

Área: Genética e melhoramento

ESTABILIDADE E ADAPTABILIDADE DA PRODUTIVIDADE DE FEIJÃO CAUPI NO ESTADO DO TOCANTINS.

<u>Tânia Irres Lima de Sousa</u>¹; Priscila Fonseca Costa¹; Rodrigo Robson Cavalcante¹; Ildon Rodrigues do Nascimento²; Kaesel Damasceno Silva³

¹Graduandos em Engenharia Agronômica, Universidade Federal do Tocantins – Campus de Gurupi, Rua Badejos Chácaras 69 e 72, CEP: 77402-970, Gurupi – TO. E-mail: tania lima@uft.edu.br.

²Eng^o Agrônomo, Pesquisador, Universidade Federal do Tocantins – Campus de Gurupi, Rua Badejos Chácaras 69 e 72, CEP: 77402-970, Gurupi – TO.

³Eng^o Agrônomo, Pesquisador, Embrapa Meio-Norte, Av. Duque de Caxias, nº 5650, Bairro Buenos Aires, CEP: 64006220, Teresina, PI.

Resumo – O trabalho teve por objetivo avaliar a adaptabilidade e a estabilidade produtiva de genótipos de feijão-caupi no Estado do Tocantins. Os dados desse trabalho foram obtidos de quatro experimentos, conduzidos nas regiões norte e centro-sul do Estado do Tocantins. Foram observadas diferenças significativas na interação genótipo *vs* locais para a característica produtividade média de grãos (ton. ha⁻¹), evidenciando a existência de variabilidade entre genótipos. A produtividade variou de 1.120,8 a 2.727,5 ton. ha⁻¹, destacando-se como a mais produtiva a cultivar BRS-TUCUMAQUE.

Palavras-chave: Vigna unguiculata(L.), Interação genótipos vs ambientes, Produtividade.

Introdução

O feijão-caupi (vigna unguiculata), também conhecido como feijão-de-corda, é uma cultura originária da África e um dos componentes mais importantes da dieta alimentar de povos das regiões tropicais e subtropicais do mundo (FREIRE FILHO et al., 2008). No Brasil essa cultura se destaca nas regiões norte e nordeste e, atualmente, está se expandindo para a região centro-oeste do país.

A região norte é a segunda região produtora e consumidora de feijão-caupi no Brasil, no entanto, ainda apresenta baixa produtividade de grãos, devido as vários fatores dentre os mais importantes, pode-se citar o baixo uso de tecnologia pelo pequeno produtor, uso de cultivares pouco adaptadas as condições de cultivo, manejo inadequado da cultura, e a incidência de doenças e pragas, que, juntos diminuem a produtividade das lavouras.

Tendo em vista que a maior área e produção do feijão-caupi no Brasil resulta de cultivos realizados por pequenos agricultores, a seleção e a recomendação de cultivares com alta adaptabilidade aos ecossistemas prevalentes na região e com baixa interação (estabilidade) com fatores edafoclimáticos é a estratégia mais viável via melhoramento para exploração da cultura na região Norte do Brasil.

O trabalho teve por objetivo avaliar a adaptabilidade e a estabilidade produtiva de genótipos de feijãocaupi no Estado do Tocantins.

Material e Métodos

Os dados desse trabalho foram obtidos de quatro experimentos (ano agrícola de 2012). Os experimentos foram conduzidos nas cidades de Axixá do Tocantins, que localiza-se a uma latitude 05°36'59" sul e a uma

longitude 47°47'10" oeste, estando a uma altitude de 210 metros, e em Formoso do Araguaia, tendo como coordenadas geográficas 11°47'48" de latitude sul e 49°31'44" de longitude oeste e altitude de 240m sobre o nível do mar e Gurupi, mais especificamente, na estação experimental dos Campus universitário de Gurupi-CUG, da Fundação Universidade Federal do Tocantins, localizada na latitude sul 11°43'45" e longitude oeste 49°04'07" com altitude média de 280m. No ano de avaliação, foram utilizados 20 de genótipos de feijão-caupi oriundos de sementes disponibilizadas pela Embrapa meio-norte, sendo 04 cultivares e 16 linhagens, os quais são: 1-MNC02-675F-4-9; 2-MNC02-675F-4-10; 3-MNC02-675F-9-2; 4-MNC02-675F-9-3; 5-MNC02-676F-3; 6-MNC02-682F-2-6; 7-MNC02-683F-1; 8-MNC02-684F-5-6; 9-MNC03-725F-3; 10-MNC03-736F-7; 11-MNC03-737F-5-1; 12-MNC03-737F-5-4; 13-MNC03-737F-5-9; 14-MNC03-737F-5-10; 15-MNC03737F-5-11; 16-MNC03-737F-11; 17-BRS-TUCUMAQUE; 18-BRS-CAUAMÉ; 19-BRS-ITAIM; 20-BRS-GUARIBA.

