required to develop and construct an FM, and the computational evaluation of any
FM consists of fuzzification, inference, and defuzzification (Oliveira et al., 2005).

The theory of fuzzy sets has been used as a viable and suitable option in various areas, such as
in the study of thermal comfort or discomfort of birds and swine (Queiroz et al., 2005; Oliveira et
al., 2005; Alves, 2006; Yanagi Junior et al., 2006; Owada et al., 2007; Pereira et al., 2008;
Ferreira, 2009), cattle (Perissinotto, 2007, Perissinotto et al. 2009), and humans (Altrock et al.,
1994). Fuzzy sets have also been used in the prediction of estrus in dairy cows (Ferreira et al.,
2007), inspection systems for chickens (Yang et al., 2006), the prediction of cloacal temperature
of broilers (Ferreira et al., 2011), statistics (Khashei et al., 2008; Liang-Hsuan and Chan-Ching,
2009), forensic science (Liao et al. , 2009), studies of pesticide pollution (Gil et al., 2008),
industrial applications (Meier et al., 1994), and in data analysis, specialist systems, control, and
optimization (Gomide and Gudwin, 1994: Ribacionka, 1999; Lopes, 1999; Cho et al., 2002;
Weber and Klein, 2003; Castafieda-Miranda et al., 2006; Chao et al., 2000), among many other
applications.

Artificial neural networks

According to Tsoukalas and Uhrig (1997), an ANN is a data processing system composed of a
large number of highly interconnected simple processing elements (artificial neurons) in an
architecture inspired by the structure of the cerebral cortex. Thus, ANNs are inspired by the
functioning and structure of biological neurons and are trained by running patterns through the
network, making it possible to identify the relationships between variables with no a priori
knowledge (Roush et al., 1997). Mathematically, ANNs are universal approximators that perform
mapping between two variable spaces (Hornik et al., 1990).

ANNSs are currently being applied in various fields of knowledge, and their use is generally
linked to searching for patterns and techniques for temporal forecasts for decision making. This
approach is being used in fields such as aviculture (Lopes et al., 2008), applied geography
(Spellman, 1999), thermal sciences and engineering (Yang, 2008), hydrology (Kurtulus and
Razack, 2010), the study of thermal comfort in cattle (Brown-Brandl et al., 2005), growth
performance in swine (Bridges et al., 1995) and in humans (Moustris et al., 2010). ANNs have
been used to analyze the sensitivity of a mechanical system for poultry catching (Jaiswal et al.,
2005), quantification of odours from piggery effluent ponds (Sohn et al., 2003), classify apples
by their textural features (Kavdir and Guyer, 2004), discriminating varieties of tea plant (Li and



He, 2008), daily stream flow prediction (Nayebi et al., 2006), simulate runoff and sediments yield
(Agarwal et al., 20086), residual soil nitrate prediction (Gautam et al., 2012), discrimination of
apricot cultivars by gas multisensor array (Parpinello et al., 2007), estimate leaf chlorophyll
concentration in rice under stress from heavy metals (Liu et al., 2010), modelling total volume of
dominant pine trees in reforestations (Diamantopoulou and Milios, 2010), in ortho-phosphate
and total phosphorus removal prediction in horizontal subsurface flow constructed wetlands
(Akratos et al., 2009), predicting the draught requirement of tillage implements in sandy clay
loam soil (Roul et al., 2009), prediction of nitrate release from polymer-coated fertilizers (Du et
al., 2008), and in near infrared spectral analysis (Wang and Paliwal, 2006). ANNs have also
found to be useful in construction (Argiriou et al., 2000) and in demand analysis in the form of
forecasting (Efendigil et al., 2009), among many other applications.

The MultiLayer perceptron (MLP) is the most commonly used architecture for developing an
ANN (Barreto, 2002; Von Zuben, 2003) and contains input, hidden, and output layers.

