

MÉTODOS DE OBTENÇÃO E CARACTERIZAÇÃO DE NANOPARTÍCULAS DE SÍLICA A PARTIR DE Equisetum arvenses L.

Mayara Elita Carneiro*, Washington Luiz Esteves Magalhães**, Graciela I. B. de Muñiz*, Silvana Nisgoski* e Kestur Gundappa Satyanarayana***

*Universidade Federal do Paraná, Departamento de Engenharia e Tecnologia Florestal.

**EMBRAPA Florestas. washington.magalhaes@embrapa.br

**BMS College of Engineering, Bangalore (India).

Projeto Componente: PC4 Plano de Ação: PA4

Resumo

Este trabalho buscou a obtenção de nanopartículas a partir do *Equisetum arvenses*. O processo de produção baseou-se em diferentes combinações de ciclos de lixiviações ácidas seguidas por calcinações com temperaturas variando entre 500 e 600°C. As nanopartículas de sílica produzidas foram caracterizadas pelo ensaio de sorção de nitrogênio, microscopia eletrônica de varredura, fluorescência e difração de raios-X. O tratamento que apresentou melhores resultados foi o submetido a dois ciclos de lixiviação ácida e temperatura de calcinação de 500°C, gerando amostra com área específica superficial de 330,63 m/g, composto de 93,5% de silício e de natureza amorfa.

Palavras-chaves: Equisetum arvenses, nanopartículas de sílica.

Introdução

Na literatura há relatos da produção de nanopartículas de sílica a partir de vegetais capazes de acumularem grandes quantidades de silício. Há muita referência principalmente com a utilização da casca de arroz e com outros resíduos agrícolas, porém são muito escassos trabalhos utilizando plantas do gênero *Equisetum*. Estas que já foram usadas na Antiguidade como lixas para polir pratos e peças de estanho, devido às incrustações de sílica sobre os caules (KISSMANN, 1997).

As espécies do gênero *Equisetum* são conhecidas como uma das plantas com maior acúmulo de silício (sílica biogênica) (SAPEI *et al.*, 2007), além disso, possuem em sua composição: sais minerais, potássio, magnésio, cálcio, fósforo, sódio, flúor e alumínio, apresentando, mais de 10% de constituintes inorgânicos, compostos fenólicos, flavonóides, entre outros (WICHTL, 1994).

Sapei (2007), utilizando as técnicas de microscopia eletrônica de varredura (MEV) com o detector de energia dispersiva (EDX) e o microscópio raman confocal, avaliou a distribuição dos diferentes tipos de sílica presentes no vegetal *Equisetum hyemale*.

Na literatura encontram-se diferentes tratamentos, baseados em princípios químicos e térmicos para a produção de sílicas biogênicas puras

e amorfas. Obtidas a partir de vegetais, há relato de produção com a casca de arroz (ESPÍNDOLA-GONZALEZ *et al.*, 2010; DELLA *et al.*, 2006; SOUZA *et al.*, 2002), bagaço de cana, casca de café (ESPÍNDOLA-GONZALEZ *et al.*, 2010) e com o *Equisetum hyemale* (SAPEI, 2007).

Assim, este trabalho buscou desenvolver um método de produção barato, eficiente e capaz de produzir uma nanossílica de alta pureza, com a utilização de um recurso vegetal renovavél.

Materiais e métodos

Para a obtenção desta nanossílica a partir da cavalinha o vegetal passou primeiramente por um processo de lavagem com água deionizada para remoção de sujeiras superficiais (poeira e terra) e outros contaminantes possivelmente presentes.

Realizaram-se ciclos de lixiviações, utilizando cerca de 500 g da cavalinha lavada para cada 2000 mL de solução (água deionizada + HCl 2%), este material permaneceu cerca de 2 horas em ebulição em autoclave vertical, com pressão de 1,5 kgf/cm e temperatura aproximada de 120°C. Foram testados dois tratamentos, que consistiram em submeter à amostragem a um ou dois ciclos de fervura.

