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Fortaleza, CE 62042-280, Brasil, 12Departamento de Ciências Biológicas, Campus Senador Helvı́dio Nunes de

*To whom correspondence should be addressed. Tel: +55 24 2233 6065; Fax: +55 24 2233 6124; Email: atrv@lncc.br
Correspondence may also be address to Osvaldo Marinotti. Tel: +1 949 824 3210; Fax: +1 949 824 2814; Email: omarinot@uci.edu

Nucleic Acids Research, 2013, 1–14
doi:10.1093/nar/gkt484

� The Author(s) 2013. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

 Nucleic Acids Research Advance Access published June 12, 2013
 at E

m
presa B

rasileira de Pesquisa A
gropecuÃ

¡ria on June 20, 2013
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Barros, Universidade Federal do Piauı́, Picos, PI 60740-000, Brasil, 13Departamento de Genética, Instituto de
Ciências Biológicas, Universidade Federal do Pará, Belém, PA 66075-900, Brasil, 14Department of Genetics and
Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA, 15Informatics,
The J. Craig Venter Institute, Medical Center Drive, Rockville, MD 20850, USA, 16Departamento de Genética,
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ABSTRACT

Anopheles darlingi is the principal neotropical
malaria vector, responsible for more than a million
cases of malaria per year on the American contin-
ent. Anopheles darlingi diverged from the African
and Asian malaria vectors �100 million years ago
(mya) and successfully adapted to the New World
environment. Here we present an annotated refer-
ence A. darlingi genome, sequenced from a wild
population of males and females collected in the
Brazilian Amazon. A total of 10 481 predicted

protein-coding genes were annotated, 72% of
which have their closest counterpart in Anopheles
gambiae and 21% have highest similarity with other
mosquito species. In spite of a long period of diver-
gent evolution, conserved gene synteny was
observed between A. darlingi and A. gambiae.
More than 10 million single nucleotide polymorph-
isms and short indels with potential use as genetic
markers were identified. Transposable elements
correspond to 2.3% of the A. darlingi genome.
Genes associated with hematophagy, immunity
and insecticide resistance, directly involved in

2 Nucleic Acids Research, 2013

 at E
m

presa B
rasileira de Pesquisa A

gropecuÃ
¡ria on June 20, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


vector–human and vector–parasite interactions,
were identified and discussed. This study repre-
sents the first effort to sequence the genome of a
neotropical malaria vector, and opens a new
window through which we can contemplate the evo-
lutionary history of anopheline mosquitoes. It also
provides valuable information that may lead to
novel strategies to reduce malaria transmission on
the South American continent. The A. darlingi
genome is accessible at www.labinfo.lncc.br/index.
php/anopheles-darlingi.

INTRODUCTION

Anopheles darlingi is the principal neotropical malaria
vector (1–6), sustaining the transmission of more than a
million malaria cases per year on the American continent
[(7), World Health Organization Malaria Report 2011].
Anopheles darlingi has a wide geographic distribution
that reaches from Southern Mexico to Northern
Argentina and from East of the Andes chain to the coast
of the Atlantic Ocean. Although this species has been sub-
jected to extensive study, little is known about the molecu-
lar aspects of its biology. The A. darlingi genome presented
here fills this gap in the knowledge about its genes, tran-
scripts and proteins that determine the biological charac-
teristics of this important malaria vector.

In spite of the availability of published genomes for
three other mosquito species [Anopheles gambiae (8),
Aedes aegypti (9), Culex quinquefasciatus (10)], the
medical and epidemiological significance of A. darlingi
and its phylogenetic position support the importance of
this study. Anopheles (Nyssorhynchus) darlingi and
A. (Cellia) gambiae are considered to have diverged
�100 mya (11) (Figure 1), suggesting that their most
recent common ancestor lived before the geological split
of western Gondwana (�95 mya). This estimation is sup-
ported by the absence of the Cellia species in the New
World and Nyssorhynchus in the Afro-Eurasian contin-
ents. The most ancient human colonization of the
American continent is still a matter of discussion and is
estimated to have occurred 30 000–10 000 years ago
(12–16), indicating that A. darlingi and its ancestral
species evolved in an environment devoid of humans

or human ancestral species for several million years.
Furthermore, European colonialists transferred
Plasmodium falciparum and Plasmodium vivax, the most
prevalent malaria parasites, to the American continent in
post-Colombian times (17,18). Therefore, interactions
between neotropical malaria vectors and humans, and
malaria parasites, are relatively recent. The evolutionary
history of A. darlingi thus allows tackling basic and
unanswered questions about vector–parasite and vector–
human host interactions as well as about malaria parasite
development within its vectors and the mosquito immune
responses to the developing parasite.

MATERIALS AND METHODS

Genome

Gravid A. darlingi female mosquitoes were captured from
Coari, Amazonas State, Brazil, and their progeny (F1)
was reared at the insectary of the Laboratory of Malaria
and Dengue Vectors, Instituto Nacional de Pesquisas da
Amazônia, Manaus, Brazil. Larvae were fed powdered
fish food (Tetramin�), and pupae were transferred to
plastic cups filled with distilled water. Total DNA was
extracted from 1884 recently emerged adults (F1, <24 h
after emergence), males and females, and was used for
sequencing. High-coverage whole-genome data sets were
generated by 454 Life Sciences (Roche) technology using
single fragment end and paired-end reads. The reads were
assembled using Celera Assembler 6.1. Because the
sequenced DNA was sampled from a large number
of field-captured individuals, the assembly was per-
formed with a relaxed error tolerance of 16%, except
during unitig construction where it was 12%. K-mer size
overlap generation was also relaxed to 16 bases.

