

Área: Genética e Melhoramento

ADAPTABILIDADE E ESTABILIDADE DE GENÓTIPOS DE FEIJÃO-CAUPI NO **ESTADO DO AMAZONAS**

Inocencio Junior de Oliveira¹; José Roberto Antoniol Fontes¹; Miguel Costa Dias¹; Maurisrael Moura Rocha²

¹Eng^o Agrônomo, Pesquisador, Embrapa Amazônia Ocidental, Rodovia AM 010, km 29, Caixa Postal 319, CEP. 69010-970, Manaus, AM. E-mail: inocencio.oliveira@embrapa.br.

²Eng^o Agrônomo, Pesquisador, Embrapa Meio-Norte, Av. Duque de Caxias, 5650, CEP 64006-220 Teresina, PI.

Resumo - O objetivo deste trabalho foi avaliar a adaptabilidade e a estabilidade da produtividade de grãos de 20 genótipos de feijão-caupi de porte semi-ereto, utilizando os métodos baseado em regressão linear (Eberhart & Russell), na análise de variância (Annichiarico) e em componentes principais (Centróide). Os ensaios foram conduzidos em cinco ambientes do Estado do Amazonas, sob o delineamento de blocos ao acaso com quatro repetições. Os efeitos de genótipos, ambientes e da interação genótipo x ambiente foram significativos. Os genótipos mais próximos ao ideal segundo o método de Eberhart e Russell foram MNC03-737F-5-9, MNC02-675F-9-3 e MNC02-683F-1. Além disso, pelas metodologias analisadas, destaca-se a linhagem MNC03-737F-5-10 para ambientes favoráveis e, a linhagem MNC03-737F-5-4 e a cultivar BRS-Tumucumaque para ambientes

Palavras-chave: Vigna unguiculata, interação genótipo x ambiente, produtividade.

Introdução

O feijão é um alimento de expressiva participação na alimentação dos brasileiros, constituindo um dos produtos de maior importância econômica e social do país. Nas regiões Norte e Nordeste, em virtude das condições ambientais desfavoráveis ao feijoeiro comum (Phaseolus vulgaris L.), predomina o cultivo do caupi (Vigna unguiculata (L.) Walp.), que resiste melhor ao calor e à deficiência hídrica (Leite & Virgens Filho, 2004). Embora considerada uma cultura tropical com ampla adaptação aos mais diversos ambientes, o caupi ainda apresenta baixos patamares de produtividade (300 kg ha⁻¹) (Leite et al., 2009) e, dentre as principais causas, é apontada a utilização de baixo nível tecnológico na atividade associado ao uso de cultivares tradicionais com baixo potencial produtivo.

Na etapa de lançamento de cultivares de feijão-caupi é fundamental o conhecimento da adaptabilidade e estabilidade dos genótipos, a fim de amenizar os efeitos da interação genótipo x ambiente e facilitar a recomendação de cultivares. Diversos trabalhos relatam a importância da interação genótipos x ambientes em feijão-caupi, além de apresentarem genótipos com potencial produtivo acima de 1.000 kg ha⁻¹ (Freire Filho et al., 2005 e Rocha et al., 2007).

A adaptabilidade refere-se à capacidade de os genótipos aproveitarem vantajosamente o estímulo do ambiente e a estabilidade diz respeito à capacidade de os genótipos mostrarem comportamento altamente previsível em razão do estímulo do ambiente (Cruz et al., 2004). A escolha do método para a caracterização de genótipos quanto à adaptabilidade e estabilidade depende dos dados experimentais, da precisão requerida e do tipo de informação desejada pelo melhorista (Cruz et al., 2004). É importante que se utilize mais de um método,

> Adaptabilidade e ... SP-PP-S9050 2013 CPAA-25610-1 Sep. 9050

pois cada um possui peculiaridades que podem contribuir para o aprimoramento da análise e, em alguns casos, os métodos podem ser complementares entre si.

