ARTIGOS

VARIABILIDADE DE ISOLADOS DE *Xanthomonas campestris* pv. *phaseoli*, QUANTO À PATOGENICIDADE EM CULTIVARES DE *Phaseolus vulgaris*

C. A. RAVA¹ & R. S. ROMEIRO²

¹ EMBRAPA/Centro Nacional de Pesquisa de Arroz e Feijão (CNPAP), C. Postal 179, 74000 - Goiânia - GO.
² Departamento de Fitopatologia, Universidade Federal de Viçosa (UFV), 36570 - Viçosa - MG.

Parte da tese apresentada pelo primeiro autor para obtenção do grau de Dr. em Fitopatologia, na Universidade Federal de Viçosa, MG.

Aceito para publicação em: 15/06/1990.

RESUMO

Quinze isolados de *Xanthomonas campestris* pv. *phaseoli* (SMITH) Dye (Xp), provenientes de sete diferentes estados do Brasil, foram comparados com o isolado padrão, Xp CNF 15, quanto à patogenicidade em cinco cultivares de feijoeiro comum. A avaliação de sintomas das cultivares-teste foi realizada nove dias após a inoculação, a qual foi realizada mediante incisão das folhas primárias com tesouras mergulhadas numa suspensão de 5.10⁶ UFC/ml. Obtiveram-se diferenças altamente significativas entre as cultivares e os isolados. Embora a interação tenha sido significativa, a classe de reação das cultivares não mudou. As três cultivares resistentes (GN Jules, PI 207.262 e México 168) apresentaram aproximadamente metade da intensidade dos sintomas exibidos pelas suscetíveis (L-32 e Manteigão Fonseca 11). Os 16 isolados foram separados em quatro grupos, em ordem decrescente de patogenicidade: 1) Xp CNF 28; 2) Xp CNF 15, 26, 27, 31, 32, 33 e 35; 3) Xp CNF 24, 25, 29, 36, 37 e 38; e 4) Xp CNF 30 e 34. A maior patogenicidade do isolado Xp CNF 28 indica a conveniência de incluí-lo como novo isolado-padrão em substituição ao Xp CNF 15.

ABSTRACT

VARIABILITY AMONG ISOLATES OF *Xanthomonas campestris* pv. *phaseoli* IN RELATION TO THEIR PATHOGENICITY ON *Phaseolus vulgaris* CULTIVARS

Fifteen isolates of *Xanthomonas campestris* pv. *phaseoli* (SMITH) Dye (Xp) from seven different states of Brazil were compared with the standard isolate Xp CNF 15 for pathogenicity in five common bean cultivars. Disease severity ratings were recorded nine days after inoculation of test-cultivars by clipping the unfoliated leaves with scissors dipped in an aqueous bacterial suspension of 5.10⁶ UFC/ml. Highly significant differences were observed among cultivars and isolates in relation to resistance and pathogenicity, respectively. Although interaction was significant, the reaction class did not change among cultivars. Resistant cultivars (GN Jules, PI 207.262 and Mexico 168) showed approximately half of disease intensity exhibited by the susceptible cultivars (L-32 and Manteigão Fonseca 11). The 16 isolates were separated into four groups in decreasing order of pathogenicity: 1) Xp CNF 28; 2) Xp CNF 15, 26, 27, 31, 32, 33 and 35; 3) Xp CNF 24, 25, 29, 36, 37 and 38; 4) Xp CNF 30 and 34. The high degree of pathogenicity showed by isolate Xp CNF 28 suggested that it may be included as a new standard isolate to replace the existing Xp CNF 15.

Key words: Xanthomonas campestris pv. *phaseoli*, bean.
INTRODUÇÃO

Os resultados referentes a diferenças de patogenicidade entre isolados pertencentes à Xp e à variante *fuscans* (Xpf) são contraditórios, tendo sido assimiladas tanto a maior patogenicidade de Xpf (EKPO, 1975; EKPO & SAETTLER, 1976; SAETTLER & EKPO, 1975), como a de Xp (WEBSTER, 1978), além da não existência de diferenças (ARP et al., 1971; CAFATI & KIMATI, 1972; SCHUSTER et al., 1973). Tais discrepâncias podem ter sido causadas pelas variações nas amostragens dos isolados empregados em cada estudo. Entretanto, de acordo com WEBSTER (1978), o aspecto mais relevante é que tanto os isolados pertencentes à Xp quanto à Xpf classificaram as cultivares de feijão, aproximadamente, na mesma ordem, independentemente de sua capacidade de produzir pigmento melânoides difusível. Portanto, do ponto de vista prático, a diferenciação entre Xp e Xpf parece ter pouca importância para o melhoramento do feijoeiro que visa à resistência ao CBC (WEBSTER, 1978).