Transcriptome

The transcriptome of adult A. darlingi was derived from
two mosquito populations that were captured 524 km
apart from each other (Coari, Amazonas State and
Porto Velho, Rondonia State, Brazil). The extracted
RNA was sequenced using two next-generation
sequencing platforms: 454 Life Sciences (Roche) and
Illumina (Solexa sequencing). Transcripts were recon-
structed using mapping first strategy, Genomic Short-
read Nucleotide Alignment Program and Scripture and
the assembly first strategy, Velvet/Oases. Reconstructed
transcripts were used as supporting evidence on the anno-
tation of the genome (PASA - Program to Assemble
Spliced Alignments). Additional details on genomic
DNA and RNA extraction, sample preparation,
sequencing, assembly and annotation are given in
Supplementary Method SA.

RESULTS AND DISCUSSION

Genome size, genome and transcriptome sequencing,
assembly and annotation

Five and a half billion base pairs of information were
generated, resulting in an assembled A. darlingi genome

Figure 1. Phylogenetic relationships of five dipteran species (adapted
from [11]). The evolution relationship and divergence time of
A. darlingi in comparison with species of the Anopheles, Aedes, Culex
and Drosophila genera.
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that spans 173.9Mb (Tables 1 and 2) (see Supplementary
Tables SA1 and SA2). The size of the A. darlingi haploid
genome was determined by cytometric analysis to be
�201Mb (2C=0.41 pg) (see Supplementary Method SB
and Supplementary Figure SB1), which is �30% smaller
than the genome of A. gambiae [278Mb, (8)] and three to
six times smaller than the genome of culicinae mosquitoes
C. quinquefasciatus [579Mb, (10)] and A. aegypti
[1379Mb, (9)] but larger than the Drosophila melanogaster
genome [176Mb, (19)]. The difference between the
cytometrically determined genome size and the sum of
all of the contigs and scaffolds is most likely the result
of unassembled centromeres, telomeres and other
portions of the genome that are rich in repetitive DNA
sequences. In fact, 18,66 percent of the reads were not
included in the final assembly. Assuming a uniform
coverage of 20� and a read average length of 248 bp,
the unassembled reads correspond to 32.71Mb, which
accounts for an estimated total genome length of
206.6Mb, a value that is similar to the value obtained
by cytometry. Although the A. darlingi genome is
smaller than that of A. gambiae, the sums of the lengths
of all of the protein coding sequences in each of the two
genomes are similar (18.2 and 19.3Mb, respectively),
which indicates a more compact genome in A. darlingi
mosquitoes (see Supplementary Tables SA3 and SA4).
Anopheles darlingi has shorter intergenic and intronic

sequences and fewer transposable elements (TEs; these
elements constitute only 2.3% of the genome; see details
below). Nevertheless, A. darlingi genes display a larger
average number of exons per gene (4.6) than A. gambiae
(4.4) (see Supplementary Table SA5).

DNA sequences of bacterial origin were obtained along
with the A. darlingi genome. For example, the complete
genome of Aeromonas hydrophila was assembled during an
initial analysis of the 454 reads. DNA sequences of bac-
terial origin were labeled as contaminants and were
screened out during the assembly process. Even after
applying the bacterial DNA filter, the assembled
A. darlingi genome includes genes of apparent bacterial
origin. The majority of these are present in small contigs
(mostly <10 kb) that do not contain evident mosquito
DNA, which suggests that they derive from environmental
contaminations or additional microorganisms that are
associated with A. darlingi. Some scaffolds apparently
contain sequences of both prokaryotes and eukaryotes.
Further analyses are necessary to determine the legitimacy
of these assembled scaffolds and the possibility of hori-
zontal gene transfer events that may have contributed to
shaping the A. darlingi genome.

Two similar mitochondrial genomes were previously
described for this species, corresponding to the Southern
and Northern genotypes, which originated from Manaus,
Brazil and Central Cayo District, Belize, respectively. The
typical 37 genes in animal mtDNA, comprising 13 protein-
encoding genes, two rRNA genes (12S rRNA and 16S
rRNA), 22 tRNA genes and a control region, are found
in the complete A. darlingi mitochondrial genome (11).
Here, we describe a third mitochondrial genome for
this species, from mosquitoes captured in Coari, Brazil,
which is more similar to the Southern genotype (see
Supplementary Data SC and Supplementary Figure
SC1). For the first time, we report the complete A.
darlingi nuclear ribosomal RNA cistron (AD11084),
complementing previously published, partial rRNA se-
quences (20,21). Sets of 359 nuclear encoded tRNAs and
44 homologs of A. gambiae pre-microRNAs (miRNAs)
were identified. miRNA precursor candidates conserved
in the genomes of A. darlingi and A. gambiae, which
might play important roles in the posttranscriptional

Table 1. Assembly statistics of A. darlingi reference genome

Feature Statistics

Total number of good sequence reads 16 777 488
Sequence reads in assembly 14 139 351
Total number of scaffolds 8233
Total length of scaffolds 173 918 288
Total number of contigs 13 857
Combined bases in contigs 172 639 290
Combined length of gaps 1 278 998
Sequencing coverage 20
N50 scaffold length 81 222
N50 contig length 37 754
Longest scaffold (number of contigs) 1 087 588 (10)
Shortest scaffold (number of contigs) 473 (1)