Neuro-fuzzy networks

NFNs take advantage of the learning abilities of ANNs and use fuzzy systems to process
knowledge in a clear way. The final solution of the NFN can be interpreted as a fuzzy inference
system (FIS) of the Sugeno type. Various studies have been performed in different areas using
these hybrids (ANNs and FL), including human thermal comfort (Chen et al., 2006), control and
automation systems (Cheng-Hung et al., 2009), the decision support system for demand
forecasting (Efendigil et al., 2009), thermal comfort for birds (Ferreira, 2009), the prediction of
t.cta OF broilers (Ferreira et al., 2010), in statistics (Khashei et al., 2008), in hydrology (Kurtulus
and Razack, 2010), to analyze livestock farm odour (Pan and Yang, 2007), and in robotics
(Zacharia, 2010).

Given the above, the objective of this study was to develop and validate RMs and models based
on artificial intelligence to predict the frectar and RR for black and white Holstein dairy cows kept
in confinement as a function of the two meteorological variables dry bulb air temperature (tu)
and relative humidity (RH).

Matorial and methods

Datasets

A database was generated containing the raw data for ty, RH, teca, @and RR for black and white
Holstein dairy cows. These data were chosen because the authors quoted in table 1, worked in
common with these four variables. Although some of these authors also measure wind speed,
black globe temperature, black and white coat temperature and milk production, the amount of
data wasn't enough to develop some of the proposal models.

To this work, the total dataset called as combined dataset (6,676 pieces of information) was
conformed for data obtained from literature also called as Literature dataset (792 pieces of
information) and data obtained in experiments conducted by EMBRAPA Dairy cattle, located in
the city of Coronel Pacheco, state of Minas Gerais, Brazil, also called as Experimental dataset
(5,884 pieces of information). In these experiments, 346 purebred Holstein cows, either
primiparous or multiparous, in different stages of lactation, were used. The data from the
literature were obtained from 128 Holstein dairy cows, for a total of 474 animals measured. The
dataset included all seasons of the year, and all of the locations where data were collected in
the Southeastern region of Brazil and fit the Képpen climatic classification of Cwa, with dry and




cold winters and hot and humid summers (table 1). The data used in this study covered a total
period of six (6) years.

To train, validate and test the models based on artificial neural networks (ANN and NFN) the
total dataset (Combined dataset) was used. This dataset was randomly divided into three
subsets through sub-routines created for this purpose. These subsets were used to model the
ANNs and NFN (training, validation, and testing). The training set used 70% of the combined
dataset (4,674 independent data points); the sets for validation and testing each used 15%
(1,001 data points each), for a total of 2,002 data points from the total set (combined dataset).

For the models based on Regression and fuzzy logic, the dataset used were the means of the
combined dataset. This dataset had a total of 427 means (216 means of the Literature dataset
and 211 means of the Experimental dataset). For RM these means of combined dataset were
randomly divided into two subsets, one containing 70% of the data for fit (299 pieces of
information) and one containing 30% for validation (128 pieces of information). For fuzzy logic
model. whole dataset of means (427 data points), was used to validate the model.

These percentages of the subsets were chosen because they are the most common for
mathematical modeling of systems (Brown-Brandl et al., 2005).

Mathematical modeling

To develop the models based on artificial neural networks (ANN and NFN) were used the
dataset previously mentioned (Combined dataset), while for RM and fuzzy logic were used the
means of the combined dataset.

Once developed, the models were tested using the minimum, mean, median, and maximum
values: standard deviations; patterns; and percentage errors. Also calculated were standard
errors, coefficients of determination (R?), the root mean square error (RMSE), the coefficients of
regression (slopes), and intercepts for each of the variables studied (t.cs @and RR) (table 3). In
addition, histograms (figs. 9 and 10) and graphs of the functional relationships - FRs between
(with line of linear trend) predicted and observed variables (means of the combined dataset)
(figs. 3, 4, 5, 6, 7, and 8) were used to compare the performance of the proposed modeis.

