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Abstract
Background: Despite the great advances in genomic technology observed in several crop species, the availability of
molecular tools such as microsatellite markers has been limited in melon (Cucumis melo L.) and cucurbit species. The
development of microsatellite markers will have a major impact on genetic analysis and breeding of melon, especially on
the generation of marker saturated genetic maps and implementation of marker assisted breeding programs. Genomic
microsatellite enriched libraries can be an efficient alternative for marker development in such species.

Results: Seven hundred clones containing microsatellite sequences from a Tsp-AG/TC microsatellite enriched library
were identified and one-hundred and forty-four primer pairs designed and synthesized. When 67 microsatellite markers
were tested on a panel of melon and other cucurbit accessions, 65 revealed DNA polymorphisms among the melon
accessions. For some cucurbit species, such as Cucumis sativus, up to 50% of the melon microsatellite markers could be
readily used for DNA polymophism assessment, representing a significant reduction of marker development costs. A
random sample of 25 microsatellite markers was extracted from the new microsatellite marker set and characterized on
40 accessions of melon, generating an allelic frequency database for the species. The average expected heterozygosity
was 0.52, varying from 0.45 to 0.70, indicating that a small set of selected markers should be sufficient to solve questions
regarding genotype identity and variety protection. Genetic distances based on microsatellite polymorphism were
congruent with data obtained from RAPD marker analysis. Mapping analysis was initiated with 55 newly developed
markers and most primers showed segregation according to Mendelian expectations. Linkage analysis detected linkage
between 56% of the markers, distributed in nine linkage groups.

Conclusions: Genomic library microsatellite enrichment is an efficient procedure for marker development in melon.
One-hundred and forty-four new markers were developed from Tsp-AG/TC genomic library. This is the first reported
attempt of successfully using enriched library for microsatellite marker development in the species. A sample of the
microsatellite markers tested proved efficient for genetic analysis of melon, including genetic distance estimates and
identity tests. Linkage analysis indicated that the markers developed are dispersed throughout the genome and should
be very useful for genetic analysis of melon.
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Background
The Cucurbitaceae family includes several species of culti-
vated plants of great economic importance, such as water-
melon (Citrullus lanatus L.), squash (Cucurbita maxima L.),
melon (Cucumis melo L.) and cucumber (Cucumis sativus
L.). The morphological variation observed in germplasm
accessions of melon and other cucurbit species is enor-
mous. Gene flow between cultigenes is facilitated by the
allogamous habit of the species [1]. Difficulties concern-
ing intraspecific botanical classification in C. melo, based
mainly on morphological characters, have been addressed
in the last 40 years [2-4]. Cultivated melon morphotypes
are usually classified in three major groups: reticulatus,
cantaloupensis and inodorus [3,4]. More recently, the reticu-
latus group has been suggested to be part of the canta-
loupensis group [1]. Wild type melons are classified in the
flexuosus, momordica, conomon, dudaim and chito groups
[4].

Melon varieties that belong to the cantaloupensis or reticu-
latus groups are the most cultivated in the United States,
usually called "muskmelon" or "cantaloupe", producing
aromatic fruits with a netted or ribbed coat and a sweet
orange flesh. However, the yellow melons of "Valen-
ciano" type are the most important in the Brazilian [5]
and other markets. In European countries it is the second
most commercialized type of melon [6]. Valenciano mel-
ons are classified in the inodorus group, showing non-
smelling fruits with a smooth or wrinkled rind and white
or green sweet flesh. Fresh melon production is important
for internal market consumption in Brazil, but a signifi-
cant percentage of the production is exported to other
countries [7-9]. Melon is actually one of the most impor-
tant agronomic products of Northeastern Brazil, where
soil and climate conditions are suitable for commercial
production. Fruit quality, especially flavor, is among the
most valued commercial traits demanding further
improvement [8]. The development of Valenciano melon
varieties with improved fruit quality could be accelerated
with the use of genomic technology. This would include,
for example, molecular mapping of genomic regions asso-
ciated with fruit quality control and, eventually, marker
assisted selection.

Molecular markers have been widely used in genetic anal-
ysis and breeding of plant species, with a multitude of
applications [10]. Among the various types of molecular
markers available, microsatellites have received greater
attention recently, especially for breeding purposes. Mic-
rosatellite markers, also known as simple sequence
repeats or SSRs [11,12], are clusters of short (usually 2 to
6) tandemly repeated nucleotide bases distributed
throughout the genome. Microsatellite markers distin-
guish themselves as co-dominant, multiallelic, highly pol-
ymorphic genetic markers, requiring small amounts of

DNA for straightforward PCR and gel electrophoresis
analysis. Its main disadvantage is the high cost of the ini-
tial investment necessary for marker development [13].
The development of microsatellite markers can be based
on DNA sequence information deposited in databases, or
it could be based on the screening of genomic DNA librar-
ies specifically constructed for the discovery of repeated
sequences in the genome. The use of genomic libraries
enriched for microsatellite sequences is a strategy devised
to decrease the cost of marker development while increas-
ing the opportunity for marker discovery [14].