O objetivo deste trabalho foi avaliar a adaptabilidade e a estabilidade de genótipos de feijão-caupi de porte semi-ereto cultivados em diferentes ambientes no Estado do Amazonas.

Material e Métodos

Foram utilizados dados de produtividade de grãos de feijão-caupi de porte semi-ereto dos ensaios de valor de cultivo e uso do programa de melhoramento de feijão-caupi da Embrapa Meio-Norte, conduzidos nos anos agrícolas 2010 e 2012, no estado do Amazonas.

Os ambientes de avaliação consistiram da combinação de local e ano, em diferentes condições edafoclimáticas do Estado, perfazendo um total de cinco ambientes: Manaus, 2010, em terra firme sob sistema plantio direto (1); Manaus, 2010, em terra firme sob preparo convencional (2); Manaus, 2011, em terra firme sob preparo convencional (3); Rio Preto da Eva, 2012, em terra firme sob preparo convencional e Iranduba, 2012, área de várzea.

Os tratamentos consistiram de 20 genótipos de porte semi-ereto 16 linhagens (MNC02-675F-4-9, MNC02-675F-4-9, MNC02-675F-4-2, MNC02-675F-9-2, MNC02-675F-9-3, MNC02-676F-3, MNC02-682F-2-6, MNC02-683F-1, MNC02-684F-5-6, MNC03-725F-3, MNC03-736F-7, MNC03-737F-5-1, MNC03-737F-5-4, MNC03-737F-5-9, MNC03-737F-5-10, MNC03-737F-5-11, MNC03-737F-11) e quatro cultivares (BRS Tumucumaque, BRS Cauamé, BRS Itaim e BRS Guariba.

Os ensaios foram conduzidos sob o regime de sequeiro, com semeadura no mês de Junho e colheita entre os meses de Agosto e Setembro e, a adubação de plantio foi realizada com a aplicação de 20 kg ha⁻¹ N, 80 kg ha⁻¹ de P₂O₅ e de 40 kg ha⁻¹ de K₂O, para os ensaios realizados em terra firme. Em condições de várzea o ensaio também foi conduzido sob o regime de sequeiro, porém a semeadura foi realizada no final do mês de Agosto e a colheita em Novembro, dispensando a adubação de plantio, pelo fato dos solos de várzea apresentar alta fertilidade natural. Os tratos culturais consistiram do uso de inseticidas (Metamidofós e Deltametrina) para o controle de insetos mastigadores (vaquinhas e lagartas) e sugadores (pulgões, percevejos e trips), via pul verizador costal manual, adubação de cobertura com 20 kg ha⁻¹ N aos 20 dias após a emergência capina manual aos 25 dias após a emergência para o controle de plantas daninhas.

Em todos os ensaios, utilizou-se o delineamento experimental de blocos casualizados, com 20 tratamentos e quatro repetições. Cada parcela apresentou as dimensões de 2,0 m x 5,0 m, com quatro fileiras espaçadas de 0,50 m, com intervalo entre covas de 0,25 m, sendo a área útil constituída das duas linhas centrais.

Os dados de produtividade foram submetidos a análises de variância, tendo-se considerado o efeito de tratamentos como fixo e os demais como aleatórios. Detectou-se que a razão entre o maior e o menor quadrado médio do resíduo foi inferior a sete, indicativo de que as variâncias residuais foram homogêneas, permitindo a realização da a análise conjunta dos ensaios, segundo Pimentel-Gomes (2000).

Foi feita a avaliação da adaptabilidade e estabilidade dos genótipos, pelos métodos de Eberhart & Russell (1966) e Annicchiarico (1992). Foi utilizado o aplicativo computacional Genes (Cruz, 2006).

Resultados e Discussão

A estreita relação dos índices ambientais com a produtividade de grãos permite a classificação dos ambientes em favoráveis (índice positivo) ou desfavoráveis (índice negativo). Entre os cinco ambientes avaliados, três foram classificados como favoráveis (F), com produtividade acima da média, e dois como

desfavoráveis (D). A média geral dos experimentos, considerando os cinco ambientes foi de 1076,9 kg ha⁻¹, bem superior à média nacional de 300 kg ha⁻¹, segundo Leite et al. (2009) e Freire Filho et al. (2005) também obteve produtividade média acima de 1 tonelada (1365 kg ha⁻¹). (Tabela 1).