Table 2. General characteristics of the A. darlingi genome

Genome feature A. darlingi A. gambiaea A. aegyptia

Genome size (Mb) 173.92 278.25 1379
Percent of G+C (%) 48.15 40.9 38.2
Protein coding length (Mb) and (% genome length) 18.2 (10.4) 64.92 (23.3) 224.9 (16.3)
Total number of exons 47 990b 56 210 66 827
Number of protein-coding genes 10 457b 12 670 15 704
Percent genes with introns (%) 91.59 93.6 90.1
Average number of exons per gene 4.6 4.4 4.0
Average gene length (bp) 1735 5124c 14 587c

Total tRNAs 346 450 995

aStatistics were derived from genome updates for A. gambiae AgamP3 (Vectorbase, version 66.3) and A. aegypti AaegL1 (Vectorbase, version 66.1).
bIncludes 13 mitochondrial genes.
cIncludes introns but not untranslated regions.
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regulation of gene expression in these species, were
described in a separate publication (22).

Synteny

In spite of �100 million years of evolutionary divergence
between A. darlingi and A. gambiae, the gene synteny
between their genomes is relatively well conserved.
Translocation events have occurred but were mostly re-
stricted to large intra-chromosomal rearrangements
(Figure 2). The synteny between A. darlingi and
D. melanogaster presents a different scenario: each one
of the 12 largest A. darlingi scaffolds have orthologous
genes scattered through different D. melanogaster
chromosomes, which suggests a low degree of synteny
(Figure 2B).

Systematic synteny evaluation between A. darlingi and
A. gambiae identified 1027 synteny clusters (Figure 3A),
comprising 6312 syntenic genes or �60% of all A. darlingi
protein-coding genes (Figure 2B). Apart from giving an
idea on how much large-scale rearrangements have been
important in the divergence of these species, this analysis
will help in future efforts for gene identification on the
basis of conserved synteny. Similar analyses between
A. darlingi and other dipterans, i.e. A. aegypti,
C. quinquefasciatus and D. melanogaster, identified 848,
835 and 244 synteny clusters (Figure 3A) and 3680, 3684
and 488 syntenic genes (Figure 3B), respectively. The

higher degree of synteny between A. darlingi and
A. aegypti or C. quinquefasciatus in comparison with the
values obtained by A. darlingi–D. melanogaster evaluation
reflects the estimated divergence time among those species
(Figure 1) and suggests that most of the interchromosomal
rearrangements have taken place after the split of lineages
that lead to Drosophilidae and Culicidae.
The median number of genes per synteny cluster was

not significantly different among all of the pairwise
synteny evaluations (Figure 3C). This observation is
owing to the draft nature of the A. darlingi genome,
which has a significant number of unclosed genome
gaps; these gaps lead to premature ends of the synteny
clusters. From all of the identified synteny clusters
between A. darlingi and A. gambiae, 87% occur near
scaffold ends (Figure 3), suggesting that those clusters
will be extended further when the genome sequence gaps
are mended. A detailed A. darlingi cytogenetic map has
been described (23–28) (see Supplementary Figure SD1).
It is expected that mapping of particular genes or clones
on chromosomes, together with the described syntheny
clusters, will support a more complete and precise
assembly of the A. darlingi genome.

Polymorphism within and between two populations

A database with >10 million single-nucleotide variants
(SNVs) and short indels with potential use as genetic

Figure 2. Comparison of gene organization between A. darlingi, A. gambiae and D. melanogaster. (A) Gene distribution along A. gambiae chromo-
somes and the location of their respective orthologs on the 12 largest A. darlingi scaffolds. Black-edged vertical and horizontal bars represent
A. gambiae and A. darlingi chromosomes and scaffolds. Colored lines within each bar indicate the location and strand of genes: the leftmost or
uppermost column indicates the plus strand; the rightmost or bottommost column indicates the minus strand. The color of those genes denotes either
the chromosome where A. gambiae genes are encoded or, in the case of lines representing A. darlingi genes, the A. gambiae chromosome where their
respective orthologs are encoded. Gray colored lines represent either A. darlingi genes without orthologs in A. gambiae or genes with two or more
homologs in distinct A. gambiae chromosomes. (B) Gene distribution along D. melanogaster chromosomes and the 12 largest A. darlingi scaffolds.
The results are presented in a schema equivalent to the one on panel A. (C) Distribution of A. darlingi orthologous genes along A. gambiae
chromosome 2R. The five scaffolds with the longest alignment against chromosome 2R are depicted here. Each row contains black-edged horizontal
bars representing either chromosomes (A. gambiae) or genomic scaffolds (A. darlingi). The green lines indicate the position and strand of the genes.
The gray projections connect orthologous genes across organisms. Some of A. darlingi scaffolds had their orientation modified to facilitate the
visualization of syntenic blocks.