The actual use of microsatellite markers in melon genetic
analysis has been very limited. Only about 70 microsatel-
lite markers have been described in the literature so far
[15,16] and just a few used in linkage analysis. These
markers were integrated in genetic maps built with mor-
phological, isoenzimatic and other molecular markers
such as RFLP (Restriction Fragment Length Polymor-
phisms), AFLP (Amplified Fragment Length Polymor-
phisms) and RAPD (Random Amplified Polymorphic
DNA [16-28]. There is, therefore, great need to discover
and develop more microsatellite markers for genetic and
linkage analysis of melon.

The main objectives of this work were to develop new
microsatellite markers for melon based on a genomic
DNA library enriched for microsatellite sequences and test
their usefulness: (a) in genetic linkage analysis; (b) to
determine genetic distances between varieties of Valen-
ciano melons and (c) as molecular markers in other cucur-
bit species.

Results and Discussion
Genomic library enriched for microsatellite sequences
A Tsp-AG/TC genomic library was constructed and a total
of 700 positive colonies were identified as a result of the
hybridization of 1600 clones with (AG/TC)13 probes,
most of them containing microsatellite repeat sequences.
Anchored-PCR reactions confirmed microsatellite pres-
ence in 450 of the 700 clones and allowed the
identification of the size, orientation and position of mic-
rosatellite sequences in these clones. This information was
important for selecting the clones to be sequenced, reduc-
ing costs and time. Knowledge of the DNA sequences
flanking the microsatellite region allowed for primer
design and synthesis. A set of 237 primer pairs was ini-
tially developed based on information generated by the
anchored-PCR approach and one hundred and forty-four
primer pairs were synthesized (additional file 1). Fifty-
nine of these markers had perfect AG or TC repeats (41%),
68 had complex repeats (47%) and 17 had compound
repeats (12%) (additional file 1). A greater amount of per-
fect repeats was detected in this sample compared to what
was observed for the 40 melon microsatellite markers
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already published, which reported 34% of perfect repeats,
24% of compound repeats and 42% of complex repeats
[16]. The number of repeat units observed in the new mic-
rosatellite markers varied from 3 to 40 (additional file 1),
while in the markers already published the observed range
was 7–15 (dinucleotides) and 5–10 (trinucleotides)
[15,16].

Sixty-seven out of 144 primer pairs were immediately
selected for genetic tests since their PCR conditions did
not require further adjustments. The sixty-seven markers
were tested on a panel of 11 varieties of six cucurbit spe-
cies (C. melo, Citrullus lanatus, Cucurbita maxima, C. mos-
chata, C. pepo and Cucumis sativus). Sixty-five markers
detected DNA polymorphism between the five melon
accessions analyzed (Figure 1).

Marker transferability to other cucurbit species
Thirty-three of the 67 new melon microsatellite markers
tested on the cucurbit panel generated PCR products with
sample DNA from cucumber (Cucumis sativus), 16 with
watermelon DNA (Citrullus lanatus), 11 with Cucurbita
moschata DNA and a smaller amount (8 primer pairs) with
C. maxima and Cucurbita pepo DNA. Previously reported
estimates of microsatellite marker transferability from
melon to cucumber were similar to these results [16]. It
seems, therefore, that the level of microsatellite marker
transferability in the genus Cucumis resembles what is
observed in other intragenus comparisons, such as Gly-
cine, where up to 65% of the microsatellite markers devel-
oped for G. max could be transferred to other Glycine
species [29]. This, of course, results in a rapid dissemina-
tion of marker use and facilitates studies on mapping and
comparative genetics. Likewise, the use of melon micros-
atellite markers for DNA polymorphism assessment in
cucurbit species represents a significant reduction of
marker development costs and a shortcut to in-depth
genetic analysis of these species.

Six markers (CMBR18, CMBR22, CMBR23, CMBR48,
CMBR56, CMBR82) produced PCR products with sample
DNA from all seven species. These sequences were com-
pared with DNA sequences deposited at Genbank [30]
and marker CMBR48 showed very significant homology
with chloroplastic 16S ribosomal RNA gene sequences.
This could explain the high level of transferability of this
marker and, as expected, DNA polymorphism was not
detected at this marker locus on melon accessions and
other cucurbit species. On the other hand, three of the
microsatellite markers detected in all six cucurbit species
(CMBR18, CMBR56 and CMBR23) showed polymor-
phism between Cucumis melo accessions. The nature of
these marker loci is not known at this point. The data indi-
cates, however, that a larger and more diverse sample of

each cucurbit species should be considered for microsatel-
lite polymorphism analysis and marker transferability.