Regression models

Eighteen multiple RMs were fit using the regression procedure of the statistical software R (R
Development Core Team, 2011). All of the models used the climatic variables (ts; and RH) as
input data, and the output variables were the physiological parameters tects @and RR. The
significance of the models and regression coefficients was tested using the F and t tests
(P<0.05), respectively. The model that exhibited the best fit was selected (smallest sum of
squared deviations).
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Fuzzy inference system

This model consists of two input variables (ts» and RH) and two output variables (teqa and RR).
The inference method was of the Mandani type (Mandani and Assilian, 1975). In this type of
FM. a large amount of intervention is required on the part of the modeler because the FM can
be generated with no experimental data; therefore, data were not used either for training, the
total of means of the combined dataset were used for validation of the model. Because of the
intervention of the modeler, a spreadsheet was used to organize the data (in this case, the
means of the combined dataset — 427 independent data point) to attempt to establish the set of
rules that might explain the behavior of the input and output variables studied.

Artificial neural net model

The models based on ANNs were developed using the subsets of data previously mentioned.
The ANN developed possessed two feed-forward layers that were trained using the back-
propagation algorithm. The parameters of the model include the number of hidden layers (1, the
standard value used in various applications), transference functions in each hidden layer
(sigmoidal tangent “tansig” for hidden layers, the standard value in various applications), the
number of neurons in the hidden layer(s) (a user-modifiable parameter), the rate of learning, the
instantaneous rate, and the weights of the neurons (these parameters are taken as standard
and automatically modified during training of the network). The model was developed such that
the user can train and test the network independently. The two resulting ANNs predict the trectal
and RR from the input variables (s and RH), and each neural net has one output.

Neuro-fuzzy adaptive inference system

The model was also developed using the subsets of data mentioned above. The application
used to develop this model was the fuzzy logic toolbox of Matlab (MathWorks, Inc, 2009a). This
toolbox uses input and output datasets (sets for training, validation, and testing, each with input
and output data), and the main function of this toolbox is to construct a fuzzy inference system
(F1S), the parameters of which are fit for the pertinence function using two types of methods (the
back-propagation algorithm, either alone or in a hybrid form combined with the least squares
method). This fit allows FMs to learn from the data being modeled. Similar to the model based
on ANNs, the parameters for fitting the network can be modified according to the percentage of
the dataset used for training, validation, and testing, as well as in other ways, such as the
generation of the FIS, the training method (back-propagation or hybrid), error tolerance, or the
number of stages. Finally, the possibility exists of testing the result of the model generated by
training the network. The result of this model is an FIS of the Sugeno type, with only one output.

Results

For this study, we work with two output physiological variables; these variables are rectal
temperature (feca) and respiratory rate (RR). The physical units of these variables are Celsius
degree (°C) and breaths per minute (breaths.min"‘), respectively. The balance between gain and
heat loss from the body can be inferred by the treca. The measurement of rectal temperature is
often used as an index of physiological adaptability to hot environments, because its increase
shows that the heat loss mechanisms become insufficient (Martello, 2002). In turn, in defense
against heat stress, cattle resort to adaptive physiological mechanisms of heat loss to try to
prevent hyperthermia. Thus, increase the respiratory rate (RR), with tachypnea, in addition to
the increase of the sweat production rate (sweat rate) is an important means to lose heat by
evaporation (respiratory and cutaneous evaporative heat loss). Tachypnea is the first visible



sign in response to heat stress, although situated in third place [n the sequence of t_he _
mechanisms of physiological adaptation, because the increase in peripheral vasodilatation and

sweating occur previously (Baccari, 2001).

Regression models

Of the 18 RMs fit to predict the frecta and RR, the models represented by Eq. (1) anc{ Eq. (2) had
the highest coefficients of determination (R?), and all of the coefficients of the eqqatgonsf were
significant (P<0.05). For the model estimating frectar (°C), EQ. (1), 2?.6% of the variation in trecta
can be explained by the variation in fa (°C) and RH (%) when testing 70% of the data (4,673
observations) used for fitting; the values were 20.7% when testing 30% of the data (2,003
observations) used for validation and 44.4% when testing 100% of the data (table 3).

troctar = 37.08—0.02 tgp + 0.02146 RH + 0.0014 t4* — 0.000055 RH* (1)

In turn, 26.4% of the variation in the RR can be explained by the variation in ta (°C) and RH (%)
when testing the 70% of the data used for fitting; the values were 25.8% when testing 30% of
the data used for validation and 44.5% when testing 100% of the data (table 3).

