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Abstract
Crop models are ideally suited to quantify existing climatic risks. However, they require historic climate data as input. While 
daily temperature and rainfall data are often available, the lack of observed solar radiation (Rs) data severely limits site-
specific crop modelling. The objective of this study was to estimate Rs based on air temperature solar radiation models and 
to quantify the propagation of errors in simulated radiation on several APSIM/ORYZA crop model seasonal outputs, yield, bio-
mass, leaf area (LAI) and total accumulated solar radiation (SRA) during the crop cycle. The accuracy of the 5 models for esti-
mated daily solar radiation was similar, and it was not substantially different among sites. For water limited environments (no 
irrigation), crop model outputs yield, biomass and LAI was not sensitive for the uncertainties in radiation models studied here.

Key words: crop model, calibration, upland rice.

Análise de sensibilidade do modelo APSIM/ORYZA na estimava de erros na radiação solar 
Resumo

Modelos de simulação de culturas são importantes para quantificar riscos climáticos. Esses modelos necessitam de dados 
climáticos como dados de entrada. Entretanto, dados diários de precipitação pluvial e temperatura são facilmente encon-
trados, enquanto dados de radiação solar (Rs) limitam-se à aplicação de modelos de simulação de culturas. O objetivo deste 
estudo foi estimar a Rs utilizando cinco modelos de estimativa de radiação solar com base na temperatura do ar e quantificar 
a propagação de erros na radiação simulada na produtividade, biomassa, área foliar e radiação solar acumulada durante o 
ciclo da cultura do arroz de terras altas simulados pelo modelo de simulação ORYZA/APSIM. A acurácia dos cinco modelos 
de estimativa da radiação solar foi similar e não foi diferente entre os diferentes locais. Para ambientes que ocorre estresse 
hídrico, as saídas do modelo ORYZA/APSIM produtividade, biomassa e índice de área foliar não foram sensíveis às incertezas 
provenientes da radiação solar estimadas neste estudo.

Palavras-chave: modelos de simulação, calibração, arroz de terras altas.

1.  INTRODUCTION

During the last decade, demand for rice in Brazil 
as well as in the world has increased considerably. 
However, the area available for rice production in 
the South of Brazil is limited, largely due to envi-
ronmental and social constraints, such as competing 
demands for freshwater, industry or domestic use. 
Hence there is increasing interest in the upland rice 
systems of the Brazilian savannahs. This region is 
characterized by high inter and intra annual yield 
variability as consequence of precipitation patterns: 
even during the rainy season, there is chance of 
water stress occurrence due to periods of no rain 
or rain amount below crop demand. Thus, better 

quantification of existing climatic risks is urgently 
needed (Maia et al., 2007) to provide the rice in-
dustry with information to better cope with exis-
ting climate variability and to adapt to likely future 
changes.

Crop models can be used to quantify effects of 
climate variability on yield variability and to explore 
options for coping with this variability (Akponikpèa 
et al., 2011). The greatest limitation for crop mo-
del application in this region is the lack of climate 
data (Heinemann et al., 2008). Global radiation 
(Rs) is the driving factor controlling photosynthesis 
and evapotranspiration and is consequently an im-
portant weather variable for various agro-ecological 
studies. The lack of observed Rs data severely limits 
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site-specific modelling of crop growth (Donatelli et 
al., 2003). Rs at the earth surface depends on radiation 
at the top of the atmosphere (Ra) which can be calcula-
ted from latitude and day of year, based on astronomic 
equations. How much of Ra reaches the earth’s surface 
depends on atmospheric transmissivity.

Several researchers have shown that atmospheric 
transmissivity can be estimated from maximum and 
minimum air temperatures (Bristow and Campbell, 
1984; Donatelli and Campbell, 1998; Donatelli 
et  al., 2003; Hargreaves and Samani, 1985), with 
daily Rs estimated with accuracies of 50 to 98%, 
while Farhadi Bansouleh et al. (2009) using the 
Hargreaves equations found strong interannual va-
riation in accuracies, with R2 values ranging from 0 
to 55%. As air temperature is recorded by all meteo-
rological stations, temperature-based estimation me-
thods are directly applicable in any region, provided 
that some years of Rs data are available for calibration 
of empirical parameters amongst these models, the 
Bristow-Campbell is the most commonly used. Much 
of this work on estimation of Rs is driven by the need 
for Rs as an input to crop growth models. Few stu-
dies however have quantified the impact of errors in 
Rs on errors in yields. Quite consistently, these studies 
conclude that yields can be accurately simulated, even 
with considerable error in Rs (Farhadi Bansouleh et 
al., 2009; Xie et al., 2003). However, as the accuracy 
depends on the crop, environment and growth models 
used, results cannot be readly generalized for other 
scenarios.