Genetic diversity analysis with microsatellite markers
A set of 25 microsatellite markers (Table 2) was selected at
random to perform a diversity study of 40 accessions of
melon. Without exception, the PCR products for the new
markers had the expected fragment size when tested on
DNA from accession AF 686. Allele number per locus var-
ied from two (CMBR107, CMBR44, CMBR5, CMBR71) to
six (CMBR20 and CMBR39). Expected heterozygosity var-
ied from 0.45 (CMBR100) to 0.70 (CMBR25) (Table 2).
The mean expected heterozygosity for these selected mic-
rosatellite markers was 0.52. Observations with six micro-
satellite markers [15] reported the number of alleles per
locus varying from 3–5 and observed heterozygosity rang-
ing from 0.49 to 0.75 (mean 0.61). Another study with 38
microsatellite markers detected 2–6 alleles per locus and
observed heterozygosity ranging from 0.26–0.79 [16].
The number of alleles and observed heterozygosity esti-
mated here are smaller than expected for an allogamous
species such as melon. This is obviously related to the
genetic relationships of the melon samples chosen for the
study. Rather than selecting a very diverse germplasm for
the analysis, a sample composed mostly of Valenciano
accessions collected throughout Brazil, representing the
commercial varieties planted in the country, predomi-
nated in the study. This sample represents, therefore, a
small subset of the melon genetic pool, which could cer-
tainly explain the relatively lower than expected heterozy-
gosity estimates. It should also be noted that endogamy
depression is not significant in the cucurbit family [1,31-
33]. Populations in cucurbits are generally derived from
seeds obtained from one or few fruits in small popula-
tions, not only at farms but also in the wild, favoring
endogamy [34].

Polymorphism Information Content (PIC) was estimated
for the 25 markers (Table 2), with values ranging from
0.28 (CMBR100) to 0.65 (CMBR43). A group of these
markers could certainly be selected for DNA fingerprint-
ing purposes, including applications such as for identity
tests, analysis of seed contamination in commercial seed
production and variety protection. Based on the estimates
of PIC and He (expected heterozygosity), ten of such
markers were chosen and studied on 40 melon accessions
(markers CMBR7, CMBR22, CMBR24, CMBR25,
CMBR27, CMBR33, CMBR39, CMBR43, CMBR73,
CMBR89). The probability of identical genotypes was esti-
mated as 2.0 × 10-7, based on the allelic frequency data-
base constructed (Table 2). This suggests that DNA
profiles based on a panel of selected microsatellite mark-
ers could be efficiently used to differentiate melon indi-
viduals and accessions.
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Microsatellite amplification products submitted to polyacrylamide gel (PAGE) electrophoresis and visualized by silver nitrate stainingFigure 1
Microsatellite amplification products submitted to polyacrylamide gel (PAGE) electrophoresis and visualized by silver nitrate 
staining. From left to right: Lanes 1 and 13: ladder 10 bp; Lanes 2 to 7: melon accessions CNPH 82015, CNPH 84201, CNPH 
03971, CNPH 84177 and CNPH 85205; Lanes 8 to 12: Citrullus lanatus (Crimson Sweet), Cucurbita maxima (Exposição) (no 
amplification), C. moschata (Menina Brasileira), C. pepo (Caserta) and Cucumis sativus (Caipira). Arrows indicate ladder fragments 
of 120 and 140 bp.
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Genetic distance estimates between the melon accessions
DNA polymorphism detected by 25 microsatellite mark-
ers allowed genetic distance estimates and clustering of
the accessions into two major groups (Figure 2). The first
group (Group 1) included mainly inodorus and canta-
loupensis/reticulatus cultivated accessions, which clustered
with melon accessions that seem to be derived from
crosses between these two types. These accessions were
classified as "intermediate" since they show morphologi-
cal traits peculiar to both types. When morphological
information was not available, the accession was classi-
fied as an "unknown" type. The second group (Group 2)

included a conomon accession, one cantaloupensis acces-
sion (W6) and also "intermediate" type accessions (Figure
2). A separation of cultivated melon types, such as ino-
dorus and cantaloupensis/reticulatus, from non-cultivated
types, such as conomon, was also observed in other melon
studies based on DNA polymorphism [20,16]. Here, it
was observed that in the group composed mostly of culti-
vated types (Group 1), the cantaloupensis/reticulatus acces-
sions (CNPH 85205, CNPH 84201, CNPH 00884, CNPH
00885, CNPH 00853, CNPH 83062, CNPH 83102) can
be easily separated from the inodorus accessions (Figure 2).
Differentiation of some cultivated accessions into canta-

Table 2: Allele frequency database, expected heterozigosity (He), observed heterozygosity (Ho) and polymorphic information content 
(PIC) estimates for a random set of 25 microsatellite markers analyzed with a sample of 40 C. melo accessions.