Posteriormente o vegetal foi lavado com água deionizada, até obter o pH desejado (foram avaliados amostras com pH neutro e ácido) e, em

seguida submetido à secagem em estufa a 103°C, para eliminação da água residual.

O material seco foi moído em moinho de bolas, durante 24 horas, tempo constante para todas as amostras, a fim de obter amostras com granulometria menor que 2,5 mm. A carga empregada para a moagem seguiu recomendações de Bristot (1996), onde o volume do recipiente foi ocupado com cerca de 20% do vegetal e 50% com o meio de moagem, sendo que o vegetal cobriu ligeiramente as bolas. Os corpos moedores utilizados foram bolas de cerâmica, com diâmetros variáveis entre 10 e 20 mm.

A próxima etapa consistiu em submeter o vegetal lixiviado e moído a calcinações, em diferentes temperaturas (tratamento térmico). Utilizou-se o forno mufla, da marca Quimis. O material foi colocado em cadinhos, em pequenas proporções, para proporcionar uma queima uniforme do material, durante 2 horas.

As temperaturas definidas para calcinação foram 500, 550 e 600 °C.

Foram avaliadas diferentes combinações de variáveis, amostras produzidas em duplicata. A descrição dos tratamentos e a nomenclatura das amostras encontra-se na Tab 1.

Tab. 1 – Tratamentos para a produção da nanossílica.

Tratamentos	Ciclos de lixiviação	pН	Temperatura (° C)
T1	-	-	500
T2	1	7	-
T3	1	7	500
T4	1	7	550
T5	1	7	600
T6	2	4	-
T7	2	4	500
Т8	2	4	550
Т9	2	4	600
T10	2	7	-
T11	2	7	500
T12	2	7	550
T13	2	7	600

As técnicas utilizadas para a caracterização da nanossílica foram: mensuração da área específica superficial (SSA), espectroscopia no infravermelho (FTIR), microscopia eletrônica de transmissão (MET), difração de raios-X (DRX) e fluorescência

de raios-X (FRX) que serão descritas nos próximos tópicos.

As medidas da área superficial específica foram realizadas em um equipamento da marca Quantachrome, modelo NOVA® 1200e.

A fluorescência de raios-X (FRX) foi realizada no equipamento Philips/Panalytical, modelo PW 2400. Para a caracterização microscópica da nanossílica obtida utilizou-se a técnica de microscopia eletrônica de transmissão (MET) em microscópio da marca JEOL (JEM 1200EXII Electron Microscope). O difratograma de raios-X (DRX) foi registrado para a amostra que apresentou a maior SSA (amostra T11). O equipamento utilizado foi o difratômetro da marca Shimadzu, modelo XRD-6000. O ângulo de difração (2θ) variou de 10 a 70° em intervalos de 0,02 °, com radiação Cu-Kα, em ambiente atmosférico.

Resultados e discussão

Na Tab 2, são apresentados os valores das nano estruturas obtidas com o ensaio de sorção de nitrogênio (BET), resultados para a área superficial específica (SSA), tamanho médio das partículas (\mathbf{D}_{BET}) e a coloração visual das amostras.

Tab. 2 - Valores das nano estruturas obtidas com o ensaio de sorção de nitrogênio (BET).

Tratamentos	SSA	D BET	Color
	(m /g)	nm	
T1	54,00 (0,80)	50,28	Gray
T2	74,08 (0,32)	36,65	Brown
Т3	296,40 (0,55)	9,16	White
T4	274,64 (0,60)	9,89	White
T5	230,63 (0,27)	11,77	White
Т6	69,57 (0,96)	39,03	Brown
T7	250,49 (0,48)	10,84	White
Т8	228,03 (0,76)	11,91	White
Т9	216,91 (0,16)	12,52	White
T10	83,45 (0,93)	32,54	Brown
T11	330,63 (0,68)	8,21	White
T12	296,40 (1,02)	9,16	White
T13	250,73 (0,45)	10,83	White

Valores expressos entre parênteses representam o Coeficiente de Variação (CV).