Nucleic Acids Research, 2013 5

 at E
m

presa B
rasileira de Pesquisa A

gropecuÃ
¡ria on June 20, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt484/-/DC1
http://nar.oxfordjournals.org/


markers was created (Table 3) (see Supplementary
Method SA). Differently from most of the previous
studies of sequence polymorphisms in mosquitoes, that
analyzed individuals pooled from established colonies in
which much of the natural diversity is lost, the A. darlingi
data presented here was generated from wild caught
mosquitoes. The sequencing of the 278Mb of the
A. gambiae genome revealed �445 thousand single-nu-
cleotide polymorphisms (SNPs), with an average
heterozygozity at the nucleotide level of 1.6 per kb (9).
The average frequency of nucleotide variation was
reported to be 7 and 12 SNPs per kb for Anopheles
funestus and A.aegypti (29,30), respectively. An SNP fre-
quency of �17 per kb was recently reported for selected
gene fragments of field-captured Anopheles arabiensis (31).

Because laboratory autonomous colonies of A. darlingi
are not available, the DNA and RNA sequenced in this
project were extracted from >1884 individuals (F1
progeny of field-captured gravid females). While the
high degree of polymorphism found in A. darlingi reads
posed a challenge for genome assembly, the data acquired
permitted a better representation of the sequence poly-
morphisms in two natural populations of this malaria
vector. The distribution of SNVs is not homogeneous
throughout the genome, and average values as high as
50 SNVs per kb in intergenic and intronic sequences
were observed, with lower values in protein coding
genes, including untranslated regions (UTRs) (40 SNVs
per kb), and even lower values (26 SNVs per kb)
in protein coding DNA sequences (CDSs). A total of
792 472 SNVs were uniquely found in the Coari data set,
while 654 619 were identified only in the samples collected
in Porto Velho. The SNVs identified in this study, though
requiring validation, serve as the basis for high-through-
put genotyping analysis and future population genetic and
association mapping efforts.

Transposable elements

TEs correspond to 2.3% of the A. darlingi genome
(Table 4) (see Supplementary Data and Method SE and
SF). The set of Class I and II TEs superfamilies is as
diverse in A. darlingi as in the genomes of other
mosquitoes; however, the number of TE copies is
smaller in A. darlingi. In A. gambiae, TEs encompass
17% of the genome (9), and among the genomes of the

Table 3. Number and density of SNVs per genomic feature

Genomic
feature

Genome (454)a Transcriptome
(454+Illumina)b

Gene 1 643 685 (39.7 per kb) 819 427 (19.8 per kb)
Exon 488 652 (26.2 per kb) 494 539 (26.6 per kb)
Intron 1 155 083 (50.7 per kb) 324 926 (14.2 per kb)
CDS 475 903 (26.1 per kb) 481 588 (26.37 per kb)
Intergenic 6 811 677 (50.0 per kb) 835 447 (6.1 per kb)
Promoter 360 607 (41.8 per kb) 153 431 (17.8 per kb)

aGenome data from mosquitoes collected in Coari.
bTranscriptome data from Porto Velho and Coari were combined.
Samples were sequenced by either 454 Life Science (454) or Illumina
technologies.
Promoter=2kb upstream from transcript 50-end.

Figure 3. Synteny clusters statistics. (A) Distribution of the number of genes per synteny cluster when considering A. darlingi (Ad) versus either
A. gambiae (Ag), A. aegypti (Aa), C. quinquefasciatus (Cq) or D. melanogaster (Dm). Data points represent synteny clusters with more than three
protein-coding genes on each pairwise comparison. The points were scattered in each column for the purpose of facilitating visualization. Red
horizontal lines indicate the media values of the distribution. (B) The total number of syntenic genes between each pair of species. (C) Number of
synteny clusters identified on each comparison. The whole extent of the bars indicates the total number of clusters that were identified in each
analysis, which was further divided into clusters located internally on scaffolds or chromosomes versus those near chromosomes or scaffold ends.
Species names were abbreviated, as in panel A.
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Drosophila species so far analyzed, TE compositions vary
from 2.7 to 23% (32).

Some of the TEs found in the A. darlingi genome
showed multiple identical copies and intact transposase
Open reading frames (ORFs), suggesting that they are
active elements. Among the putatively active TEs are the
following: gypsy-like from long terminal repeats (LTR)
elements order; jockey-like, Chicken repeat 1 (CR1) and
retrotransposable element (RTE) families from non-LTR
order; and mariner-like and Helitrons from DNA class II
elements (see Supplementary Data SE and Supplementary
Figures SE1 and Supplementary Table SF). Multiple ap-
plications of active TEs have been contemplated for
advancing the understanding of mosquito biology as
well as for genetic-based vector control strategies. Active
TEs can be used in genetic engineering as transformation
vectors and can be used for gene and enhancer trapping;
they also can be used for genome-wide insertional muta-
genesis studies (33).