The objective of this study are: i) to estimate solar 
radiation (Rs) in Goiás State, Brazil, by calibrating the 
models proposed by Bristow and Campbell (1984), 
Donatelli and Bellocchi (2001), Donatelli and 
Campbell (1998)(1), Donatelli et al. (2003) and 
Hargreaves and Samani (1985), and (ii) to quantify 
the propagation of errors in simulated Rs on several 
APSIM/ORYZA crop model seasonal outputs, name-
ly: the upland rice yield, biomass, leaf area and total 
accumulated solar radiation during the crop cycle.

2. MATERIAL AND METHODS

APSIM/ORYZA Crop Model

ORYZA2000 is an explanatory, dynamic eco-physio-
logical simulation model for rice (Bouman and Van 
Laar, 2006), integrated into APSIM (Agricultural 
Production Systems Simulator; Keating et al., 2003). 

APSIM/ORYZA simulates rice phenology, leaf area 
development, biomass production, yield and nitrogen 
accumulation in response to environmental variables 
such as temperature, solar radiation, soil water con-
tent and nitrogen fertilizer management. In this study, 
water availability was simulated via APSIM-SoilWat2 
module while crop water requirement, which is ba-
sed on potential evapotranspiration, was computed 
in the APSIM-Eo module. The APSIM framework 
also includes a nitrogen and carbon dynamics module 
‘soilN’.

Solar Radiation Models 

It was compared five models for estimating dai-
ly solar radiation (RS), namely: BC - Bristow and 
Campbell (1984); HG - Hargreaves (1981) modi-
fied by Hunt et al. (1998); CD(1); DB - Donatelli 
and Bellocchi (2001) and modular model DCBB – 
Donatelli et al. (2003). Four amongst these models 
(BC, CD, DB and DCBB) estimate the actual atmos-
pheric transmissivity for the ith day of the year as a 
function of clear sky transmissivity (τ) and daily maxi-
mum (Tmax) and minimum (Tmin) temperatures. τ was 
assumed to be equal to 0.75 as suggested by Fletcher 
and Moot (2007). 

RsBC=0.75   1 - exp  -b∆Ti
c
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Ra  (1)
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RsDB=0.75 [1 - f2 (i)]    1 - exp   -b∆Ti
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Ra  (3)

RsDCBB=0.75 [1+ f2 (i)]       -b∆Ti
2 f1(Tmin )⎤

⎦ ⎤
⎦∆Tavg

Ra  (4)

RsHG= b Ra        T max - Tmin    + c√————¬  (5)

where Ra is the daily potential radiation (MJ m-2 day-1),  
calculated with standard astronomic equations based 
on day of year and latitude (Goudriaan and Van 
Laar, 1994) ∆T = Tmax – (Tmin + Tmin+1)/2, ∆Tavg is 
the mobile week temperature based on centred mobile 

(1) As described in DONATELLI, M.; CAMPBELL, G.S. A simple model to estimate global solar radiation. In: CONGRESS OF THE EUROPEAN 
SOCIETY FOR AGRONOMY, 5., 1998, Nitra, Slovak Republic. Proceedings… [S.l.]: European Society for Agronomy, 1998. p.133-134.
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mean (as the average over 7 days around) of maximum 
and minimum temperature (ºC); and b and c are pa-
rameters separately calibrated for each site and model. 
In equations 2–4 two functions f1 and f2 are used: 

f1(Tmin )=e(  )Tmin

Tnc
 (6)

f 2 (i) =c1[sin(i×c2×�/180)+cos(i×f 3(c2)×�/180)]  (7)

where Tnc is the summer night temperature factor 
to avoid underestimation of solar radiation in summer 
(Bechini et al., 2000); i= day of year, c1 and c2 are 
empirical model parameters for general seasonal fac-
tors (Mavromatis and Jagtap, 2005). In the equation 
defining ƒ2(i), f3 is calculated as:

f 3 (c2) =1-1.9×c3+3.83×c3
2  (8)

where c3 = c2 – integer(c2). Empirical parameters 
were calibrated using daily radiation data of the even 
years, for each of the stations listed in table 1. Next, 
the models were validated using the odd year data. The 
parameters b and c for BC, CD, DB and DCBB models 
were estimated by ordinary least squares. For HG mo-
del, they were fitted by nonlinear least squares via the 
iterative method based on Gauss-Newton algorithm by 
using MASS package from R software (R Development 
Core Team, 2012: http://www.r-project.org). Tnc, c1 
and c2 parameters were fitted by ordinary least squares 
based on Tmin (Tnc) and day of year (c1 and c2) as descri-
bed by Bellocchi et al. (2003) and Donatelli et al. 
(2004). All parameters were calibrated for each weather 
station separately.