Locus Allele (bp) Frequency He Ho PIC Locus Allele (bp) Frequency He Ho PIC

CMBR1 140 0.03 0.53 0.27 0.47 CMBR33 180 0.15 0.65 0.22 0.57
150 0.20 150 0.03
160 0.12 160 0.39
130 0.65 CMBR39 150 0.03 0.60 0.00 0.52

CMBR100 110 0.10 0.45 0.10 0.42 160 0.03
130 0.05 190 0.03
140 0.13 170 0.49
120 0.73 165 0.03

CMBR107 170 0.53 0.51 0.18 0.37 180 0.41
180 0.47 CMBR42 110 0.11 0.44 0.00 0.40

CMBR108 160 0.03 0.30 0.06 0.28 150 0.14
200 0.03 160 0.73
170 0.11 100 0.03
180 0.83 CMBR43 230 0.08 0.68 0.22 0.65

CMBR14 130 0.39 0.53 0.39 0.42 280 0.03
140 0.04 240 0.25
150 0.57 290 0.15

CMBR18 160 0.03 0.33 0.06 0.29 250 0.49
170 0.17 CMBR44 100 0.35 0.46 0.13 0.35
150 0.81 110 0.65

CMBR19 180 0.05 0.48 0.08 0.44 CMBR5 170 0.58 0.49 0.40 0.37
150 0.01 180 0.43
160 0.05 CMBR56 180 0.01 0.36 0.08 0.31
110 0.18 210 0.03
170 0.70 170 0.18

CMBR20 150 0.08 0.50 0.05 0.46 150 0.78
180 0.01 CMBR64 130 0.05 0.53 0.06 0.48
140 0.01 140 0.16
110 0.15 150 0.13
160 0.69 160 0.66
170 0.05 CMBR7 90 0.10 0.54 0.46 0.49

CMBR22 170 0.23 0.59 0.15 0.52 80 0.06
160 0.04 100 0.19
150 0.14 110 0.64
180 0.59 CMBR70 200 0.15 0.46 0.00 0.41

CMBR24 160 0.23 0.55 0.11 0.49 150 0.10
140 0.03 190 0.03
170 0.12 CMBR71 100 0.65 0.46 0.05 0.35
180 0.62 110 0.35

CMBR25 150 0.12 0.70 0.08 0.63 CMBR73 110 0.19 0.61 0.50 0.53
160 0.13 100 0.28
170 0.39 120 0.54
180 0.36 CMBR89 120 0.06 0.63 0.00 0.56

CMBR27 240 0.01 0.55 0.40 0.45 130 0.51
260 0.05 150 0.11
250 0.38 140 0.31

270 0.56
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loupensis and reticulatus groups is not always detected by
DNA polymorphism analysis [20,16]. On the other hand,
separation of climacteric accessions (cantaloupensis and
reticulatus) from non-climacteric (inodorus) is usually con-
sistent in studies based on different types of molecular
markers [35]. Together these data seems to support the
classification of cultivated melon in only two types, ino-
dorus and cantaloupensis, as already proposed [1]. Discrep-
ancies between morphological classification and
clustering based on DNA polymorphism could reflect
recent genetic breeding, which probably combined germ-
plasm of different origins [20,16]. A very obvious example
is the classification of Galia varieties (cantaloupensis), clus-
tering in different subgroups. Most pedigrees of Galia vari-
eties report parents classified in different melon types,
both in breeding programs of the public and private
sectors.

The majority of the melon accessions included in this
study was previously classified as inodorus (Table 1).
Exceptions are CNPH 00884, CNPH 00885, CNPH 83102

and CNPH 84201 (cantaloupensis), seven other accessions
that seem to be derived from germplasm combinations of
two or more melon types and three accessions for which
morphological data was not available (CNPH 88498,
CNPH 89538 and CNPH 93688). Although there is no
information about botanical types of CNPH 89538 and
CNPH 93688, it seemed very clear from the microsatellite
marker analysis that they could be classified as inodorus.

Thirty of the 40 melon accessions analyzed with SSR
markers were also evaluated with RAPD markers (Figure
3). A -0.70 correlation coefficient was estimated between
matrices generated by microsatellite (Figure 4) and RAPD
(Figure 5) markers using the Mantel Test (t = - 5.0, P =
0.01). Correlations between matrices generated by RAPD
and microsatellite markers on other species such as soy-
bean, Elymus and wheat were very similar to the values
obtained here [36-38]. RAPD analysis also splits the
melon accessions into two major groups, one comprising
inodorus and cantaloupensis/reticulatus melons and the
other formed by accessions CNPH 83077, CNPH 83079

Dendrogram resulting from microsatellite based genetic distance analysis of 40 accessions of melon (C. melo), estimated by shared allele distance in pairwise comparisonsFigure 2
Dendrogram resulting from microsatellite based genetic distance analysis of 40 accessions of melon (C. melo), estimated by 
shared allele distance in pairwise comparisons. Cluster analysis used the neighbor joining method.
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and CNPH 83101, which clustered with the conomon
accession (CNPH 00042) in the previous SSR analysis.
The accessions CNPH 89538 and CNPH 93688, for which
no morphological information was available, were also
classified as inodorus based on the RAPD marker analysis.