Protein coding genes

A total of 10 481 protein-coding genes were predicted in
the A. darlingi genome. For checking the completeness of

the A. darlingi gene set, the core eukaryotic gene-mapping
approach (CEGMA) (34) that assess genome complete-
ness and gene structure prediction was applied. CEGMA
analysis includes a set of core genes that are supposed
to be highly conserved and single-copy genes present in
all eukaryotes. The integral sequences of 235 out of 248
highly conserved eukaryotic genes (94.76%) were
identified in the A. darlingi genome. Other eight highly
conserved genes were found as partial loci. Despite these
results indicating the efficiency of the gene prediction tools
used, additional A. darlingi protein coding genes are
expected to be identified as future sequencing and
assembling efforts will close the present gaps between scaf-
folds and contigs. From the A. darlingi protein coding
genes, 72.3% have the closest counterpart in the A.
gambiae genome and 21.3% have a gene that has the
highest similarity within the genomes of other mosquitoes
(A. aegypti or C. quinquefasciatus) (Figure 4) (see
Supplementary Data SG). A comparative analysis of the
functional categories of the genes comprising the
A. darlingi and A. gambiae genomes showed that, in
general, functional categories were equally represented
(Figure 4). Genes associated with hematophagy

Table 4. Transposable contents in mosquito genomes

TE class—Order A. gambiae A. darlingi A. aegypti

Copy number % of genome Copy number % of genome Copy number % of genome

Class I—LTR 4348 6.2 241 0.19 28 905 10.51
Class I—Non LTR 392 1.07 200 0.9 61 938 14.37
Class I—SINEs 2389 3.77 4610 0.51 101 838 1.88
Class II—DNA transposons 835 1.1 395 0.02 12 930 3.04
Class II—Helitrons 5 0.2 19 0.02 244 1.04
Class II—MITEs 3399 5.07 6635 0.66 419 955 15.8
Total 11 368 17.41 12 119 2.29 625 810 46.64

TEs were classified as proposed by (33): Class I retrotransposon, with LTR, retroposons without LTR or SINEs (short interspersed nuclear
elements).
Class II were classified as DNA transposons, helitrons and MITES (miniature inverted-repeat TEs). A. gambiae and A. aegypti data from (8,9,34).

7576

1028

1206

321

A. gambiae

C. quinquefasciatus

Others

0 50 100 150 200 250 300 350 400

Amino Acid Metabolism

Energy Metabolism

Glycan Biosynthesis and Metabolism

Metabolism of Cofactors and Vitamins

A. gambiae A. darlingi

Figure 4. Distribution and functional categories of protein-coding genes predicted in Anopheles species. The best matches distribution of all (10 481)
of the A. darlingi predicted protein coding genes in the KEGG database, by organisms; and the comparison of the molecular functions of the
products of the predicted protein coding genes between A. darlingi and A. gambiae.
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(encoding components of mosquito olfaction and saliva),
immunity and insecticide resistance are directly involved
in vector-human and vector-parasite interactions and
efforts to curb malaria transmission. Some of these
genes, identified in the A. darlingi genome, will be
further discussed.

Olfaction

The chemosensory system plays essential roles in food
source or host location, mate choice, predator avoidance,
oviposition site selection and toxic-compound avoidance
(35). Molecular components of insect chemosensory
systems include at least three different types of
chemosensory receptors: the odorant (OR), the gustatory
(GR) and the ionotropic (IR) receptors (36). Two other
types of proteins, i.e. the odorant-binding proteins (OBPs)
and chemosensory proteins (CSPs), are involved in the
perireceptor events of the chemosensory system (36,37).

Odorant receptors
In A. gambiae, a family of 79 putative odorant receptor
(AgOR) genes have been identified (38,39), including
AgamGPRor7, now named Agam\Orco (40), and the
ortholog of D. melanogaster DmelOr83b, which serves
as a coreceptor in all OR multimeric complexes (41).
In the A. darlingi genome, we have identified 18 genes
that encode putative ORs, including a gene encoding
Adar\Orco (GPROR7) (see Supplementary Table SH1).
It appears that the number of OR paralogs is reduced in
A. darlingi. OR3, which in A. gambiae is part of a group of
25 paralogs, is represented in A. darlingi by seven paralo-
gous genes; OR33 is represented by six paralogs in A.
gambiae and by four in A. darlingi. Six ORs (OR8,
OR23, OR34, OR39, OR42 and OR58) are represented
by single genes in A. darlingi. OR23 and OR42 are, re-
spectively, represented by 15 and 14 paralogs in A.
gambiae.

Gustatory receptors
Sixty-one genes encoding putative GR have been
identified in the A. gambiae genome. In the A. darlingi
genome, 17 GR genes were identified (see Supplementary
Table SH1), three of them (AD01104, AD08863 and
AD09819) as partial sequences. Among them, four genes
(AD07140/GPRGR14, AD08836/GPRGR15, AD08857/
GPRGR17 and AD08840/GPRGR20) encode receptors
that were described as candidate sugar receptors in A.
gambiae (42). The proteins encoded by the genes
AD09007, AD01029 and AD09985 correspond to the re-
ceptors GPRGR22, GPRGR23 and GPRGR24, respect-
ively, and show a high conservation (71–93%) when
compared with homologous sequences in A. gambiae, A.
aegypti and C. quinquefasciatus. The corresponding
orthologs of GPRGR22 and GPRGR24 in D.
melanogaster (DmGr21a and DmGr63A) function as a
heterodimeric receptor for carbon dioxide (43,44).

Variant ionotropic glutamate receptors
These receptors function as chemosensory receptors in
D. melanogaster (45) and A. gambiae (46,47). In A.
gambiae, a family of 46 variant ionotropic glutamate

receptors was identified (47). In A. darlingi, we found 14
sequences related to variant ionotropic glutamate recep-
tors (see Supplementary Table SH1).