A number of researchers have shown that Rs values 
are also dependent on rainfall, altitude and latitude 
(Hunt et al., 1998, Weiss and Hays, 2004). It was 
plotted radiation model residuals against rainfall to 
investigate whether the models were biased or more 
inaccurate at the high and low rainfall levels. 

 Data Collection and Crop Simulation

Daily maximum and minimum temperatures and glo-
bal solar radiation data from weather stations in Goiás 
state (Table 1) were provided by the Meteorological 
and Hydrological System of Goiás State (SIMEHGO –  
“www.simego.sectec.go.gov.br/”). Data set availa-
ble at each location ranged from 4 to 6 years. Data 
from even years was used for calibration of equations 
1 to 8 and from odd ones for validation. The crop 
model APSIM/ORYZA for upland rice was calibra-
ted to simulate crop responses environmental factors 
considering either observed or estimated solar radia-
tion. Inputs to this model include daily weather data 
(minimum and maximum temperature, precipitation 
and solar irradiance), soil properties, initial soil water 
content, cultivar genetic characteristics, planting date, 
and N fertilizer management. The soil properties used 
as input for the crop model represent the most com-
mon soil type (Oxisols, covering 46% of the upland 
rice region, Embrapa, 1999). We used characteristics 
of the most commonly grown cultivar in the region, 
BRS Primavera (Lorençoni et al., 2010). Model 
prognostic variables were simulated for nine locations 
and three planting dates, 1-Nov, 1-Dec and 31-Dec, 
corresponding to beginning, middle and end of plan-
ting season, respectively. The row spacing, plant den-
sity and nitrogen fertilization represent the local re-
commendation for upland rice in the region, 35 cm, 
200 plant m-2 and 20 kg ha-1 of N at the planting date, 
40 kg ha-1 at begin of tillering, and 40 kg ha-1 at begin 
of panicle initiation. Simulations started at least six 
months before each planting date in order to allow the 
establishment of a realistic soil water profile on the ba-
sis of rainfall patterns occurring before sowing because 
no irrigation was applied in the simulations. APSIM/
ORYZA seasonal outputs analyzed in this study were 
yield; maximum accumulated biomass; maximum leaf 
area index (LAI) and accumulated solar radiation du-
ring the crop cycle (SRA). 

ID Weather Station name Lat Lon Alt (m) Period # of years
01 Ceres -15.31 -49.60 739 2002-2007 6
02 Anápolis -16.33 -48.95 1136 2005-2008 4
03 Anicuns -16.46 -49.96 692 2006-2009 4
04 Vianópolis -16.74 -48.52 1110 2004-2007 4
05 Cristalina -16.77 -47.61 1189 2005-2008 4

06 Palmeiras de Goiás -16.80 -49.93 596 2000-2001
2004-2005 4

07 Jandaia -17.05 -50.15 637 2005-2008 4
08 Vicentinópolis -17.74 -49.81 648 2000-2005 6
09 Jataí -17.88 -51.71 696 2004-2009 6

ID: identification. Lat: latitude. Lon: longitude. Alt: altitude.

Table 1. Weather station localization, altitude, period and number of years used in this study
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Model validation

The accuracy of the solar radiation models was com-
pared via descriptive statistics that indicate the degree 
of agreement between results based on either, mon-
thly and daily observed or estimated solar irradiance 
as input data. The goodness of fit was assessed by the 
following measures: (i) parameter estimates (slope and 
intercept) of the regression line between estimated and 
measured values; (ii) correlation coefficient (r) (iii) 
the relative root mean squared error (RRMSE, equa-
tion 9), an indicator of the overall relative accuracy of 
the model; (iv) the systematic root mean square error 
(RMSEs), a measure of the model’s linear (or systema-
tic) bias (equation 10) and (v) the mean absolute error 
(MAE, equation 11), the arithmetic mean of absolute 
residuals. Small MAE values indicate a method with 
low overall mean error.