A análise de variância conjunta dos cinco ambientes mostrou efeitos significativos dos genótipos (p<0,05), ambientes e da interação genótipo x ambiente (p<0,01), o que indica a presença de variabilidade entre os genótipos e entre os ambientes utilizados, e também a ocorrência de resposta diferencial dos genótipos aos ambientes, assim como observado por Freire Filho et al. (2005) e Rocha et al. (2007) ao estudarem a adaptabilidade e estabilidade de genótipos de feijão-caupi.

Tabela 1. Índice ambiental (I_j), quadrados médios dos tratamentos (QMT), produtividade de grãos (PG) e coeficiente de variação (CV) em cinco ambientes no Amazonas, entre os anos de 2010 e 2012.

	Ambientes	I_j	QMT	PG (kg.ha ⁻¹)	CV (%)
1	Manaus - Plantio Direto/2010	F	85803,23*	1161,0	18,8
2	Manaus - Terra Firme/2010	D	216124,73**	802,5	18,0
3	Manaus - Terra Firme/2011	D	130557,17**	672,4	14,8
4	Rio Preto da Eva - Terra Firme/2012	F	162537,23**	1517,4	15,0
5	Iranduba - Várzea/2012	F	133576,73*	1231,2	19,9
	Média			1076,9	
	Maior QM _{residuo} /QM _{residuo}	regulation	6,1		
	Genótipos (G)		250601,63*		
	Ambientes (A)		9276361,91**		
	GxA		119499,36**		

^{**} e *Significativo a 1 e 5% de probabilidade pelo teste F, respectivamente.

Entre os genótipos que apresentaram coeficiente de regressão significativos e menor que a unidade, segundo o método de Eberhart e Russell (1966), destacaram-se as linhagens MNC02-676F-3, MNC03-737F-5-4 e a cultivar BRS-Tumucumaque, cujas produtividades superaram a média geral do experimento (1076,9 kg ha⁻¹) sendo, portanto, de adaptação específica às condições desfavoráveis (Tabela 2).

Quanto aos genótipos mais responsivos à melhoria das condições ambientais destacaram-se a linhagem MNC03-737F-5-10 por seu coeficiente de regressão ser significativamente maior que a unidade (β_1 >1) e produtividade acima da média, ademais, nenhuma cultivar apresentou tal característica. A maioria dos genótipos, no entanto, apresentou ampla adaptabilidade, pois seus coeficientes de regressão não apresentaram diferença significativa da unidade (β_1 =1).

Em relação à estabilidade de comportamento, dada pela estimativa dos desvios da regressão ($\sigma^2_{\delta i}$), nota-se que somente a linhagem MNC03-737F-5-4 e a cultivar BRS-Tumucumaque apresentaram desvios de regressão não significativos com produção acima da média e, portanto, consideradas de alta estabilidade, ou seja, de alta previsibilidade de comportamento. Salienta-se também, que as linhagens MNC03-737F-5-9, MNC02-675F-9-3 e MNC02-683F-1, com desvios de regressão significativos, apresentaram previsibilidade tolerável, pois seus

coeficientes de determinação (R²) foram superiores a 80%, o que, segundo Cruz et al. (2004), é uma medida auxiliar na avaliação da estabilidade dos genótipos, quando os desvios de regressão são estatisticamente diferentes de zero.

