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1 Introduction

In the present paper, we propose an alternative approach for estimating SWCC based on

generalized nonlinear models, assuming that the response variable follows a truncated normal

distribution. The parameters of the curve are estimated by maximum likelihood method. Sim-

ulation studies are provided to assess the quality of estimates for the proposed regression model

and to assess the behavior of least squares procedures when applied to simulated truncated data

sets. A real data set is analyzed using the proposed methodology. We also propose a diagnostic

analysis to check the underlying model assumptions, outliers, and influent observations for the

proposed truncated normal nonlinear regression model. Thus, the standardized residuals and

the Pearson residuals (Cook & Weisberg, 1982), as well as two metrics based on the principle

of case-deletion first proposed by Cook (1977) are used for outliers and influent case detection

and to check for model adequacy.

2 Soil-water characteristic curves

SWCCs are fitted considering pairs, (y, x), which are obtained by applying different tensions,

x, to the a given soil sample, and observing the remaining soil-water content. In studies to

determine SWCCs, the analytical expressions considered are nonlinear functions of the type

y = η (x,β) where β is the vector of parameters of the curve. The van Genuchten-Mualem

(van Genuchten, 1980; Mualem, 1976) expression for SWCCs is given by

y = θr +
θs − θr[

1 + (β1x)β2
]1− 1

β2

, (1)

In van Genuchten (1980), the author highlights that θs is easily obtained experimentally, being

available most of the times, whereas θr is defined as the soil-water content at x = −15atm.

3 Truncated normal nonlinear regression model

Let Y be a normal random variable (r.v.) with mean µ and standard deviation σ. If, in

addition, a < Y < b, then Y is a truncated normal r.v. (Greene, 2003) with density function
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given by

f (y |a < y < b) =
1

σ
φ

(
y − µ
σ

)[
Φ

(
b− µ
σ

)
− Φ

(
a− µ
σ

)]−1
I(a,b) (y) , (2)

where φ is the standard normal distribution and Φ the standard normal cumulative distribution

function. We shall denote a truncated normal distribution by TN(µ, σ, a, b).

Assume that µ = η (x,β) and σ = g (xq,λ, σ), where x = (x1, . . . , xp)
′ is a vector of

p covariates, xq is a subset of x, η (·) is a continuous and twice differentiable function with

respect to β, f (·) is a continuous and twice differentiable function with respect to λ and σ,

and θ = (β,λ, σ) is the vector of indexing parameters. Let y = (y1, . . . , yn)′ be a vector of

observed values of Y = (Y1, . . . , Yn)′, where Yi ∼ TN (η (xi,β) , g (xqi,λ, σ) , a, b), i = 1, . . . , n.

Then, given the data set D = (n,y,x), the log-likelihood function for θ is written as

l (θ) =− n

2
log 2π −

n∑
i=1

log g (xqi,λ, σ)− 1

2

n∑
i=1

[
yi − η (xi,β)

g (xqi,λ, σ)

]2
−

n∑
i=1

log

[
Φ

(
b− η (xi,β)

g (xqi,λ, σ)

)
− Φ

(
a− η (xi,β)

g (xqi,λ, σ)

)]
. (3)

The maximum likelihood estimates (MLEs) of θ can be obtained by direct nonlinear opti-

mization of (3).

4 Diagnostic analysis

In regression analysis, diagnostic procedures are aimed to check if the underlying assump-

tions of a proposed model are reasonable enough and to detect evidences of possible model

misspecification. The regression model constructed in Section 3 was based in the following

underlying assumptions: (i) the response variable, y follows a TN (η (xi,β) , g (xqi,λ, σ) , a, b)

distribution, i = 1, . . . , n; (ii) the observations are mutually independent. Model assumptions

may be checked by visual inspections of several residual plots, such as the standardized resid-

uals and the Pearson residuals, which are also useful to detect outliers and possible influent

observations. We also consider the generalized Cook distance and the likelihood distance to

detect influent observations.

5 Simulation study

A simulation study was conduced to assess the quality of MLEs for the proposed model

under different sample sizes. Our main goal is to assess the quality of MLEs and study its

frequentist properties. Data sets were generated mimicking the characteristics of the real data

set to be analyzed later. Thus, we consider a explanatory variable, x, with k = 9 tension levels

ranging from 0,01 to 15atm, and r = {1; 3; 5; 55} replications which give us n = {9; 27; 45; 495}.
For each replication we set the residual soil-water content (the lower truncation limit), θr, as



a value generated from a Uniform (0, 20; 0, 25), and the soil-water content at saturation (the

upper truncation limit), θs, as a value generated from a Uniform (0, 40; 0, 65).