RRMSE=100x   ⎧

⎩
⎟ ⎧

⎩
⎟(Rest-Robs)

2)0.5]((  ) ∑ [1
n

∑
Robs
n

 (9)

RRMSEs=  ⎤
⎦

⎤
⎦ | Rest-Robs |
2    ∑1

n
n

i=1

0.5
^  (10)

MAE=   | Rest-Robs |
 ∑1

n
n

i=1
  (11)

where Robs and Rest are, respectively, the observed and 
estimated daily solar radiation,  n the number of days 
used for model fitting and Rest

^  is the best estimate of the 
predicted quantity calculated with the intercept (a) and  
slope (b) of the least-squares regression between Robs  
and Rest, Rest

^ = a + bxi.
To quantify the influence of inaccuracies in solar 

radiation estimates on APSIM/ORYZA seasonal ou-
tputs (Y) the model was run once a time using obser-
ved radiation or radiation estimated by each radiation 
model, resulting in a pair YR-obs and YR-est values for 
each radiation model and output variable. Differences 
between YR-obs and YR-est , here referred to as ∆Y were 
then calculated for yield, biomass, maximum leaf 
area index (LAI) and accumulated solar radiation 
(SRA). We assessed the discrepancies between YR-obs  
and YR-est for each radiation model by several graphical 
and descriptive analysis: (i) box-and-whiskers plots of 
∆Y for displaying range of deviances, outliers and bias 
resulting from radiation estimation; (ii) deviance me-
asures (r, MAE and RRMSE) previously described for 
evaluation of radiation models themselves and RMSE 
(root mean square error); (iii) similarity measures: the 

index of agreement d (Wilmott, 1981; equation 12) 
and the coefficient of efficiency (Nash and Sutcliffe, 
1970; equation 13) as joint measures of bias and accu-
racy and (iv) empirical cumulative distribution func-
tion (ecdf ).

Thus what we present is a sensitivity analysis. The 
analysis shows how sensitive APSIM/ORYZA mo-
del output is to estimation errors in solar radiation. 
The accuracies reported therefore do not provide in-
formation on how good APSIM/ORYZA is at simu-
lating actual yields. In this study model accuracy is 
considered excellent when RRMSE<10%; good if 
10%≤RRMSE<20%; fair if 20%≤RRMSE<30%; and 
poor if RRMSE≥30% (Jamieson et al., 1991); d and 
E are summary measures which accounts for accuracy. 
They range from 0 to 1 and minus infinity to 1, res-
pectively. Basically, d represents the ratio between the 
mean square error and the “potential error” (Willmot, 
1984) and E determines the relative magnitude of the 
residual variance (“noise”) compared to the measured 
data variance (“information”) (Moriasi et  al., 2007). 
For both similarity measures, higher values indicate 
better agreement.

d =1-  



 


∑n

i =1 (YR      -YR      )
2

  obs    est

∑n
i (|YR      -YR       |+|YR       -YR       |)

2
obs obs obsest  (12)

E =1-  



 


∑n

i=1(YR    -YR     )
2

obs est

∑n
i=1(YR    -YR     )

2
obs est

 (13)

The ecdf functions for the observed (YR-obs) and es-
timated (YR-est) seasonal crop model outputs (yield, bio-
mass, LAI and SRA) was calculated and the maximum 
vertical distance between YR-obs and YR-est ecdf ’s was de-
termined by the Kolmogorov-Smirnov test (K-S).

3. RESULTS AND DISCUSSION

 In the study region, the daily air temperature range 
increases from April, the beginning of the dry period, 
to August, which is the top of dry period and decrease 
from September, begin of the wet period, to December. 
For upland rice, the planting window is from November 
to December and rice is harvested in April. This period 
shows the lowest daily temperature range. 

The local empirical parameter estimates obtained 
for the five models are described in table 2. Few papers 
actually report estimated values for these parameters. 
The parameter estimates listed here for the CD and DB 
models are similar to the ones described by Bellocchi 
et al. (2003). However, for the BC model, b parameter 
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Model
  Wheater Station ID  
  1 2 3 4 5 6 7 8 9 Mean S.D.

BC

Calibration

RRMSE 11.58 12.31 12.62 16.1 13.06 9.92 11.4 13.3 13.09 12.5 1.63
MAE 2.3 2.73 2.69 3.08 2.93 2.05 2.38 2.43 2.57 2.55 0.31
r 0.78 0.69 0.74 0.71 0.72 0.83 0.73 0.74 0.77 0.75 0.04
RMSEs 3.09 3.62 3.51 4.25 3.72 2.55 3.22 3.11 3.43 3.39 0.45

Validation
 

RRMSE 11.76 14.93 12.95 15.7 15.16 11.48 13.3 14.9 13.45 13.72 1.44
MAE 2.35 2.79 2.8 3.06 2.83 2.24 2.31 2.85 2.66 2.67 0.28
r 0.77 0.70 0.69 0.71 0.73 0.81 0.75 0.71 0.73 0.73 0.04
RMSEs 3.12 3.57 3.62 3.93 3.44 2.90 3.00 3.48 3.53 3.40 0.31