Odorant binding proteins
A total of 69 genes encoding OBP were described in
A. gambiae; many of them possibly originated from
recent events of gene duplications. We have found 33
OBP encoding genes (see Supplementary Table SH1) in
the present A. darlingi genome assembly. The reduced
number of OBP genes suggests that duplication events
were not as frequent in this species. Alternatively, the
missing genes may be located in unassembled portions
of the genome. In fact, besides the OBP genes annotated,
TBLASTN searches identified sequences that likely cor-
respond to truncated OBP-like genes. Sequences with
similarity to 10 A. gambiae OBPs could not be identified
in any of the A. darlingi contigs.

The genes AD02966 (OBP34), AD00512 (OBP37),
AD01405 (OBP44) and AD01406 form part of a group
of paralogs that in A. gambiae is composed of 16 genes.
However, in other cases, the number of related sequences
is similar in both species, i.e. AD04156 (OBP10),
AD03416 (OBP18), AD07879 (OBP21), AD07746
(OBP25), AD03881 (OBP26), AD03880 (OBP28),
AD06986 (OBP23) and AD03882 (AGAP012322), which
in A. gambiae is also represented by eight sequences. The
amino acid sequences of OBP34 (AD02966) and OBP37
(AD00512) are highly similar, with only three amino acid
changes. In A. gambiae, OBP 34 and 37 present identical
amino acid sequences (48).

Chemosensory proteins
Belonging to a class of soluble proteins that are found in
the sensillum lymph of insect antennae, CSP exhibit
binding activity toward odorants (49). CSP encoding
genes have been identified in several insects, and
among the mosquitoes, 21 genes were described in
C. quinquefasciatus (50) and 8 in A. gambiae (51). Six of
the CSP genes (AgamCSP1 to AgamCSP6) described in
A. gambiae are part of a group of paralogs. In the
A. darlingi genome, we identified four CSP genes (see
Supplementary Table SH1), and all presented similarity
to representatives of this paralogous group.

Salivary proteins

The salivary gland (SG) is the only organ of A. darlingi
that has been submitted to a tissue-specific transcriptome
analysis (52,53). A total of 2371 clones from an adult
female A. darlingi SG cDNA library were sequenced and
assembled, allowing the identification of 183 protein se-
quences, 114 of which code for putatively secreted salivary
proteins. A comparative analysis of SG transcriptomes of
A. darlingi and A. gambiae reveals a significant divergence
of salivary proteins. On average, salivary proteins are only
53% identical, while housekeeping proteins are 86% iden-
tical between the two species. A. darlingi proteins were
found that match culicine but not anopheline proteins,
indicating a loss or rapid evolution of these proteins in
the old world Cellia subgenus. Additionally, several
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well-represented salivary protein families in old-world
anophelines are not expressed in A. darlingi.

Circadian rhythm

Rhythmic cycles of Anopheles mosquitoes command
biting activity, mating swarms, nocturnal flight activity
and egg laying; however, little work has been performed
to elucidate the molecular basis for these daily rhythms
(54). Throughout its geographical distribution, A. darlingi
exhibits distinct patterns of biting behavior. One, two or
three daily peaks of biting activity have been observed in
different studied sites (55–58). The molecular basis for
these differences in behavior is unknown. Here, we
describe the A. darlingi circadian cycle-associated genes
timeless, cycle, clock, timeout and period (see
Supplementary Method and Data SI and Supplementary
Figures SI1 and SI2). The identification of these genes will
permit assessment of their expression levels and rhythmi-
city among the diverse A. darlingi populations.

Insecticide resistance

Resistance to insecticides is a major threat to sustained re-
ductions in malaria vector populations and malaria inci-
dence. To date, there has been only a single report of
insecticide resistance in natural A. darlingi populations.
A population from Colombia was found to be resistant
to both dichlorodiphenyltrichloroethane (DDT) and
lambda-cyhalothrin (59). However, a number of studies re-
porting insecticide resistance in the African malaria vector
A. gambiae as well as other vector mosquitoes should
caution against complacency (60–64). The changing
pattern of land use in the Amazonian region, resulting in
increased urbanization and agricultural initiatives, and the
associated escalation in insecticide use are expected to
strengthen selection for insecticide resistance in A. darlingi.

Metabolic detoxification
Three gene families that are primarily involved in insecti-
cide metabolism have been described: the cytochrome
P450s (P450s), the carboxy/cholinesterases (CCEs) and
the glutathione-S-transferases (GSTs) (65). Metabolic
resistance is usually a result of overexpression or allelic
variation in members of detoxifying enzyme families.
We identified 89 P450s, 20 CCEs and 30 GSTs genes in
A. darlingi (see Supplementary Table SJ1). GSTs are the
most conserved among the three superfamilies (66), and
this conservation permitted the identification of putative
orthologs between A. darlingi and A. gambiae that had a
sequence identity that was >70%. Four classes of cyto-
solic GSTs were identified: the most conserved theta (five
genes), zeta (one gene), the insect-specific delta (three
genes) and epsilon (six genes) classes. Only members
from the Delta and Epsilon classes have been implicated
in insecticide resistance. Among the epsilon members in A.
darlingi, GSTe2 (AdGSTe2, AD08205) is highly conserved
among culicines (A. gambiae, A. aegypti and C.
quinquefasciatus) and metabolizes DDT in A. gambiae
and A. aegypti (67,68). Several AdGST genes remained
unclassified, with no obvious orthologs in the

A. gambiae genome, and thus, they might represent
novel GSTs.
The CCEs and P450s appear to have undergone a slight

expansion in A. gambiae in comparison with A. darlingi. It
is possible, considering the redundancy in these families,
that different family members are co-opted for functions
in insecticide resistance in different mosquito populations,
such as P450s and some GSTs that have increased mRNA
accumulation in some, but not all, A. gambiae insecticide-
resistant populations (60–64). Additionally, genes
encoding a superoxide dismutase (AY745234) and a
peroxiredoxin (XP_308081.2) also presented increased
mRNA accumulation in these populations.