Em ambos locais o delineamento experimental utilizado foi de blocos casualizados com quatro repetições. Foram analisados os dados de produtividade de grãos (ton. ha⁻¹) referentes aos ensaios de Valor de Cultivo e Uso da Rede de Teste de Linhagens Avançadas de Feijão-caupi da Embrapa Meio-Norte, nos municípios citados acima.

Foram utilizadas sementes selecionadas e devidamente tratadas. Os tratos culturais (capinas e irrigações) e adubação de base e cobertura foram feitos sempre que necessários conforme recomendação da cultura para a região (Silveira, 2008).

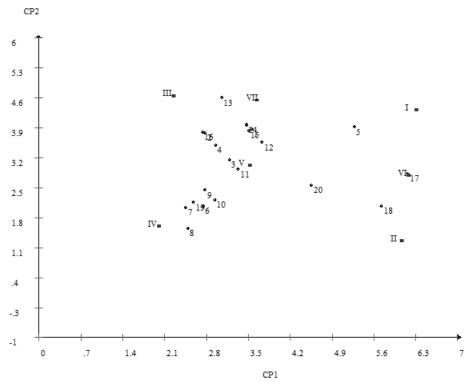
A colheita foi realizada aos 75 dias após o plantio e a característica avaliada foi: produtividade grãos (ton. ha⁻¹). Com produtividade média de cada genótipo, foi feita análise individual seguido de análise conjunta. A homogeneidade dos resíduos foi verificada pela relação entre o maior e o menor quadrado médio do resíduo (inferior a sete), para um mesmo número de repetições (Pimentel-Gomes, 2000). Na análise conjunta foram considerados os efeitos de genótipos fixos e os demais efeitos aleatórios.

A análise de adaptabilidade foi realizada pelo método centróide (Rocha et al., 2005), cujo fundamento é a comparação de valores de distância cartesiana entre os genótipos e quatro referências ideais (ideótipos), gerados com base nos dados experimentais para representar os genótipos de máxima adaptabilidade geral, máxima adaptabilidade específica a ambientes favoráveis ou desfavoráveis e os genótipos de mínima adaptabilidade. A média geral de cada genótipo nos três ambientes foi comparada pelo teste de Scott-Knott (Scott-Knott, 1974).

Todas as análises foram realizadas no aplicativo Genes (Cruz, 2006), posteriormente, foi feita a comparação das médias pelo teste de agrupamento Scott-Knott (p = 0,05).

Resultados e Discussão

Foram observadas diferenças significativas na interação genótipo *vs* locais para a característica produtividade média de grãos (ton. ha⁻¹), evidenciando a existência de variabilidade entre genótipos (Tabela 1). A produtividade variou de 1.120,8 a 2.727,5 ton. ha⁻¹, destacando-se como a mais produtiva a cultivar BRS-TUCUMAQUE durante a avaliação.


Tabela 1. Médias para produtividade de grãos (ton. ha⁻¹) e probabilidade de classificação de cada genótipo de feijão-caupi em um dos quatro quadrantes pelo método centroide para a característica produtividade de grãos (t ha-1).