A amostra T3, são partículas de coloração branca. As amostras T3 a T5, T7 a T9 e T11 a T13 também possuem esta característica, que indica que as amostras estão quase isentas de matéria orgânica.

O grupo de amostras T3, T4 e T5 resultou em nanossílicas com alto grau de pureza. Este grupo somente sofreu um ciclo de lixiviação ácida. Ao comparar com o grupo T11, T12 e T13 que foram submetidas às duas lixiviações ácidas, este se apresenta superior.

No grupo de amostras em que se manteve o pH ácido pós lixiviação (T7, T8 e T9), as variáveis avaliadas tiveram desempenho inferior.

O melhor resultado, para todos os tratamentos, foi para a amostra T11 que corresponde a dois ciclos de lixiviação e temperatura de calcinação de 500°C, com SSA de 330,63 m/g.

No geral, a menor temperatura avaliada (500°C) foi a que produziu melhores valores para SSA, e à medida que houve o acréscimo da temperatura a SSA decresceu.

Tab. 3 – Composição química por fluorescência de raios-x da sílica obtida após tratamento da cavalinha.

Óxidos	T1(%)	T11 (%)
SiO ₂	59,6	93,5
CaO	15,2	1,8
SO_3	2,2	0,9
K_2O	11,0	0,6
MgO	4,9	0,3
Al_2O_3	0,2	0,5
P_2O_5	2,5	0,3
Fe_2O_3	0,2	0,1
ZnO	0,1	<0,1
TiO_2	0	<0,1
CuO	<0,1	<0,1
SrO	0,1	0
MnO	0,1	0
BaO	0,1	0
ZnO	0,1	0
CuO	<0,1	0
Perda ao fogo	2,19	1,76

T1 – Vegetal moído e calcinado a 500°C;

Pela Tab 3, evidencia que a lavagem ácida proposta mostrou-se efetiva para a redução de íons alcalinos e alcalinos terrosos. Ao comparar os percentuais para as duas amostras, há uma redução de alguns elementos, principalmente de cálcio, potássio, manganês, fósforo entre outros, que interferem negativamente sobre a área específica superficial da nanossílica.

A sílica obtida diretamente da cavalinha (amostra T1), apresenta um alto percentual de impurezas. Já a amostra T11, que sofreu o processo completo para obtenção da sílica, apresenta uma maior concentração de SiO₂

Conclusões

Os tratamentos químicos e térmicos propostos neste trabalho foram eficientes para a produção de nanopartículas de sílica produzidas a partir do vegetal *Equisetum arvenses* (cavalinha).

Agradecimentos

Os autores agradecem ao CNPq, Finep, Capes e Projeto MP1 Rede Agronano – Embrapa.

Referências

DELLA, V.P.; HOTZA, D. JUNKES, J.A.; OLIVEIRA, A.P.N. Química Nova, 29, 6, 1175-1179, 2006.

ESPÍNDOLA-GONZALEZ, A.; MARTÍNEZ-HERNÁNDEZ, A.L.; ANGELES-CHÁVEZ, C.; CASTAÑO, V.M.; VELASCO-SANTOS, C. Nanoscale Research Letters, 5, 1408–1417, 2010. KISSMANN, K. G. 2.ed. São Paulo: BASF, v.1. p.825, 1997.

SAPEI, L. TESE (Doutorado). Universidade Potsdam, Potsdam, 2007.

TIMELL, T.E. Svensk Papperstidning, 67, 9, 356-363, 1964.

SOUZA M.F.; MAGALHÃES, W.L.E.; PERSEGIL, M.C. Material Research. 5, 4, 467-474, 2002

WICHTL, M. Medpharm Scientific Publishers: Stuttgart, p. 188-191, 1994.

T11 – 2 ciclos de lixiviação, pH 7 e calcinação 500°C.