Quanto ao método de Annicchiarico (1992), as linhagens MNC03-737F-5-9, MNC03-737F-5-10 e MNC02-675F-9-3 apresentaram índice de recomendação geral (ω_{iG}), índice de recomendação para ambientes favoráveis (ω_{iF}) e índice de recomendação para ambientes desfavoráveis (ω_{iD}) superiores a 100 e, portanto, são as que têm 75% de chance de produzir acima da média em todos os ambientes considerados e devem ser lançadas como cultivares comerciais para o Estado do Amazonas. Nos ambientes favoráveis os genótipos destaques (ω_{iF} >100), além dos citados acima, foram as linhagens MNC02-683F-1, MNC03-737F-5-1, MNC02-675F-9-2 e MNC03-737F-5-11, enquanto que para os ambientes desfavoráveis, os genótipos mais adaptados a essas condições (ω_{iD} >100) foram as linhagens MNC03-737F-5-4 e MNC02-676F-3, assim como obtido na metodologia de Eberhart e Russell, além das cultivares BRS Itaim e BRS Tumucumaque, tendo esta também apresentado ω_{iO} >100.

Conclusões

As linhagens MNC03-737F-5-9, MNC03-737F-5-10 e MNC02-675F-9-3 e a cultivar BRS-Tumucumaque são as mais promissoras para o cultivo de feijão-caupi no Amazonas, pois aliam estabilidade e adaptabilidade à alta média de produtividade. As metodologias de Eberhart e Russel (1966) e Annichiarico (1992) têm, de modo geral concordância nos resultados e permitem identificar entre os genótipos avaliados os de maior produtividade de grãos, estabilidade e adaptabilidade, considerando-se amplas condições ambientais, o que proporciona maior confiabilidade na classificação dos cultivares.

Agradecimentos (opcional)

Ao projeto "Desenvolvimento de cultivares para o agronegócio do feijão-caupi no Brasil" – Embrapa – pelo apoio financeiro. À Embrapa Meio-Norte pela cessão do material genético e aos funcionários de campo da Embrapa Amazônia Ocidental, pelo apoio na condução do trabalho.

Referências

ANNICCHIARICO, P. Cultivar adaptation and recommendation from alfafa trials in Northern Italy. Journal of Genetics and Plant Breeding, v.46, p.269-278, 1992.

CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C.S. Modelos biométricos aplicados ao melhoramento genético. 3. ed. Viçosa: UFV, 2004. v. 1. 480p.

CRUZ, C.D. Programa Genes: biometria. Viçosa: UFV, 2006. 382p.

EBERHART, S.A.; RUSSELL, W.A. Stability parameters for comparing varieties. Crop Science, v.6, p.36-40, 1966.

FREIRE FILHO, F. R.; ROCHA, M.M.; RIBEIRO, V.Q.; LOPES, A.C.A. Adaptabilidade e estabilidade produtiva de feijão-caupi. Ciência Rural, v.35, p.24-30, 2005.

LEITE, M.L.; VIRGENS FILHO, J.S. Produção de matéria seca em plantas de caupi. Vigna unguiculata (Walp) submetidas a déficits hídricos. Publicato UEPG, v.10, p.43-51, 2004.

LEITE, L.F.C.; ARAÚJO, A.S.F.; COSTA, C.N.; RIBEIRO, A.M.B. Nodulação e produtividade de grãos do feijão-caupi em resposta ao molibdênio. Revista Ciência Agronômica, v.40, n.4, p.492-497, 2009.

PIMENTEL-GOMES, F. Curso de estatística experimental. 13ª ed. Piracicaba: Nobel, 1990. 468p.

ROCHA, M.M.; FREIRE FILHO, F.R.; RIBEIRO, V.Q.; CARVALHO, H.W.L.; BELARMINO FILHO, J.; RAPOSO, J.A.A.; ALCÂNTRA, J.P.; RAMOS, S.R.R.; MACHADO, C.F. Adaptabilidade e estabilidade produtiva de genótipos de feijão-caupi de porte semi-ereto na região Nordeste do Brasil. Pesquisa Agropecuária Brasileira, v.42, p.1283–1289, 2007.

Tabela 2. Parâmetros de adaptabilidade e estabilidade fenotípica, pelos métodos de Eberhart & Russel (1966) e Annichiarico (1992), para 20 genótipos de feijão-caupi.