Genótipos	Média*	Classif.	P(I)	P (II)	P(III)	P (IV)	P(V)	P (VI)	P (VII)
1- MNC02-675F-4-9	1.6717	VII	0,0502	0,483	0,1159	0,0969	0,3134	0,0502	0,3251
2- MNC02-675F-4-10	1.4267	V	0,0556	0,0541	0,2003	0,1516	0,2434	0,0557	0,2393
3-MNC02-675F-9-2	1.5258	V	0,0465	0,0462	0,1071	0,1042	0,4279	0,0472	0,2208
4-MNC02-675F-9-3	1.4542	V	0,0507	0,0498	0,163	0,139	0,3012	0,051	0,2253
5-MNC02-676F-3	2.485	I	0,2504	0,1691	0,0667	0,064	0,1082	0,2317	0,1099
6-MNC02-682F-2-6	1.2517	V	0,0562	0,0585	0,1538	0,2327	0,2707	0,0582	0,17
7-MNC02-683F-1	1.1558	IV	0,0576	0,0598	0,17	0,2739	0,2195	0,0595	0,1598
8-MNC02-684F-5-6	1.1208	IV	0,0586	0,0619	0,1557	0,2947	0,2166	0,061	0,1514
9-MNC03-725F-3	1.3083	V	0,0563	0,0577	0,1555	0,1969	0,2904	0,0579	0,1852
10-MNC03-736F-7	1.3383	V	0,0552	0,0572	0,1373	0,1827	0,331	0,0571	0,1795
11-MNC03-737F-5-1	1.4975	V	0,0537	0,0541	0,1333	0,1396	0,3516	0,0549	0,2128
12-MNC03-737F-5-4	1.6517	V	0,0735	0,0721	0,1546	0,1428	0,2504	0,074	0,2326
13-MNC03-737F-5-9	1.5708	VII	0,0515	0,0485	0,1979	0,1164	0,2143	0,0507	0,3207
14-MNC03-737F-5-10	1.6167	VII	0,0592	0,0571	0,1597	0,1284	0,2622	0,0591	0,2744
15-MNC03737F-5-11	1.6858	VII	0,0386	0,037	0,0811	0,0687	0,3545	0,0386	0,3815
16-MNC03-737F-11	1.3083	III	0,0529	0,0519	0,295	0,1981	0,1761	0,053	0,173
17-BRS-TUCUMAQUE	2.7275	VI	0,0185	0,018	0,0026	0,0026	0,0039	0,9506	0,0038
18-BRS-CAUAMÉ	2.4858	II	0,1588	0,3198	0,0393	0,0402	0,0628	0,3196	0,0594
19-BRS-ITAIM	1.1925	IV	0,0533	0,0551	0,1685	0,2804	0,2287	0,0549	0,159
20-BRS-GUARIBA.	1.8783	V	0,1069	0,1102	0,1237	0,1289	0,2244	0,1111	0,1947

Em que: P: Probabilidade; Ideótipo I: Caracteriza genótipos adaptabilidade geral; Ideótipo II: Caracteriza genótipos com adaptabilidade específica a ambientes favoráveis; Ideótipo III: Caracteriza genótipos com adaptabilidade específica a ambientes desfavoráveis; Ideótipo IV: Caracteriza genótipos pouco adaptado; Ideótipo V: Adaptabilidade geral alta; Ideótipo VI: Adaptabilidade específica a ambientes favoráveis; VII: Adaptabilidade específica a ambientes desfavoráveis.

Figura 1. Dispersão gráfica dos componentes principais de 20 genótipos* para produtividade média de grãos (t ha-1) em duas épocas de cultivo nas regiões norte e centro-sul do estado do Tocantins em um ano de avaliação. Os quatros pontos numerados com algarismos romanos representam os centróides: I – Genótipos de adaptabilidade geral; II – Genótipos com adaptabilidade específica a ambientes favoráveis; III – Genótipos com adaptabilidade específica a ambientes desfavoráveis; e IV – Genótipos com baixa adaptabilidade. * Em que: 1-MNC02-675F-4-9; 2-MNC02-675F-4-10; 3-MNC02-675F-9-2; 4-MNC02-675F-9-3; 5-MNC02-676F-3; 6-MNC02-682F-2-6; 7-MNC02-683F-1; 8-MNC02-684F-5-6; 9-MNC03-725F-3; 10-MNC03-736F-7; 11-MNC03-737F-5-1; 12-MNC03-737F-5-4; 13-MNC03-737F-5-9; 14-MNC03-737F-5-10; 15-MNC03737F-5-11; 16-MNC03-737F-11; 17-BRS-TUCUMAQUE; 18-BRS-CAUAMÉ; 19-BRS-ITAIM; 20-BRS-GUARIBA.