Linkage analysis of microsatellite marker loci
An F2 progeny of 93 individuals derived from a cross
between the lines CNPH 82015 and CNPH 84201 was
used for linkage analysis of 55 microsatellite markers.
Most primers showed segregation according to Mendelian
expectations (Figure 6). Only 5% of the primers

(CMBR53, CMBR70 and CMBR147) presented segrega-
tion distortion (p < 0.001). Distortion can be caused by
male and/or female gamete abortion, selective fertiliza-
tion of specific gametic genotypes or abortion of zygotes
and embryos during development [39]. In all three loci
that showed distortion, the F2 genotypes were not distrib-
uted according to Hardy-Weinberg Equilibrium propor-
tions, indicating that the nature of distortion is zygotic.
The three loci are not linked, though, suggesting that if the
distortion observed has a genetic basis, it is not caused by
just one deleterious locus in the genome. It should be
remarked that some level of distortion is usually expected

Table 1: Melon accessions used on microsatellite and RAPD based genetic distance analysis

Germplasm Bank Number Common Name Country Type Marker Analysis

CNPH 82015 Amarelo Brazil inodorus RAPD/microsatellite
CNPH 83038 Valência USA inodorus RAPD/microsatellite
CNPH 83040 Napoletano - inodorus RAPD/microsatellite
CNPH 83068 Progênie Valência Brazil inodorus RAPD/microsatellite
CNPH 83077 USDA 164320 Índia intermediate * RAPD/microsatellite
CNPH 83079 USDA 255478 Korea intermediate RAPD/microsatellite
CNPH 83101 Golden Charm USA intermediate RAPD/microsatellite
CNPH 83102 Farmies Yellow USA cantaloupensis RAPD/microsatellite
CNPH 84172 Valenciano Spain inodorus RAPD/microsatellite
CNPH 84201 B633.3 France cantaloupensis RAPD/microsatellite
CNPH 87306 Amarelo Brazil inodorus RAPD/microsatellite
CNPH 87338 Eldorado 300 Brazil inodorus RAPD/microsatellite
CNPH 88374 Valenciano Verde Redondo Brazil inodorus RAPD/microsatellite
CNPH 88375 Valenciano Verde Elíptico Brazil inodorus RAPD/microsatellite
CNPH 88410 Progênie Valência Brazil inodorus RAPD/microsatellite
CNPH 88427 Elizabeth 239 Japan intermediate RAPD/microsatellite
CNPH 89538 CNPH 89538 Brazil unknown** RAPD/microsatellite
CNPH 88498 Hoon Portugal unknown RAPD/microsatellite
CNPH 89537 Panaú Amarelo Brazil inodorus RAPD/microsatellite
CNPH 95839 Amarelo Brazil inodorus RAPD/microsatellite
CNPH 98848 Amarelo Polpa Branca USA inodorus RAPD/microsatellite
CNPH 00880 AF 682 Brazil inodorus RAPD/microsatellite
CNPH 00881 AF 646 Brazil inodorus RAPD/microsatellite
CNPH 00882 Rochedo Brazil inodorus RAPD/microsatellite
CNPH 00883 Gold Mine Brazil inodorus RAPD/microsatellite
CNPH 00884 Hi-Mark Brazil cantaloupensis RAPD/microsatellite
CNPH 00885 Mission Brazil cantaloupensis RAPD/microsatellite
CNPH 00886 Yellow King Brazil inodorus RAPD/microsatellite
CNPH 00887 Yellow Queen Brazil inodorus RAPD/microsatellite
CNPH 00883 Gold Pride Brazil inodorus RAPD/microsatellite
CNPH 03971 Galileo Brazil cantaloupensis microsatellite
CNPH 00042 Conomon USA conomon microsatellite
CNPH 82016 Hales Best Jumbo - intermediate microsatellite
CNPH 85205 Early Down Rockmelon Australia cantaloupensis microsatellite
CNPH 93688 CNPH 93-688 - unknown microsatellite
CNPH 00853 Gália F1 Brazil cantaloupensis microsatellite
CNPH 83062 WMR-29 USA intermediate microsatellite
CNPH 00869 Elizabeth PMR Japan intermediate microsatellite
CNPH 82008 W6 USA cantaloupensis microsatellite
CNPH 85207 Rockmelon Gulf Coast H91/L1 Australia intermediate microsatellite

* accession presenting characteristics of both types, inodorus and cantaloupensis ** morphological information not available
Page 7 of 14
(page number not for citation purposes)



BMC Plant Biology 2004, 4 http://www.biomedcentral.com/1471-2229/4/9
RAPD amplification products submitted to agarose gel electrophoresis and visualized by ethidium bromide staining under UV lightFigure 3
RAPD amplification products submitted to agarose gel electrophoresis and visualized by ethidium bromide staining under UV 
light. From left to right: Lanes 1 and 26: ladder 1 Kb; Lanes 2 to 27: melon accessions in the order of appearance on Table 1. 
Arrows indicate polymorphic markers used for analysis.