RR = 7.8 + 0.992287 tg+ 0.142209 RH +0.013354 g @)

Fuzzy inference system

The result of this fuzzy inference system can be described as a set of membership functions
constructed based on linguistic descriptors of the input variables (fig. 7). Initially, this model was
based on the research developed by Perissinotto (2007, p.120; Perissinotto et al., 2009), which
has 120 rules (tg = 15 MFs and RH = 8 MFs), but these values of MFs were fit to reduce
deviations, because the model proposed by Periesinotto did not have values lower than 22°C,
thus, the model with these configuration (set), had absolute deviations higher than 1.0 °C. The
linguistic expressions established in this model are an interpretation dependent on the
previously organized data

The fuzzy sets of input and output variables are graphically represented by triangular
membership curves (fig. 1) because these are the most common used and represent the profile
of the data, as observed by several authors (Amendola et al., 2005; Yanagi Junior et al., 2006;
Ferreira et al., 2007; Schiassi et al., 2008).

The fuzzy inference was composed of a set of 192 rules, stemming from the factorial
combination of 24 MFs for tsand 8 MFs for RH. Each rule was composed of logical connectors
(if, and, or, then) and the antecedent and consequent parts. For example, IF xis A AND yis B,
THEN z is C, in which A, B, and C are fuzzy sets; X and y are input variables; and z is the output
variable. Thus, “IF x is AAND y is B" is the antecedent part, and “THEN z is C" is the
consequent part.
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Artificial neural network system

The architectures of the best-performing final ANN models for predicting frectas and RR were
multilayer networks (MultiLayer perceptron; MLP) with two feed-forward layers apc_i supervu_sed
training (with awareness of the desired outcome) using the back-propagation training algorithm;
the performance function was the mean square error (MSE), and the activation function for
neuron output was the sigmoidal tangent “tansig.”

The architectures with the best performance obtained through the training and validation
process and had the fewest prediction error was as follows: training error = 0.13, validation error
= 0.14, testing error = 0.145 for frecta, training error = 116.9, validation error =117.9 and testing
error =118.9 for RR. The input layer had two variables, {o, and RH. The intermediate layer was
composed of 90 neurons for frect and 100 for RR. In each ANN, the output layer was composed
of only one neuron, that is, trectar OF RR. The initial parameters of the networks were configured
as follows: number of epochs: 1.000; error tolerance: 0.0; learning rate: 0.7; and momentum
rate: 0.5: these values were automatically optimized.

Adaptive neuro-fuzzy inference system

Various NFN models were developed and simulated using different configurations, such as the
type of pertinence function (gaussian, triangular or trapezoidal), the number of stages, and the
type of optimization method, resulting in 18 models. The architectures of the best-performing
final NFN models for predicting tc and RR are listed in table 2. The hybrid training
(optimization) method chosen was selected based on a tolerance to error of 0.0 and number of
stages of 1.000. Training was interrupted when the training error stabilized. The pertinence
function chosen for the input variables was the triangular function, and the constant function
was chosen for the output variables. The model with the least training error and no internal
errors in its fuzzy sets (amplitude outside of the normal range or sets with values of O for the
variables studied; f,.as @and RR) was selected.

Thus, the best models for the prediction of t and RR were composed of six rules that govern
the behavior of the input variables (fz and RH) and the respective outputs (f...; or RR) (table 2).

W tar

Figure 2 (fig.2) shows the interactive interface of the FIS, with each line in the figure
representing a rule and each column representing an input. The pertinence functions are shown
in the first two columns. The position of the vertical line represents the input value entered by
the user. The value predicted by the NFN appears in the third column.
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Table 2. Characteristics of the Sugeno type or data
temperature (a) and respiratory rate (b).