Target-site insensitivity
Decreased target site sensitivity to pyrethroids and DDT in
A. gambiae has been described as being associated with two
alternative substitutions at a single codon in the sodium
channel gene (L1014F or L1014S) and is referred to as
knockdown resistance, or kdr (69–72). A comparison of
the voltage-gated sodium channel (VGSC) gene sequence
across different insect species showed that it is highly
conserved, but different numbers of exons are observed
among species (73). In A. gambiae, 33 exons have been
identified, which can synthesize different mRNAs through
alternative splicing. Two putative VGSC genes were
identified in the A. darlingi genome [AD07884 (2e-75;
98% identity) and AD00168 (3e-38; 45% identity)].
Primers based on the A. gambiae sodium channel
sequence had previously failed to amplify the A. darlingi
ortholog (59,69). The now available A. darlingi VGSC se-
quences permit the development of specific diagnostic tools
for detecting kdr resistance in this species.
Target-site resistance to carbamates and, to a lesser

extent, organophosphates (OP) in culicines result from a
mutation in the acetylcholinesterase gene (ace-1). This
gene is absent in Drosophila, possibly because of a second-
ary loss, and OP resistance in this organism arises from
mutations in the ace-2 gene, which is ubiquitous in
insects. The putative A. darling ace-1 homolog is
AD00377 (4e-38; 98% identity when compared with
Anopheles albimanus) (74). In A. gambiae, a second copy
of ace-1 (ace-1D) has been described, and its high frequency
and distribution in countries of West Africa points to an
association with resistance (75). The availability of A.
darlingi ace-1, VGSC and other detoxifying gene sequences
allow the development of specific diagnostic tools for de-
tecting incipient insecticide resistance in this species. This is
especially important in epidemiological vigilance because
evolutionary forces acting on A. darlingi, when facing con-
tinuous and increasing exposure to insecticides, could lead
to widespread insecticide resistance.

Immunity-related genes

The mosquito immune system plays a critical role in
limiting the spread of malaria and other vector-borne
diseases. We analyzed sequences related to the three
major immune response systems in Dipterans, Toll,
immune deficiency (IMD) and thioester proteins (TEPs)
(see Supplementary Table SK1) because these genes and
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their associated signaling pathways are known to limit the
spread of malaria parasites in anophelines. Identifying the
A. darlingi orthologous genes relative to each component of
the D. melanogaster and/or A. gambiae pathways is
challenging, especially where multigenic families such as
Toll receptors or the TEPs are involved. In contrast, one
to one orthologs of most of the signaling molecules were
more easily identified. Although the A. darlingi immune
system appears to be organized similar to those of other
Diptera, exact orthologs of many of the important recep-
tors have not yet been established. The presently assigned
putative homologous functions must be asserted by actual
bench experiments to gain a full appreciation of A. darlingi
immunity.

Toll pathway
We identified four A. darlingi genes that are related to
the Toll ligand known as spätzle (SPZ), when six SPZs
were found in both A. gambiae and D. melanogaster
(see Supplementary Figure SK1) (76). Two of these
genes are possible orthologs of the SPZ1 group, which
include Drosophila spätzle, the ligand for Toll. The other
two are orthologous to SPZ3 or SPZ6. Drosophila
melanogaster has nine Tolls; only Toll and Toll7 have es-
tablished immune functions, while the functions of the A.
gambiae Tolls are still largely undefined. Clear orthologs
to the fruit fly genes could not be identified for most of the
seven A. darlingi Tolls that were identified, although a
Toll7 ortholog was assigned. Conversely, 1:1 orthologs
were found for nearly all of the known signaling molecules
in the Toll pathway, including MyD88, Tube, Pelle,
TRAF6 and the NF-kB/I-kB orthologs Rel1/Cactus.

Peptidoglycan recognition proteins and the Immune
deficiency pathway
Eight peptidoglycan recognition proteins (PGRPs) were
identified in the A. darlingi genome, three of which are
likely to be catalytic type 2 amidases. PGRP-LC, a well-
established receptor for DAP-type peptidoglycan and
activation of the IMD pathway in fruit flies, appears to
have two orthologs in A. darlingi. Additional orthologs
of known PGRPs were identified, although only
peptidoglycan recognition protein-LB 50-untranslated
region (PGRP-LB) has an established function, which is
involved in degradation of PGN, a non-catalytic PGRP.
Ten additional IMD pathway members (including the
negative regulator CASPAR and essential signaling com-
ponents such as IMD, (Fas-associated death domain
containing protein - FADD and Death-related ced-3/
Nedd2-like protein - DREDD) FADD and DREDD)
were found on a 1:1 orthology basis.

Thioester proteins
TEPs play a role in Diptera that is similar to the role of
complement in humans: they directly opsonize bacteria
and parasites, which leads to death and melanization.
Ten possible TEPs were identified in A. darlingi. The
A. gambiae TEP1 gene product has been proposed as a
key regulator of malaria infection. A definite ortholog of
TEP1 was not identified in A. darlingi, although several of

the A. darlingi TEPs are in the subfamily in which TEP1 is
included.