Dendrogram resulting from microsatellite based genetic distance analysis of 30 accessions of melon (C. melo), estimated by shared allele distance in pairwise comparisonsFigure 4
Dendrogram resulting from microsatellite based genetic distance analysis of 30 accessions of melon (C. melo), estimated by 
shared allele distance in pairwise comparisons. Cluster analysis used the neighbor joining method.
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in intraspecific crossings [40], and especially in interspe-
cific crosses [39]. Possible causes of zygotic distortion
include the deleterious effect of reproduction related
genes that map in the genome region where the marker
locus is located. Since in the three loci the genotype in
excess was always heterozygote, hybrid vigor could poten-
tially explain the observed zygotic distortion, such as
observed in alfalfa [41] and potato [42].

Linkage analysis of microsatellite marker loci of C. melo
detected linkage associations (Figure 7). Thirty-one mic-
rosatellite markers covering 583.6 cM were assembled
into nine linkage groups. Although preliminary, genome
coverage represents approximately 50% of the expected
genome size (cM) of melon [23]. Twenty-four microsatel-
lite markers did not show significant linkage disequilib-
rium with any of the markers tested. The data indicates
that the microsatellite markers analyzed are distributed
throughout the genome of C. melo. New markers from the
Tsp-AG/TC genomic library are currently being tested in
the segregating population aiming for the construction of
a saturated genetic map based on microsatellite markers.

Conclusions
Genomic library microsatellite enrichment is an efficient
procedure for marker development in melon. One hun-
dred and forty-four new markers were developed from
Tsp-AG/TC genomic library. This is the first reported
attempt of successfully using enriched libraries for micro-
satellite marker development in the species. A sample of
the microsatellite markers tested proved efficient for
genetic analysis of melon, including genetic distance esti-
mates and potential identity tests. Linkage analysis indi-
cates that the markers developed are dispersed throughout
the melon genome and are suitable for mapping pur-
poses. The level of polymorphism observed at marker loci
and genome coverage observed so far suggest that the mic-
rosatellite markers developed should be very useful for
genetic analysis of melon.

Methods
Development of genomic library enriched for 
hypervariable sequences
Genomic DNA was extracted from fresh leaves of seed-
lings of the melon commercial hybrid AF 686 (Sakata
Seed Company, Brazil) using the CTAB method [43] with

Dendrogram resulting from RAPD based genetic distance analysis of 30 accessions of melon (C. melo), estimated with the DICE genetic similarity coefficientFigure 5
Dendrogram resulting from RAPD based genetic distance analysis of 30 accessions of melon (C. melo), estimated with the DICE 
genetic similarity coefficient. Cluster analysis was performed using the UPGMA algorithm.
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some modifications [10]. Enzymatic DNA digestions with
Tsp 509 I, Sau III and Mse I were performed in order to
select the enzyme yielding the greatest amount of frag-
ments in the range of 300 to 800 bp. The Tsp 509 I and
Mse I fragment profiles were selected and the digestion
products separated in 3.5% agarose gel [44,45]. Fragments
between 300 and 800 bp were recovered in DEAE-cellu-
lose NA-45 membrane [13]. These selected fragments
were precipitated in saline solution and linked to adaptors
containing complementary sequences to the enzyme
restriction site. The enrichment of the library with micro-
satellite sequences was performed through ligation of
fragments to biotinilated oligonucleotides. The
biotinilated fragments were then hybrized with (AG)13
probes to develop the genomic library based on Tsp 509 I
derived fragments selected with probes (AG)13. Fragments
potentially containing microsatellite sequences were
recovered with magnetic beads [13]. Enrichment control
was performed through PCR using primers complemen-
tary to the target site of the restriction enzyme. Southern
Blot confirmed preferential recovery of fragments contain-
ing microsatellite regions. Fragments containing microsat-
ellite sequences were cloned on pGEMT™ plasmids and
used to transform XL1Blue E. coli cells (Promega, Madi-
son, WI) through thermic shock [45], resulting in melon
genomic library Tsp-AG/TC.

Selection and identification of positive clones
Clones of the genomic library containing microsatellite
insertions were identified by Southern hybridization [46].
Positive clones were selected by orientation, size and posi-
tion inside the plasmid insert using the anchored-PCR
approach [13]. Plasmid DNA of selected clones was
extracted and prepared for sequencing.