-dependent fuzzy inference system — NFN - for rectal

Fuzzy systems’

characteristics Inputs Quiputs Rules
[nput 1] tb  ”RH  ou W Con
<Name>ta
<Range>9 - 37 .
(@) <Number MFs>3 L 1 11
<Function>trimf [Output]
<Name> fuzzy sets frectal <NameMF1><in1MF1> <Name>trectar 1 2 2 1 9
-FIS -5.010.324.0 <Range>37-5-40-4
<type>TS <NameMF2><in1MF2> <Number MFs>6
<SNorm>max 7.925636.9 <Function>constant 2 1 3 1 1
<SNormPar>0 <NameMF3><in1MF3> <NameMF1><out1MF1> 38.3
<TNorm=>min 22378510 <NameMF2><out1MF2> 38.4
<TNormPar>0 [Input 2] <NameMF3><outtMF3> 2 2 4 1 1
<Comp>sugeno <Name>RH 37.9
<CompPar>0 <Range>26-2 - 99 <NameMF4><out1MF4> 39.2
<ImpMethod=>prod <Number MFs>2 <NameMF5><out1MF5> 39.1 3 1 5 1 1
<AggMethod>max <Function>trimf <NameMF&><out1MF&> 39.8
<defuzzMethod>waver <NameMF1><in2MF1> -46.6 3 2 6 1 1
26.398.9
<NameMF2><in2ZMF2> 26.1
99.1171.8 ‘It means: If ts MF1 and RH
MF1 then trecta MF1.
[Input 1]
<Name=>ta
<Range>9 - 37
(b) <Numb‘er MES>3 tan RH Out w Con,
<Function>trimf
<NameMF1><in1MF1> [Output]
e sy wt Ehede 50164220 <Name>RR LA R B
<NameMF2><in1MF2> <Range>20 - 116
SRS e 7.426.037.0 <Number MFs>6 12 2 1
<SNormPar>0 <NameMF3><in1MF3> <Function>constant 9 1 3 1 1
<TNorm=min 22.938.851.0 <NameMF1><out1MF1> 48.6
<TNOrmPar>0 <NameMF2><0ut1 MF2> 28.8 2 2 4 1 1
<Comp>sugeno [Input 2] <NameMF3><out1MF3> 33.1
<CompPar>0 <Name>RH <NameMF4><out1MF4> 57.1 3 1 5 1 1
<ImpMethod>prod <Range>26-2 - 99 <NameMF5><out1MF5> 73.1
<AggMethod>max <Number MFs>2 <NameMF6><out1MF6>70.7 3 2 6 1 1
<defuzzMethod>waver <Function>trimf
<NameMF 1><in2MF1> .
-46.6 26.8 98.4 It means: If fxMF1 and
<NameMF2><in2MF2> RHMF1 then RR MF1.

25.699.6 171.8

—T%, Takag-Sugeno. 1db, dry bulb temperaiure. Ouf, output. Con., connector. W, weight of the rule. tnmf., friangular membership function. MF., membership function.

waver, weighted average. max, maximum. min, minimum.

11



Rectal temperature fuzzy sets (Sugeno type) - NFN

a)
Input1 =28 Input2 = 80 Output = 39-1
w
o
=]
x _.'_H
9
L] - l |
Dry-bulb temperature, °C Relative humidity, % 377 400
Rectal temperature, °C
b) Respiratory rate fuzzy sets (Sugeno type) - NFN
Input1 =28 Input2 = 80 Output = 56-7
1
w
o
=
. "y

; i .3.7 26,2,M._.V

&
Relative humidity, %  24-37 775
Respiratory rate, Breaths.min

Dry-bulb temperature, °C

Figure 2. Example of the interactive interface generated by the fuzzy logic toolbox.