Em geral, tem sido comprovada a maior patogenicidade dos isolados de Xp provenientes de regiões tropicais, quando comparados com os de zonas temperadas. Nos primeiros estudos da variabilidade do patógeno, SCHUSTER & COYNE (1971) e SCHUSTER et al. (1973) constataram que os isolados Xp C-6, Xp C-7 (Colômbia) e Xp U-2 (Uganda) foram mais patogênicos do que o isolado-padrão, de Nebraska, Xp S. CAFATI & KIMATI (1972) obtiveram resultados semelhantes na comparação dos isolados X-1, X-3 e X-4, do Brasil (São Paulo) com o isolado X-2, do Chile. Posteriormente, esses resultados foram amplamente confirmados por numerosos trabalhos, que demonstraram a alta patogenicidade de isolados da Colômbia (EKPO, 1975; RAVA, 1984; SAETTLER & EKPO, 1975; WEBSTER, 1978; YOSHII et al., 1976), Guatemala (EKPO, 1975; SAETTLER & EKPO, 1975), do Brasil (CAFATI & KIMATI, 1972; RAVA, 1984; VALLADAES-SANCHES et al., 1979; YOSHII et al., 1976) e da República Dominicana (SCHUSTER, 1983; SCHUSTER & SMITH, 1983; SCHUSTER et al., 1984), os quais apresentaram maior patogenicidade do que os isolados norte-americanos.

Um aspecto ainda controvertido e que apresenta grande importância, pois dele depende a estratégia a ser seguida no melhoramento da resistência do feijoeiro à Xp, refere-se à interação isolados x cultivares. Assim, os primeiros estudos da variabilidade do patógeno apresentaram fortes indícios da existência de interação (SAETTLER & EKPO, 1975; SCHUSTER & COYNE, 1971; SCHUSTER et al., 1973), embora a apresentação dos resultados, expressos pela classe de reação das cultivares, contribuísse para aumentar esse efeito. A existência dessa interação foi reiterada em trabalhos posteriores, não só no tocante à reação das folhas e das vagens (SCHUSTER, 1983; VALLADAES-SANCHES et al., 1979), como também com relação ao desenvolvimento de populações epífitas de diferentes isolados, em cultivares com diversos níveis de resistência (SCHUSTER et al., 1984). Entretanto, outras pesquisas não evidenciaram interação entre isolados e cultivares (ALBARRACIN et al., 1984; CAFATI & KIMATI, 1972) ou, quando
detectada, sua existência foi devida à reação homogênea apresentada pela cultivar resis-
tente 'P. 597' (WEBSTER, 1978) ou aos iso-
lados de menor patogenicidade, os quais induziram uma intensidade de sintomas semel-
han tes nas cultivares resistentes e suscetíveis (RAVA, 1984).

Dentre as diversas estratégias a serem
empregadas para o controle do CBC, a possi-
ibilidade de contar com cultivares comerciais
com adequado nível de resistência propor-
cionaria uma proteção adicional, dentro de um
sistema integrado de controle visando à
redução das perdas ocasionadas pela doença.
Portanto, o conhecimento da variabilidade do
patógeno é aspecto básico para o desenvol-
vimen to de cultivares resistentes, capazes de
manter-se com essa característica por períodos
prolongados.

MATERIAL E MÉTODOS

O experimento foi realizado no labora-
tório de fitopatologia e em casa de vegetação
do Centro Nacional de Pesquisa de Arroz e
Feijão (CNPFAF) - Goiás, em 1984.

Foi usado um fatorial com cinco cul-
vares e 16 isolados, cujos tratamentos foram
dispostos em um delineamento de blocos
completos, ao acaso, com cinco repetições e
cada unidade experimental formada por um
vaso com duas plantas.

As cinco cultivares de P. vulgaris incluídas
neste ensaio de inoculação foram: 'GN Jules',
'PI 207.262', 'L-32', 'México 168' e 'Manteiga
Fosco 11'. As três primeiras já haviam sido
utilizadas como cultivares-teste em um estudo
anterior (RAVA, 1984). As duas últimas
foram escolhidas pelas suas reações, respecti-
vamente, de resistência e suscetibilidade à
inoculação com o isolado-padrão, Xp CNF 15,
e em casa de vegetação (SARTORATO & RA-
VA-SEIJAS, 1981). A origem, a procedência
e as demais informações dos 16 isolados de
Xp utilizados encontram-se relacionadas no
Quadro 1.