DNA sequencing and primer design
Sequencing reactions were performed with "Dye-Termi-
nator" and "Big-Dye" kits (Applied Biosystems, Foster
City, CA) using an Applied Biosystems 377 DNA
sequencer. Specific primer pairs, unique and complemen-
tary to microsatellite flanking regions, were designed
using the software PRIMER v.3.0 [46]. Primer designing
considered restrictive parameters for primer auto-anneal-
ing, G+C content of ~50% and annealing temperature for
PCR reactions in the 55–60°C range.

Characterization and transferability of newly developed 
microsatellite markers
Primer pairs were synthesized and tested on three melon
accessions (CNPH 82015, CNPH 84201 and CNPH
83102). The expected size of fragments resulting from
amplification was observed on 3.5% agarose gel and,
whenever necessary, adjustments on annealing tempera-
ture were performed. Sixty-seven out of 144 primer pairs
were immediately selected for genetic tests since their PCR
conditions did not require further adjustments. The sixty-
seven markers were tested on a panel of 11 varieties of six
cucurbit species (C. melo, Citrullus lanatus, Cucurbita
maxima, C. moschata, C. pepo and Cucumis sativus), which
included five accessions of melon. Sixty-five markers
detected DNA polymorphism between the five melon
accessions analyzed (Figure 1). The experiment was also
repeated in polyacrylamide gel electrophoresis (PAGE)
followed by silver nitrate staining, confirming the agarose
results. PCR and electrophoresis conditions were the same
as described below.

Segregation pattern of marker BRC83 based on polyacrylamide gel electrophoresis of PCR products using an F2 population derived from the cross between accessions CNPH 82015 and CNPH 84201Figure 6
Segregation pattern of marker BRC83 based on polyacrylamide gel electrophoresis of PCR products using an F2 population 
derived from the cross between accessions CNPH 82015 and CNPH 84201. Lanes 1 and 26: 1 Kb marker; Lanes 2–4: CNPH 
82015, CNPH 84201 and F1 hybrid; lanes 5–25: sample of the F2 population.
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Microsatellite marker data analysis
Forty melon accessions (Table 1) were selected for genetic
analysis using a random sample of 25 microsatellite mark-
ers extracted from the new microsatellite marker set (Table
2). One individual per accession was used in the analysis.
The melon accessions used were mostly commercial
Valenciano varieties planted in different areas of Brazil.
This sample includes most of the commercial varieties
planted in the country. For marker genotyping, young
leaves of the 40 melon accessions were used for DNA
extraction [10]. Microsatellite loci were genotyped using
13 µl PCR reactions containing DMSO 5%, dNTP 0.25
mM, primer pair 0.3 µM, Tris HCl 10 mM (pH 9.0), MgCl2

1.5 mM, Taq-polymerase 1 U plus 7.5 ng of DNA tem-
plate. Thermic variation cycles were 94°C for 4 min, 30
cycles of 94°C for 1 min, 50–58°C (depending on the
primer) for 1 min, 72°C for 1 min and an extension final
step of 72°C for 7 min. PCR was performed on a MJ
Research thermocycler PTC 100. Amplification products
were submitted to polyacrylamide gel containing polyacr-
ylamide 4% and urea 7 M in TBE 1X on a GIBCO/BRL S42
model electrophoresis apparatus (Promega, Madison,
WI). Gel dimensions were 20 cm × 34 cm × 0.4 mm. Elec-
trophoresis was performed at 45-watt constant power and
band visualization obtained by silver nitrate staining [48].
Alleles at marker loci were detected in base pairs. All ana-

Partial microsatellite linkage map of C. meloFigure 7
Partial microsatellite linkage map of C. melo. Fifty-five microsatellite markers were tested for linkage and thirty-one were 
assembled into nine linkage groups, which covered 583.6 cM of the melon genome. Map distances in cM are indicated on the 
left side of linkage groups and locus names are on the right. Underlined markers along linkage groups show segregation 
distortion
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lyzed microsatellite loci contained dinucleotide repetitive
sequences. In addition to the ladder of known fragment
sizes used to size alleles, the most frequent allele of a locus
was used as a reference to adjust fragment size of the other
alleles in the same locus.

Allele frequencies across loci were estimated using the
software GDA-Genetic Data Analysis [49]. An allele
frequency database for the 25 microsatellite loci geno-
typed on 40 varieties of melon was then constructed.
Observed (Ho) and expected (He) heterozygosities as well
as genetic parameters such as the size range and number
of alleles per locus were estimated for each microsatellite
locus (additional file 1) using the GDA software [49]. The
percentage of observed heterozygosity was calculated as
the ratio between heterozygote individual genotypes and
the total number of analyzed genotypes for each locus.
Expected heterozygosity was estimated based on the prob-
ability that two individuals taken at random from a given
sample would have different alleles at a locus [50]. The
arithmetic mean of the expected heterozygosity of multi-
ple loci is defined as Hav = Hn / n where n is the total
number of loci. The Polymorphism Information Content
(PIC) was also estimated as the probability that an indi-
vidual is informative with respect to the segregation of its
inherited alleles [51].