In the example presented, the g, was 28°C, and the RH was 80%. For each individual
pertinence function, the amplitude of the input values is represented by the X-axis, and the
pertinence value is represented by the Y-axis. The shaded region is a visual representation of
the pertinence resulting from the input value. The final column represents the output for trectar
(fig. 2a) and RR (fig. 2b). The black portion of the bar represents the weight factor for this rule in
particular and is determined by the minimum pertinence value for each rule. The horizontal line
with an arrow indicates which input function determines the weight factor. A simple output is the
result of an average of the output weights for each one of the six rules and is shown on the
upper right. The larger the black area, the greater is the contribution of the associated rule (rule
four (4) in both figs.2a and 2b in this example).

This model was developed using the triangular type of pertinence function and uses the logical
connector “AND” to combine spaces of data in fuzzy sets. The degree of pertinence of an input
vector to a particular cluster determines the contribution of the associated rules. The final output
is a weighted average of each contributed rule.

Statistical results are shown in table 3. For t-cta1, the frequency of occurrence of absolute
deviations in the range from 0 °C to 0.39 oC varied from 83.6% to 97.7%, and the model based
on ANNs showed the highest frequency of occurrence of errors over this range. Likewise,
values of 72.1% and 93.4% were observed for RR, and the ANNs again performed best. The
RMs and FMs performed the worst.
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Table 3. Statistical results of the models.

Model type
kot Artificial Neuro-
LDy Regression Fuzzy model Neural Fuzzy
variables model (BM) (FM) Network  Network
(a) (ANN) (NFN)
Minimum 00 00 0-0 0-0
Absolute Mean 0-2 0-2 01 02
deviations Median 0-2 0-2 01 02
Maximum 09 09 1-1 09
Minimum 0-0 0-0 0-0 0-0
Standard Mean 0-2 01 0-1 0:2
deviation Median 01 01 01 01
Maximum 0-6 0-6 0-8 0-6
Rectal Minimum 0-0 0-0 0-0 g-O
Percentage Mean 06 0-5 0-4 ‘6
temperature  CEEMES Median 05 05 03 05
(trectal) Maximum 2:2 2:4 2:9 2:2
“R* 0-44 0-49 0-67 0-44
Standard error 0-28 0-27 0-21 0-28
RMSE 0-28 0-27 0-21 0-28
Regression coefficients (Slopes) ( _; 01.86) (fog 85) ( iO 0?83) ( ; 01 36)
-6-36 2:87 2:84 -7-46
Intercepts (+ 2.46) (£1.8) (*1.21) (£2.52)
Minimum 0:0 0-0 0:0 0-0
Absolute Mean 71 6:0 4-6 7-3
deviations Median 59 4-8 3-0 6-3
(c) Maximum 30-6(d\ 274 285 30-8
Minimum 00"’ 00 00 0-0
Standard Mean 50 4-3 32 52
deviation Median 4:2 34 21 4-5
Maximum 27 19-4 20-2 21-8
Minimum 0-0 00 0:0 01
Respiratory  Percentage Mean 13-8 12:0 87 14:0
rate (RR) error Median 11-5 91 56 129
Maximum 62-3 67-9 620 535
R® 044 0-58 0:71 0-44
Standard error 8:96 7-73 6-49 8-99
RMSE 8-98 7-73 6-67 9:12
. . 1:05 1-01° 7:20 115
Regression coefficients (Slopes) (£ 0.06) (+0.04) (£ 1.43) (£0.06)
-1-65 -0-56 087 625
Inercepts (+ 2.95) (£2.18) (0.027) (3.22)
— 2, defermination Coefficients. RMSE, root mean square error. -, Coefficients are significant (P<0.05).

R
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Discussion

Four final models for predicting the frecta and RR in black and white Holstein dairy cows that are
kept in confinement systems were compared side by side using different methods with the
means of the combined dataset as validation of the models (table 3). The models based on
ANNs and NFNs, listed in decreasing order of performance, generally exhibited the best
statistical indices related to capacity for predicting the t,.cas and RR for dairy cows. Although the
majority of statistical indices for RR were better for FM than for NFN (table 3), the predictions of
the NFN concentrated errors over a smaller range of absolute deviation, from 0.0 to 9.9
respirations min'. This finding was probably attributable to the small difference between the
values of the statistical indices used, which can be observed only through analysis of the
frequency of occurrence of RR.