CD

Calibration

RRMSE 12.06 12.72 13.05 16.2 13.3 10.27 12.5 13.6 13.59 12.93 1.51
MAE 2.37 2.76 2.71 3.1 2.99 2.06 2.59 2.5 2.64 2.62 0.3
r 0.79 0.69 0.74 0.72 0.72 0.84 0.73 0.75 0.77 0.75 0.04
RMSEs 3.04 3.57 3.48 4.13 3.70 2.50 3.18 3.07 3.43 3.34 0.44

Validation
 

RRMSE 12.14 15.61 13.40 16.00 15.53 11.19 14.4 15.1 14.11 14.14 1.56
MAE 2.42 2.84 2.8 3.03 2.91 2.16 2.43 2.88 2.76 2.71 0.28
r 0.77 0.71 0.69 0.70 0.73 0.81 0.75 0.73 0.73 0.74 0.04
RMSEs 3.14 3.55 3.60 3.98 3.44 2.84 3.03 3.39 3.54 3.39 0.32

DB

Calibration

RRMSE 12.82 12.72 13 16.5 13.04 12.07 11.9 13.6 13.96 13.16 1.35
MAE 2.54 2.73 2.68 3.09 2.85 2.53 2.45 2.49 2.71 2.65 0.2
r 0.77 0.69 0.74 0.71 0.73 0.80 0.75 0.75 0.77 0.75 0.03
RMSEs 3.14 3.61 3.47 4.25 3.84 2.68 2.95 3.10 3.50 3.39 0.45

Validation
 

RRMSE 12.58 15.49 13.24 17 15.53 11.92 14.2 15.4 14.47 14.37 1.54
MAE 2.58 2.8 2.77 3.25 2.88 2.31 2.4 2.96 2.81 2.76 0.27
r 0.75 0.71 0.69 0.66 0.73 0.79 0.75 0.71 0.72 0.72 0.04
RMSEs 3.20 3.56 3.58 4.01 3.49 3.00 3.00 3.39 3.54 3.42 0.30

DCBB

Calibration

RRMSE 14.56 12.75 12.99 17.6 13.15 15.69 13.7 14.1 15.18 14.19 1.63
MAE 2.98 2.73 2.7 3.2 2.84 3.33 2.93 2.58 2.96 2.88 0.26
r 0.77 0.69 0.75 0.70 0.72 0.83 0.77 0.75 0.76 0.75 0.04
RMSEs 3.14 3.61 3.47 4.25 3.84 2.68 2.95 3.10 3.63 3.41 0.46

Validation
RRMSE 14.72 15.51 13.22 17 15.38 16.21 16.8 16.2 15.77 15.49 1.19
MAE 3.00 2.79 2.78 3.28 2.86 3.23 2.92 3.10 3.05 2.99 0.17
r 0.73 0.71 0.69 0.64 0.73 0.79 0.76 0.71 0.72 0.72 0.04
RMSEs 3.28 3.56 3.58 4.15 3.49 3.08 3.00 3.50 3.63 3.47 0.32

HG

Calibration

RRMSE 11.82 13.14 13.24 16.7 14.88 10.3 11.5 15.3 13.58 13.43 1.91
MAE 2.43 3.07 2.91 3.37 3.54 2.10 2.46 2.84 2.73 2.84 0.44
r 0.77 0.62 0.70 0.68 0.58 0.81 0.72 0.62 0.75 0.70 0.08
RMSEs 3.16 3.89 3.72 4.40 4.34 2.66 3.27 3.63 3.56 3.63 0.52

Validation
 

RRMSE 12.52 16.12 13.47 16.7 16.91 12.53 13.5 15.8 13.78 14.65 1.68
MAE 2.56 3.15 2.99 3.48 3.34 2.57 2.39 3.04 2.84 2.97 0.37
r 0.73 0.62 0.66 0.66 0.61 0.75 0.74 0.66 0.71 0.68 0.05
RMSEs 3.34 3.90 3.78 4.19 4.02 3.20 3.09 3.73 3.62 3.65 0.35

Table 3. Accuracy of solar radiation models by site as measured by overall model mean of the following measures

S.D.: standard deviation. BC: Bristow-Campbell. CD: Donatelli-Campbell. DB: Donatalli-Bellocchi. DCBB: modular model. HG: Hargreaves. RRMSE: relative root mean 
square error, %; MAE: mean absolute error, MJ m2 day-1;  r: correlation coefficient and RMSEs: systematic root mean square error, MJ m2 day-1.