A set of 10 new microsatellite loci (CMBR7, CMBR22,
CMBR24, CMBR25, CMBR27, CMBR33, CMBR39,
CMBR43, CMBR73, CMBR89) was selected to estimate
the potential of these markers for line identification and
variety protection in melon. The probability of identical
genotypes [52], defined as PI = ∑ pi4 + ∑(2pipj)2 was esti-
mated for the selected loci individually, and later, for all
10 loci as a whole.

Genetic distance analysis with microsatellite markers
Genetic distance estimates between the 40 melon acces-
sions were performed with microsatellite and RAPD
markers. One individual per accession was used on geno-
typing experiments. Microsatellite genotyping followed
the procedures described above. RAPD genotyping was
based on data from an initial screening of eighty oligonu-
cleotide primers (Operon Technologies, USA) tested on
three melon accessions (CNPH 82015, CNPH 83038,
CNPH 83040). Thirty-five oligonucleotide primers were
selected. Primer sequences are available upon request.
DNA amplifications were performed by PCR in 13 µl reac-
tion volume containing 1.04 µg/µl purified BSA, 0.20 mM
each dNTP, 0.5 µM primer, 10 mM Tris HCl (pH 9,0), 1.5
mM MgCl2, 50 mM KCl, 1 U Taq-polymerase and 7.5 ng
of extracted melon DNA [10]. Amplification conditions
were 40 cycles of 94°C for 1 min, 35°C for 1 min, 35°C
for 1 min, 72°C for 2 min and an extension final step of
72°C for 5 min. Amplification products were separated

on horizontal 1.5% agarose gel stained with ethidium
bromide. Electrophoresis was performed at 100 volts con-
stant power during 4–5 hours [10].

Genetic distances among melon accessions based on mic-
rosatellite marker polymorphism were estimated by
shared allele distance in pairwise comparisons. The esti-
mates are based on the sum of the proportion of common
alleles between two melon accessions examined across
loci (PS) divided by twice the number of tested loci
[53,54]. Genetic distances were obtained by the parameter
[-ln (PS)] using the Genetic Distance Calculator [55]. The
diagonal matrix was then submitted to cluster analysis
using the neighbor joining method and a genetic distance
dendrogram built using the software NTSYS 2.02 g [56].
RAPD marker polymorphism was used to calculate pair-
wise distances among melon accessions with the DICE
genetic similarity coefficient [57]. Cluster analysis was
performed using the UPGMA method (NTSYS software)
[56,58]. The correspondence between distance and simi-
larity matrices based on microsatellite and RAPD markers
was evaluated through the correlation coefficient esti-
mated by the MXCOMP procedure of NTSYS software
[56]. The program plots one matrix against the other, ele-
ment by element, ignoring diagonal values and estimating
the product moment correlation (r) between two matri-
ces. Statistical significance was declared based on a t-test,
comparing the observed Z value with its permutational
distribution [56,59].

Linkage mapping analysis
An F2 progeny of 93 individuals derived from a cross
between the lines CNPH 82015 and CNPH 84201 was
used for linkage analysis of 55 microsatellite markers
reported here (additional file 1). Deviations from the
expected Mendelian segregation ratios were calculated
based on chi-square contingency tables. Marker loci even-
tually showing segregation distortion were further ana-
lyzed for the nature of distortion, if gametic or zygotic,
based on two additional chi-square conditional [39]: (a)
one testing the hypothesis p=q by the formula Chi-square
(GL = 1) = [(2np - n)2 + (2nq - n)2]/n [where p (A) = (AA
+ AB/2)/n and q (B) = (BB + AB/2)/n and n = total number
of individuals] and (b) a second testing if genotypes are
distributed as expected frequencies by Hardy-Weinberg
equilibrium: Chi-square = + [(AB - 2npq)2]/ 2npq + [(BB
- nq2)2]/ nq2. The relationships of these two tests allows
for the classification of distortion as gametic or zygotic
[39]. Linkage analysis was performed using the program
Mapmaker v 2.0 [60]. Only markers with 81 or more
scored F2 individuals were considered for analysis. A min-
imum LOD score of 4.0 and a maximum recombination
frequency of 0.35 were used to group the microsatellite
markers into potential linkage groups. Three-point and
multipoint analyses were performed to find the most
Page 12 of 14
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probable locus order within eventual linkage groups
observed. The final locus order of each linkage group was
tested by removing one locus at a time and checking for
inconsistencies. Double crossover events were examined,
and the original scores re-checked before a final linkage
group order was assigned. Recombination frequencies
were corrected based on Haldane's map distance function
as executed by Mapmaker.
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