All of the models fitted to predict the trectar performed better than those fitted to predict the RR
(table 3). In addition, it is evident that all of the models developed had higher percentages of
prediction accuracy (higher R?) when using the observed dataset compared to the literature
dataset. This result is attributable to the features of the management used, the type of thermal
isolation in the installation, and the adoption of ventilation and evaporative cooling systems
intrinsic to each experiment (table 1). The inclusion of air velocity and radiative heat load as
input variables may increase the performance of the models because ty, affects the loss of
sensible heat through conduction and convection, RH affects the quantity of latent heat lost, and
air velocity affects the rate of loss of sensible and latent heat (Dikmen and Hansen, 2009),
thereby reducing the prediction errors.

A more detailed analysis of the graphs of the frequency of occurrence of absolute deviations
reveals that for the means of the combined dataset of tectas predicted by the model based on
ANNSs, 97.7% of the absolute deviations were between the values of 0.0 °C and 0.39 °C, and the
remaining 2.3% of the deviations were between the values 0.4 °C and 1.0 °C, thus indicating the
good predictive capacity of the model. The second best model (lowest amplitude of deviations)
was the NFN, for which 94.6% of the absolute deviations were between 0.0 °C and 0.39 °C, and
the remaining 5.4% of the deviations were between the values of 0.4 °C and1.0 °C. The RMs
and FMs performed similarly, for which 84.6% and 83.6% of the absolute deviations were found
in the interval from 0.0 °C t0 0.38 °C, and the remaining 15.4% and 16.4% of the absolute
deviations were between the values of 0.4 °C and 1.0 °C, respectively.

Similarly, the model predicting the means of the combined dataset of RR based on ANNs had
93.4% of absolute deviations between the values of 0.0 and 9.9 respirations min™'; the
remaining 6.6% of the deviations were between the values of 10.0 and 30.0 respirations min™.
For the NFN, the model that showed the second best performance, 90.2% of the absolute
deviations were between the values of 0.0 and 9.9 respirations min"', and the remaining 9.8% of
the deviations were between the values of 10.0 and 30.0 respirations min"'. For the FMs and
RMs, 80.4% and 72.1% of the absolute deviations were observed between the values of 0.0
and 9.9 respirations min™, and the remaining 19.6% and 27.9% were between the values of
10.0 and 30.0 respirations min™, respectively.

The capacity for the prediction of frecta by the ANN-based model developed in this study was
similar to or greater than that in the literature, emphasizing that the published studies used
fewer statistical resources for the evaluation of the proposed models. For the RR, the fitted ANN
presented an R? similar to or greater than the models reported in the literature (Brown-Brandl et
al., 2005); however, the average absolute deviation was less than that of the best models
obtained by the previously quoted authors. This finding was attributable to the greater quantity
of variables used by these authors, such as air velocity and radiation, which directly affect the
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physiological responses of the animals, particularly the RR, which naturally has greater
variability than frectar.

Conclusion

Of the models developed, those based on ANNs and NFN showed, in that order, the fewest
prediction errors, and the average standard deviations were 0.1°C and 0.2°C for the trectas @Nd
3.2 respirations min™' and 5.2 respirations min™! for the RR, respectively. These values
correspond, respectively, to average percentage errors of 0.4% and 0.6% for the trecr @and 8.7%
and 14% for the RR. The frequencies of occurrence of the standard deviations for the trect for
ANN and for NFN for the range from 0 °C to 0.39 °C were 97.7% and 94.6%, respectively. For
the RR, we observed values of 93.4% and 90.2% for the range from 0 to 10 respirations min”,
respectively. Thus, the models based on ANNs and NFNs can be used to predict the trecs and
RR for Holstein dairy cows and can thus aid in the decision-making process.
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