Table 2. Parameter estimates of solar radiation models at each location (wheather station)

Model Empirical
Parameters

Weather Station ID
1 2 3 4 5 6 7 8 9

BC
b 0.96 0.70 0.75 0.69 0.39 0.87 1.93 0.42 0.94
c 1.38 1.60 1.59 1.47 1.89 1.36 1.12 1.71 1.42

CD b 0.13 0.46 0.42 0.18 0.51 0.13 0.13 0.30 0.23

DB
b 0.20 0.28 0.28 0.19 0.30 0.17 0.24 0.21 0.24
c1 0.04 -0.02 0.00 0.05 -0.06 0.04 0.06 0.02 0.01
c2 1.41 1.46 1.22 0.46 1.46 0.76 1.03 0.74 0.74

DCBB
b 0.17 0.24 0.23 0.16 0.26 0.14 0.20 0.17 0.20
c1 0.04 -0.02 0.00 0.04 -0.06 0.04 0.05 0.01 0.01
c2 1.41 1.46 1.22 0.46 1.46 0.76 1.03 0.74 0.74

HG
b 0.18 0.17 0.18 0.18 0.16 0.17 0.17 0.14 0.18
c -4.80 -0.07 -1.98 -3.69 1.42 -4.03 -2.15 0.82 -2.71

BC: Bristow-Campbell; HG: Hargreaves; CD: Donatelli-Campbell; DB: Donatalli-Bellocchi and DCBB: modular model
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was higher (0.42 to 1.93) than the one reported in 
Bellocchi et   al. (2003), ranging from 0.08 to 0.6. 
According to Liu et al. (2008), for the BC model, b pa-
rameter is more affected than c by different ways of cal-
culating the monthly mean temperature (∆Tm)   correc-
tion. In this study, ∆Tm was calculated as centred week 
mobile average (∆Tavg ). Also we did not have set the c 
parameter as fixed for the BC model, but calibrated it 
separately for each location. Parameter c ranged from 
1.12 to 1.89. For the HG model, parameters b and c are 

similar to those ones found by Liu et al. (2008). They 
ranged from 0.14 to 0.18 and -4.80 to 1.42, respectively.

The accuracy of the five models evaluated 
(Equations 1–5) was similar (Table 3): based on the 
average RRMSE values (Table 3) all were classified as 
good. The BC model showed the lowest mean RMSE 
and MAE values for calibration as well as validation. 
BC and CD model showed the lowest mean syste-
matic error values (RMSEs) for calibration and vali-
dation. Considering all data set (Figure  1a–e), the r 
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Figure 1. Scatterplots for daily observed radiation versus daily simulated radiation (a–e), weekly observed radiation versus weekly simulated 
radiation (f–j), being the black dashed line the 1:1 and gray full line the fitted regression line and I is the intercepted, b the slope and r 
the coefficient of determination for the regression line Scatterplots at the right colums of the panel (k–o) show difference between daily 
observed and simulated radiation for each model, as function of daily rainfall amount. BC: Bristow and Campbell; HG: Hargreave; CD: 
Donatelli and Campbell; DB: Donatelli & Bellocchi and DCBB: modular model. 
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ranged from 0.72 to 0.75. These values are lower than 
the ones found in European studies (Trnka et al., 
2005), but similar to values presented in a Northern 
Australian study (Liu and Scott, 2000) and some va-
lues obtained from locations in North America (Ball 
et al., 2004). The CD model showed the highest de-
gree of linear relationship between measured and si-
mulated Rs (highest r value) followed by the BC and 
DB models (Figure   1b). Comparing the slopes and 
intercepts of the linear regressions between daily me-
asured and predicted Rs, the HG model showed the 
slope (b) and intercepted (I) closest to 1 and 0, res-
pectively, followed by the BC model (Figure  1a,e).  
The weekly aggregation of measured and predic-
ted radiation values (Figure 1f–j) lead to increased r 

(0.81 to 0.86), minimizing the discrepancy. In this 
case, the BC and CD models showed the highest 
degree of agreement between measured and simula-
ted Rs (highest r value) followed by the DB model. 
The BC model showed the slope and intercept clo-
sest to 1 and 0, respectively (Figure 1f ). The highest 
residuals for all radiation models (Figure  1k–o))  
corresponded to days with low rainfall values 
(≤10 mm). The BC, CD, DB and DCDB models had 
the cubic smoothing spline regression parallel the zero 
residual line, showing no relationship between bias and 
rainfall. The HG and DCBB overestimated radiation 
under rainfall. Probably, adding rainfall variable in the-
se two models will improve their performance under 
rainfall days. 