Antimicrobial peptides
Drosophila melanogaster has, at a minimum, seven families
of antimicrobial peptides. Similar to other mosquito
species, most of these antimicrobial peptides were not
readily apparent in the A. darlingi genome. However,
genes encoding two well-known classes of antimicrobial
peptides that are found in the genome of other mosquitoes
were identified in A. darlingi: one member of the Defensin
family and three Cecropins.

CONCLUSIONS

Malaria was once epidemic in most areas in Central and
South America (7,77,78). Economic development and the
associated environmental changes that have occurred
during the 20th century have drastically reduced malaria
transmission in subtropical areas. However, malaria is still
a major public health problem in the Amazon basin,
where >500 thousand malaria cases occur every year.
Because A. darlingi is the main malaria vector in the
Amazon, and also for its interesting phylogenetic
position, the Brazilian National Council for Research
included this species among those selected as priorities
for having their genomes sequenced (79). Here, we
present the A. darlingi genome as a valuable platform
for basic and applied sciences.

Laboratory colonization of A. darlingi has proven to be
difficult, and presently there are no available autonomous
colonies of this species. Nonetheless, large numbers of
wild A. darlingi mosquitoes are easily captured in the
Amazon, and raising the progeny of captured gravid
females has allowed the sequencing of the mosquitoes
genome and transcriptome, which complements studies
of A. darlingi biology, behavior, physiology, genetics, bio-
chemistry and insecticide resistance (4,11,23,22,53,80–85).
The successful colonization of other neotropical anophel-
ine species (86,87) and older reports of A. darlingi that
were successfully adapted to breed in laboratory condi-
tions (88–90) indicate that colonizing A. darlingi is an at-
tainable task. The availability of this genome will promote
efforts to establish an autonomous viable free-mating la-
boratory A. darlingi colony.

As the first neotropical Anopheles species of the
subgenus Nyssorhynchus with its genome sequenced and
annotated, the data presented here open a new window
from which we can contemplate the evolutionary history
of these mosquitoes. Comparative evolutionary genomics
is one of the most rapidly advancing disciplines in the
biological sciences and offers the opportunity to study
evolutionary changes among organisms, to identify genes
that are conserved among species, and to study the genes
that give each organism its own specific characteristics
(91). Questions that are related to malaria vectorial
capacity, anthropophily and hematophagy among anoph-
elines can now be addressed from the perspectives of two
distantly related members of the Anopheles genus that
diverged �100 mya and evolved in two distinct
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environments (11). Anopheles darlingi orthologs of genes
associated with insecticide resistance have been identified,
allowing a more targeted examination of insecticide resist-
ance status in populations of this vector species (60). A
catalog of A. darlingi immunity-related genes will help in
studies of vector–parasite interactions and will promote
research to understand the determinants of vectorial
capacity and competence (92). Finally, we identified 349
A. darlingi predicted genes that encode products with no
hit in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (see Supplementary Table SL1), thus
potentially related to adaptations to the New World en-
vironment. This study and other recently published and
ongoing efforts to sequence the genomes and transcrip-
tomes of malaria vectors (93,94) (vectorbase.org) will
provide a needed and more complete understanding of
malaria vector biology.

It is our hope that this report provides valuable infor-
mation that will lead to novel strategies to reduce the
rate of malaria transmission on the South American
continent.

ACCESSION NUMBERS

The sequence of A. darlingi has been deposited in the
DDBJ/EMBL/GenBank database under the following ac-
cession number: ADMH00000000. The version described
in this paper is the second version, ADMH02000000.
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Póvoa,M.M., Padilla,N., Achee,N.L. and Conn,J.E. (2008)
Microsatellite data suggest significant population structure and
differentiation within the malaria vector Anopheles darlingi in
Central and South America. BMC Ecol., 8, 3.

82. Terenius,O., de Oliveira,C.D., Pinheiro,W.D., Tadei,W.P.,
James,A.A. and Marinotti,O. (2008) 16S rRNA gene sequences
from bacteria associated with adult Anopheles darlingi (Diptera:
Culicidae) mosquitoes. J. Med. Entomol., 45, 172–175.

83. Scarpassa,V.M. and Conn,J.E. (2007) Population genetic structure
of the major malaria vector Anopheles darlingi (Diptera:
Culicidae) from the Brazilian Amazon, using microsatellite
markers. Mem. Inst. Oswaldo Cruz, 102, 319–327.

84. Okuda,K., Caroci,A., Ribolla,P., Marinotti,O., de Bianchi,A.G.
and Bijovsky,A.T. (2005) Morphological and enzymatic analysis
of the midgut of Anopheles darlingi during blood digestion. J.
Insect Physiol., 51, 769–776.

85. Moreira-Ferro,C.K., Daffre,S., James,A.A. and Marinotti,O.
(1998) A lysozyme in the salivary glands of the malaria vector
Anopheles darlingi. Insect Mol. Biol., 7, 257–264.

86. Lima,J.B., Valle,D. and Peixoto,A.A. (2004) Adaptation of a
South American malaria vector to laboratory colonization
suggests faster-male evolution for mating ability. BMC Evol.
Biol., 4, 12.

87. Lardeux,F., Quispe,V., Tejerina,R., Rodrı́guez,R., Torrez,L.,
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