Genótipos	Eberhart e Russell				Annichiarico					
Genotipos	β_0	β_1	$\sigma^2_{\delta i}$	R ² (%)	MG	MF	MD	ω_{iG}	ω_{iF}	ω_{iD}
MNC02-675F-4-9	990,1	1,14 ^{ns}	33477**	82,51	990,1	1298,4	527,6	83,80	97,69	65,98
MNC02-675F-4-2	1054,1	1,01 ^{ns}	9575 ^{ns}	89,25	1054,1	1292,2	696,8	94,66	95,62	94,45
MNC02-675F-9-2	1070,8	1,30*	19704*	89,93	1070,8	1377,8	610,2	91,91	101,69	78,68
MNC02-675F-9-3	1131,3	$0,97^{\rm ns}$	19113*	83,50	1131,3	1325,1	840,6	100,45	100,33	102,1
MNC02-676F-3	1096,4	0,58**	82041**	36,38	1096,4	1259,1	852,2	97,14	90,95	104,3
MNC02-682F-2-6	950,7	1,09 ^{ns}	9044 ^{ns}	99,75	950,7	1196,4	582,2	84,18	90,81	76,8
MNC02-683F-1	1087,1	1,21 ^{ns}	19891*	88,57	1087,1	1379,9	647,8	93,78	102,52	81,7
MNC02-684F-5-6	1037,1	1,06 ^{ns}	14880 ^{ns}	87,72	1037,1	1263,8	697,1	91,96	93,10	89,0
MNC03-725F-3	993,7	1,03 ^{ns}	14414 ^{ns}	87,34	993,7	1223,4	649,1	86,77	90,39	80,1
MNC03-736F-7	888,3	$1,10^{\rm ns}$	6140 ^{ns}	98,24	888,3	1150,7	494,8	76,72	87,91	66,3
MNC03-737F-5-1	1100,4	1,04 ^{ns}	36903**	78,38	1100,4	1349,2	727,2	95,91	101,72	88,4
MNC03-737F-5-4	1095,8	0,69*	13856 ^{ns}	76,15	1095,8	1229,5	895,2	99,53	91,94	114,4
MNC03-737F-5-9	1371,6	$0,79^{ns}$	20112*	86,41	1371,6	1506,8	1168,8	125,51	112,23	158,2
MNC03-737F-5-10	1296,9	1,37**	39084**	85,69	1296,9	1577,6	875,9	114,91	113,77	114,9
MNC03-737F-5-11	1154,7	1,16 ^{ns}	43796**	79,67	1154,8	1375,0	824,3	99,57	101,35	96,3
MNC03-737F-11	981,0	1,22 ^{ns}	20414*	88,46	981,0	1227,1	612,0	85,08	88,03	82,0
BRS-TUMUCUMAQUE	1158,0	0,61**	11397 ^{ns}	83,24	1158,0	1319,7	915,4	105,89	98,12	118,
BRS-CAUAMÉ	1046,6	1,13 ^{ns}	376 ^{ns}	95,56	1046,6	1320,0	636,3	92,86	99,69	84,6
BRS-ITAIM	1031,7	0,49**	3859 ^{ns}	73,27	1031,7	1152,1	851,3	94,63	85,51	111,3
BRS-GUARIBA	1002,2	0,99 ^{ns}	3367 ^{ns}	92,23	1002,2	1240,6	644,5	84,46	92,79	84,5

 $β_0$: média geral; R^2 : coeficiente de determinação; MG, MF e MD: média geral, nos ambientes favoráveis e desfavoráveis. $ω_{iG}$, $ω_{iF}$, $ω_{iD}$: adaptabilidade geral, nos ambientes favoráveis e desfavoráveis, respectivamente. ^{ns}Não Significativo. * e ** Significativo a 1 e 5% de probabilidade, respectivamente, pelo teste t para $β_1$ (adaptabilidade), e pelo teste F para $σ^2_{δi}$ (estabilidade).