Impact of estimated solar radiation on 
simulated crop model output

Considering pooled data from all weather stations, 
all evaluated radiation models (Equations 1–5) were 
classified in same class of accuracy (RRMSE<10%) 
for predicting yield, biomass and SRA (Table 4) whi-
ch is not surprising considering that they simulated Rs 
with similar accuracies (Table 3). Only the HG mo-
del, for maximum LAI showed an RRMSE higher than 
10%. In this study, all crop models outputs showed 
RMSE higher than MAE (Table 4). The ratio RMSE/
MAE is an indicator of regression outliers (Legates 
and Mccabe, 1999). The highest difference between 
RMSE and MAE for yield was observed for BC mo-
del (80 kg ha-1) and the lowest for the HG model (68 
kg ha-1). The HG model also showed the highest r for 
yield (0.99). All radiation models resulted in similar 
values for the index of agreement (d) for yield (Table 
4). However, the coefficient of efficiency (E) for yield 
was different among models. Based on this index, the 
best models for estimated radiation to predict yield are 
BC, CD and DCBB. The use of daily solar radiation 

estimated by BC and HG as input to APSIM/ORYZA 
leads to overestimation of yield as characterized by bo-
xes bellow the zero line (high frequency of YR-obs < YR-est) 
in Figure 2. 

Conversely, when radiation was estimated via the 
CD, DB and DCBB models, the referred output va-
riables showed an underestimation tendency. For ma-
ximum biomass, the highest difference between RMSE 
and MAE was observed for the DCBB model (151 kg 
ha-1) and the lowest for the BC model (92 kg ha-1). In 
this case the BC and HG models showed the highest r 
(0.97) (Table 4). Based on d, the best models were BC, 
CD and DCBB. Nevertheless, BC model showed the 
highest E. BC and HG models also leads to overestima-
te the maximum biomass as showed in Figure 2b, being 
the degree of overestimation higher for HG. For ma-
ximum LAI, the HG model accounted for the highest 

Yield Biomass LAI SRA Average

BC

RRMSE 6.9 4.1 5.9 5.3 5.6
RMSE 261 493 0.22 104 215
MAE 181 401 0.16 82 166
r 0.97 0.97 0.95 0.62 0.88
d 0.99 0.99 0.99 0.98 0.99
E 0.97 0.96 0.95 0.59 0.87

CD

RRMSE 7.4 5.3 7.4 5.4 6.4
RMSE 279 636 0.27 106 255
MAE 212 497 0.21 86 199
r 0.93 0.96 0.94 0.65 0.87
d 0.99 0.99 0.99 0.97 0.99
E 0.97 0.95 0.92 0.56 0.85

DB

RRMSE 8.3 6 8.4 6.7 7.4
RMSE 316 723 0.31 129 292
MAE 245 581 0.24 105 233
r 0.96 0.96 0.93 0.58 0.86
d 0.99 0.98 0.98 0.92 0.97
E 0.96 0.93 0.89 0.34 0.78

DCBB

RRMSE 7.2 5.2 7.1 9.9 7.4
RMSE 272 621 0.26 192 271
MAE 197 470 0.19 155 206
r 0.97 0.96 0.93 0.34 0.80
d 0.99 0.99 0.99 0.92 0.97
E 0.97 0.95 0.92 -0.41 0.61

HG

RRMSE 8.9 8.6 10.3 6.7 8.6
RMSE 331 1028 0.41 130 372
MAE 273 880 0.32 104 314
r 0.98 0.97 0.95 0.6 0.88
d 0.99 0.96 0.96 0.93 0.96
E 0.95 0.86 0.82 0.34 0.74

Table 4. Measures of agreement among APSIM/ORYZA outputs 
(yield, biomass, maximum LAI and solar radiation accumulated 
(SRA) during the crop cycle) simulated using either observed 
radiation or radiation estimated by empirical models

RRMSE: relative root mean square error (%). RMSE:  root mean square error (for 
yield and biomass kg ha-1, for SRA MJ m2 day-1).
MAE:  mean absolute error (for yield and biomass kg ha-1, for SRA MJ m2 day-1).
r:  correlation coefficient. d: -index of agreement. E: coefficient of efficiency. 
BC: Bristow-Campbell; HG: Hargreaves; CD: Donatelli-Campbell; DB: Donatalli-
Bellocchi and DCBB: modular model
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difference between RMSE and MAE (0.10) and the 
lowest difference by the BC and CD models (0.06). 
The BC and HG had the highest r values. According 
to d, the best models for maximum LAI were BC, 
CD and DCBB. Based on E, the best model was BC  
(Table 4). For this crop model output, BC and HG 
models showed the same trend as yield and biomass. 
Both models leads to overestimate the maximum LAI 
as showed in Figure 2c. However, the degree of ove-
restimation is higher for the HG model. For SRA, the 
DCBB model accounted for the highest difference 
between RMSE and MAE (37 MJ m2 day-1). The CD 

model showed the lowest difference (20 MJ m2 day-

1). The CD model also showed the highest r (0.65). 
According to d and E, the best model was BC (Table 
4). For SRA, a quite different pattern was observed: 
radiation estimated via the BC, CD and DB models 
lead to simulated SRA values below the corresponding 
ones obtained by using observed radiation as model 
input. The HG and DCBB models showed an opposite 
tendency (Figure 2d). Taking into account the average 
of the deviance measures (RRMSE, RMSE, MAE and 
r) and similarity measures (d and E) for all crop mo-
dels output studied here, the BC model had the lowest 
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values for RRMSE, RMSE and MAE and the highest 
for r, d and E (Table 4).