As suspensões bacterianas dos diferentes
isolados foram obtidas a partir de culturas
com 48 horas de crescimento em meio de
BDA (batata-dextrose-água), a 28°C, sendo
ajustadas, ao espectrofotômetro (A445 =
0,05), para uma concentração de 5.10^6 ufc/ml
(RAVA, 1984; WEBSTER, 1978).

A inoculação foi realizada 11 dias após o
plantio, pelo método de incisão das folhas
primárias, através do corte com uma tesoura
mergulhada na suspensão bacteriana (EKPO,
1975; RAVA, 1984; SARTORATO & RA-
VA-SEIJAS, 1981; WEBSTER, 1978). Du-
rante o período de tempo decorrido entre a
inoculação e a avaliação dos sintomas, a
temperatura da casa de vegetação oscilou
entre 28 e 30°C, à tarde, e entre 20 e 22°C,
durante a noite.

A avaliação dos sintomas foi realizada
nove dias após a inoculação, utilizando-se uma
escala de notas que variou de 0 a 6, descrita
por RAVA (1984). Os valores finais para cada
parcela representam as médias das avaliações
obtidas para cada uma das oito metades de
folhas de duas plantas, valores que foram sub-
metidos à análise de variância.

RESULTADOS E DISCUSSÃO

Os resultados da inoculação das cul-
vares de P. vulgaris com os isolados de Xp
foram apresentados na Figura 1. A análise
de variância revelou a existência de diferenças
altamente significativas entre isolados e cul-
vares e entre a interação isolados x cultivares.

Os isolados de Xp diferiram em sua
capacidade de induzir sintomas nas cinco cul-
vares-teste, tendo sido separados em quatro
grupos em ordem decrescente de patogeni-
cidade, a saber: 1) integrado pelo isolado Xp
CNF 28, originário de Caruaru-PE, que foi o
mais patogênico, diferindo, inclusive, de Xp
CNF 15, o qual havia integrado o grupo de
maior patogenicidade, quando comparado
com isolados da Colômbia, Porto Rico, Ugan-
da e EUA (RAVA, 1984); 2) um grupo,
Figura 1: Patogenicidade de 16 isolados de Xanthomonas campestris pv. phaseoli em cinco cultivares de Phaseolus vulgaris. A: isolados; B: cultivares; C: isolados x cultivares.
Quadro 1. Origem dos isolados de *Xanthomonas campestris pv. phaseoli* e cultivares ou linhagens de *Phaseolus vulgaris* das quais foram coletados.

<table>
<thead>
<tr>
<th>Isolamento</th>
<th>Data de coleta</th>
<th>Procedência</th>
<th>Cultivar ou Linhagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xp CNF 15</td>
<td>09/02/76</td>
<td>CPAC - DF</td>
<td>Rico 23</td>
</tr>
<tr>
<td>Xp CNF 24</td>
<td>16/03/83</td>
<td>Siqueira Campos - PR</td>
<td>Carioca</td>
</tr>
<tr>
<td>Xp CNF 25</td>
<td>17/05/84</td>
<td>Jaguari - ES</td>
<td>Carioca 80</td>
</tr>
<tr>
<td>Xp CNF 26</td>
<td>16/06/84</td>
<td>Santana do Ipanema - AL</td>
<td>A - 327</td>
</tr>
<tr>
<td>Xp CNF 27</td>
<td>16/06/84</td>
<td>Santana do Ipanema - AL</td>
<td>A - 301</td>
</tr>
<tr>
<td>Xp CNF 28</td>
<td>18/06/84</td>
<td>Caruaru - PE</td>
<td>CNF 0167</td>
</tr>
<tr>
<td>Xp CNF 29</td>
<td>18/06/84</td>
<td>Caruaru - PE</td>
<td>A - 274</td>
</tr>
<tr>
<td>Xp CNF 30</td>
<td>18/06/84</td>
<td>São Bento do Una - PE</td>
<td>Vi 1010</td>
</tr>
<tr>
<td>Xp CNF 31</td>
<td>19/06/84</td>
<td>São Bento do Una - PE</td>
<td>IPA 7419</td>
</tr>
<tr>
<td>Xp CNF 32</td>
<td>19/06/84</td>
<td>São Bento do Una - PE</td>
<td>Linha 86</td>
</tr>
<tr>
<td>Xp CNF 33</td>
<td>22/06/84</td>
<td>Lagoa Seca - PB</td>
<td>EPBR - 65</td>
</tr>
<tr>
<td>Xp CNF 34</td>
<td>31/07/84</td>
<td>CNPFAF - GO</td>
<td>82 PVX 1636</td>
</tr>
<tr>
<td>Xp CNF 35</td>
<td>19/09/84</td>
<td>CNPFAF - GO</td>
<td>LM 10088</td>
</tr>
<tr>
<td>Xp CNF 36</td>
<td>19/09/84</td>
<td>CNPFAF - GO</td>
<td>LM 10089</td>
</tr>
<tr>
<td>Xp CNF 37</td>
<td>19/09/84</td>
<td>CNPFAF - GO</td>
<td>LM 10363</td>
</tr>
<tr>
<td>Xp CNF 38</td>
<td>19/09/84</td>
<td>CNPFAF - GO</td>
<td>LM 30013</td>
</tr>
</tbody>
</table>