Na Tabela 1 e Figura 1 é apresentada a classificação dos genótipos de feijão-caupi para a produtividade de grãos pelo método centróide. A grande maioria dos genótipos (MNC02-682F-2-6; MNC02-683F-1; MNC02-684F-5-6; MNC03-725F-3; MNC03-736F-7; BRS-ITAIM) apresentaram maior probabilidade de classificação no IV quadrante, o que caracteriza genótipos com baixa adaptabilidade. No V quadrantes foram agrupados os genótipos: MNC02-675F-9-2; MNC02-675F-9-3; MNC03-737F-5-1; MNC03-737F-11, caracterizando genótipos de adaptação mediana para essa característica no ano de avaliação. No quadrante VII situam-se os genótipos: MNC03-737F-5-4; MNC03-737F-5-9; MNC03-737F-5-10; MNC03737F-5-11, caracterizando adaptabilidade específica a ambientes desfavoráveis.

Conclusões

Os genótipos MNC03-737F-5-4; MNC03-737F-5-9; MNC03-737F-5-10; MNC03737F-5-11 são adaptados a ambientes desfavoráveis com relação a produtividade de grãos;

Nenhum dos genótipos avaliados pode ser indicado para ambientes de adaptabilidade geral com relação à produtividade;

Apenas as cultivares BRS-TUCUMAQUE e BRS-CAUAMÉ apresentaram adaptabilidade específica a ambientes favoráveis. Sendo que a cultivar BRS-TUCUMAQUE também se destacou como a que alcançou maior produtividade.

Referências

AKANDE, S. R. Genotype by environment interaction for cowpea seed yield and disease reactions in the forest and derived savanna agro-ecologies of south-west Nigeria. Am. Euras. J. Agric. Environ. Sci., v. 2, n. 2, p. 163-168, 2007.

CRUZ, C.D. Programa Genes - Aplicativo computacional em genética e estatística, versão 2006. Disponível em:http://www.ufv.br/dbg/genes/genes.htm. Acesso em 20 jan. 2013.

FREIRE FILHO, F.R.; ROCHA, M. de M.; BRIOSO, P.S.T.; RIBEIRO, V.Q. "BRS Guariba": White-grain cowpea cultivar for the mid-north region of Brazil. Crop Breeding and Applied Biotechnology, v.6, p. 175-178, 2006.

FREIRE FILHO, F. R.; ROCHA, M. de M.; RIBEIRO, V. Q.; SITTOLIN, I. M. Avanços e perspectivas para a cultura do feijão-caupi. In: ALBUQUERQUE. A. C. S.; SILVA, A. G. (Org.). Agricultura tropical: quatro décadas de inovações tecnológicas, institucionais e práticas. Brasília, DF: Embrapa Informação Tecnológica, 2008, v.1, p. 235-250

PIMENTEL-GOMES, F. Curso de estatística experimental. 14 ed. Piracicaba: Degaspari, 2000. 477 p.

ROCHA, R.B.; MURO-ABAD, J.I.; ARAUJO, E.F.; CRUZ, C.D. Avaliação do método centróide para estudo de adaptabilidade ao ambiente de clones de Eucalyptus grandis. Ciência Florestal, v. 15, n. 3, p. 255-266, 2005. http://www.ufsm.br/cienciaflorestal/sumarios/V15N3-P.html 5 Fev. 2013.

SCOTT, A.J.; KNOTT, M.A. A cluster analysis method for grouping means in the analysis of variance. Biometrics, Washington, v.30, n.3, p.507-512, 1974.

SILVEIRA, MA. Batata-Doce: A Bionergia da Agricultura Familiar. 2008. 19p.

SINGH, B. B.; EHLERS, J. D.; SHARMA, B.; FREIRE FILHO, F. R. Recent progress in cowpea breeding. In: FATOKUN, C. A.; TARAWALI, S. A.; SINGH, B. B.; KORMAWA, P. M.; TAMO, M. (Ed.). Challenges and opportunities for enhancing sustainable cowpea production. Ibadan: IITA, 2002. P. 22-40.