The ecdf curve for YR-obs and YR-est seasonal crop 
model outputs were plotted in Figure 3. The quantile 
values derivate from ecdf for YR-obs and YR-est are showed 
in Table  5. For the seasonal crop model outputs yield, 
biomass and LAI, the ecdf curves for YR-obs and YR-est 
was quite similar (Figure  4a–c). It was also observed 
for the quantile values showed in table 5. Based on 
the K-S test, the ecdf curves for YR-obs and YR-est did not 
differ statistically at 10% of significance (Table 5, p 
value). It means that for a limited water environment 
(no irrigation) solar radiation is not the main driven 
for yield, biomass and LAI and soil water available has 

an important role for these crop model outputs. Then, 
crop model outputs yield, biomass and LAI are not sen-
sitive for the solar radiation models studied here (BC, 
HG, DCBB and CD). Based also in the p value from 
K-S test (Table 5), the radiation model that showed 
the minimum vertical distance from YR-obs and YR-est ecdf 
curve for yield was BC and DCBB (p>0.05), for bio-
mass and LAI was also BC model (p>0.05). For SRA, 
it was observed difference at level of 5% of significance 
between YR-obs and YR-est  ecdf curve for DB, DCBB and 
HG solar radiation model (Table 5, p value). However, 
this difference in the accumulated solar radiation du-
ring the crop cycle was not enough to affected yield, 
biomass and LAI.
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Table 5. Quantile values (0, 25, 50, 75 and 100%) and p values of Kolmogorov-Smirnov (K-S) test between observed and estimated 
empirical cumulative distribution function (ecdf ) for crop models output (yield, biomass, maximum leaf area index (LAI) and solar 
radiation accumulated during crop cycle (SRA))
Quantile  
(%)

Yield (kg ha-1) Biomass (kg ha-1)
YR-obs BC CD DB DCBB HG YR-obs BC CD DB DCBB HG

0 65 74 70 62 62 115 5413 5674 5303 5275 4780 5640
25 2627 2649 2631 2631 2557 2610 10197 10353 9651 9493 9785 10918
50 4050 4201 3969 4031 3983 4265 11717 12160 11191 11079 11517 12702
75 5019 5076 4864 4868 5075 5255 13887 13996 13355 13394 14086 14753
100 6203 6247 6052 6058 6123 6496 17626 17646 17176 17308 17363 18818
K-S test  
(p value)

0.99 0.97 0.62 0.99 0.29 0.92 0.40 0.24 0.69 0.12

Quantile  
(%)

LAI SRA (MJ m-2)
YR-obs BC CD DB DCBB HG YR-obs BC CD DB DCBB HG

0 1.40 1.33 1.30 1.30 1.30 1.39 1514 1579 1539 1550 1482 1702
25 3.05 3.29 3.03 2.97 3.03 3.33 1830 1803 1785 1743 1940 1866
50 3.70 3.77 3.49 3.42 3.61 4.03 1942 1892 1896 1861 2056 1994
75 4.40 4.62 4.36 4.28 4.56 4.83 2048 2017 2013 1982 2162 2157
100 5.96 5.96 5.57 5.41 6.20 6.32 2292 2204 2250 2213 2559 2337
K-S test  
(p value)

0.87 0.18 0.34 0.65 0.15 0.20 0.11 0.02 <0.01 0.04

YR-obs – crop model output obtained using observed radiation. BC: Bristow-Campbell. HG: Hargreaves. CD: Donatelli-Campbell. DB: Donatalli-Bellocchi and DCBB: 
modular model.

4. CONCLUSION

Five models for estimated daily solar radiation were tested 
in their agreement and showed similar accuracy (r=0.68 
to 0.75, RMSE=12 to 14%). For water limited envi-
ronments (no irrigation) the crop model outputs yield, 
biomass and LAI is not sensitive for the uncertainties in 
radiation models studied here (BC, CD, DB, HG and 
DCBB). Among the radiation models studied here, the 
BC model show the minimum vertical distance between 
YR-obs and YR-est ecdf ’s (highest p value) for all crop models 
outputs (yield, biomass, LAI and SRA).
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