A variação contínua na patogenicidade dos isolados dificultou o estabelecimento dos limites do grupo intermediário (Quadro 2); entretanto, a sua subdivisão não acarretaria nenhuma vantagem do ponto de vista prático.

A maior patogenicidade do isolado Xp CNF 28, embora não modifique a classificação das cultivares em resistentes ou suscetíveis, indica a conveniência de incluí-lo como novo isolado-padrão, em substituição ao Xp CNF 15, para futuros trabalhos de inoculação para avaliação de resistência.

Considerando a procedência dos isolados (Quadro 1), constatou-se maior patogenicidade dos provenientes dos estados do Nordeste (PE, AL e PB), pois, com a única exceção de Xp CNF 30, de PE, os demais integram os dois grupos de maior patogenicidade (Figura 1A).

Com referência às cultivares (Figura 1B), as três resistentes, embora significativamente diferentes entre si, apresentaram uma intensidade de sintomas que foi aproximadamente a metade da exibida pelas cultivares suscetíveis, as quais não diferiram entre si. Este resultado confirma referências anteriores da resistência das cultivares GN Jules (OLEAS ARIAS, 1982; RAVA, 1984; SARTORATO & RAVA-SEIJAS, 1981; VALLADARES-SANCHES et al., 1979; PI 207.262 (SCHUSTER & COYNE, 1971) e México 168 (SARTORATO & RAVA-SEIJAS, 1981) distinguindo essas cultivares como altamente promissoras para uso no país, como fontes de resistência ao CBC.

Na Figura 1C, pode-se verificar que a significância encontrada para a interação entre isolados e cultivares foi causada por pequenas diferenças no comportamento das cultivares.
Empleo	S.	V.	C.	D.	O.	F.	C.	P.	I.	17	19	22	25	28	31	34	37	40	43	46	49	52
Medida de la longitud total del pico	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del largo del pico	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del pequeño pico	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del corto pico	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del ala larga	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del ala corta	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del centro	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
Medida de la longitud del pelvis	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.20	0.21	0.22	0.23	0.24	
resistentes entre si, quando inoculadas com os diferentes isolados de Xp, o mesmo ocorrendo no caso das cultivares suscetíveis. Entretanto, todos os isolados diferenciaram claramente as cultivares resistentes das suscetíveis. Não tendo sido constatado nenhum caso de mutação da classe de reação das cultivares, concluiu-se que essa interação apresenta escassa significação prática. São coincidentes os resultados obtidos com aqueles de trabalhos anteriores sobre a variabilidade patogénica de isolados brasileiros (CAFATI & KIMATI, 1972; OLEAS ARIAS, 1982; RAVA, 1984).

AGRADECIMENTOS
Os autores expressam seu reconhecimento aos Técnicos Agrícolas João Donizeti Purlissimo e Elcio de Oliveira Alves, às Auxiliares de Laboratório Edilamar de Souza e Maria de Lourdes Soares e ao Sr. Jorney de Oliveira, pela sua valiosa colaboração.

LITERATURA CITADA
5. EKPO, E.J.A. Pathogenic variation in common (Xanthomonas phaseoli) and fuscans (Xanthomonas phaseoli var. fuscans) bacterial blights of beans (Phaseolus vulgaris L.). East Lansing, Michigan State University, 1975. 127p. (Tese Doutorado).