We shall consider η (x,β) as the van Genuchten-Mualem model given in (1), and f (xq, λ, σ) =

σxλ. Thus, Yi ∼ TN
(
η (xi,β) , σxλi , yr, ys

)
, for i = 1, . . . , n. The model parameters are sub-

jected to the following restrictions: β1 > 0, β2 > 1 and σ > 0.

From the results obtained in the simulation study (not shown) we notice that as sample

size increases, both the bias and MSE decreases and coverage probabilities approaches the

expected nominal one of 95%. In order to illustrate the consequences of disregarding the

effects of truncation, we also considered the usual nonlinear regression fitted by LS to the same

simulated data sets. The obtained results (not shown) revealed parameter estimates as highly

biased and inaccurate, and the estimated coverage probability was far from 95%. Moreover, as

sample size increases, we notice that coverage probabilities approaches zero. This phenomenom

occurs since the standard error of parameters are very small for large samples; thus producing

very small confidence intervals. We can also observe that parameter estimates for β1 are more

imprecise than those obtained for β2.

For model diagnostic we take one data set with n = 45 where two observations, 5 and 30,

were deliberately transformed into atypical ones by recalculating x5 and x30 by adding 10 times

the standard deviation of x to their original values. The main idea is to assess the effectiveness

of the different model diagnostics considered and to illustrate their ability to detect influential

outliers observation when the truncated normal nonlinear regression model is fitted to a data

set. Figures 1a-1b show that observation 30 is identified as an outlier. From Figures 1c-1d it

is possible to see that both the approximated generalized Cook’s distance and approximated

likelihood distance detect disturbed cases, 5 and 30, as influent observations.
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Figure 1: Perturberd simulated data set: (a) standardized residuals; (b) Pearson residuals; (c) approximated generalized Cook
distance; (d) approximated likelihood distance.

6 Real data set analysis

In this section we analyze the soil profile data set selected from a database collected in

the Buriti Vermelho River Basin, located in the eastern part of the Federal District in Brazil

(Rodrigues & Maia, 2011). The data set consists of soil samples of 0 − 5cm, 15 − 20cm, and



60 − 65cm deep measured in k = 9 tension levels with r = 3 replications per level, giving a

total of 27 soil water content measurements for a total of 17 soil profiles.

We shall consider the location parameters η (x,β) as the Van Genuchten-Mualem model

given in (1). Soil water content at saturation, θs, were calculated by weighing the soil profile

samples directly. The residual soil water content, θr, were calculated by submitting the soil

samples to a tension of 1500 kPa.

Model fit summary provided in Table 1 indicate all parameters in the heteroscedastic trun-

cated normal van Genuchten-Mualem regression model as statistically significant with a 95%

confidence. From the estimated SWCC presented in Figure 2a, it is possible to see that the van

Genuchten-Mualem model is a good choice for the representation of the relationship between

soil-water content and matric potencial for the analyzed soil profile. Predicted against observed

values are depicted in Figure 2b, indicating that the predicted values are reasonably close to

the observed values of the response variable. Moreover, the standadized residual plots show

the residuals as randonly distributed around zero with no outlier observations. We also note

that no influent observation was depicted by Cook’s generalized distance in Figure 3c and by

the likelihood distance in Figure 3d.

Table 1: Model fit summary for the heteroscedastic van Genuchten-Mualem truncated normal
regression model adjusted to soil profile 204 data.

Parameter Estimate St. Dev. 95% C.I.

β1 49,9135 4,9812 40,1504 59,6766
β2 1,5077 0,0238 1,4611 1,5544
σ 0,0159 0,0015 0,0128 0,0189
λ -0,1495 0,0391 -0,2262 -0,0728
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Figure 2: Profile 204 data: (a) estimated SWCC; (b) Observed y against predicted values of y.

7 Conclusions

We have proposed and illustrated an alternative approach to model SWCCs based on trun-

cated normal nonlinear regression models, which take truncation into account, an important
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Figure 3: Profile 204 data: (a) standardized residuals; (b) standardized Pearson residuals; (c)
approximated Cook’s generalized distance; (d) approximated likelihood distance.

feature of the data. The ML estimation procedure have successfully been applied and a simula-

tion studies was provided to assess the quality of estimates for the proposed nonlinear regression

model. Moreover, diagnostic analysis tools were used to check the model assumptions and for

outlier and influent observations detection. When comparing the proposed methodology and

the usual nonlinear least squares procedure based on simulation results, it was verified that

LS method does not provide precise estimates for the model parameters, thus leading to an

inaccurate estimation of the SWCC. Nevertheless, we acknowledge that the truncated normal is

one of many truncated distributions that can be considered to model soil-water retention data,

such as the truncated beta and truncated inverted beta distributions. Also, we could consider

the truncated version of some recently propose skewed distributions.
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