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The objective of this study was to test the use of repeat flight, airborne laser scanning data (lidar) for estimating
changes associated with low-impact selective logging (approx. 10-15 m® ha~! = 5-7% of total standing volume
harvested) in natural tropical forests in the Western Brazilian Amazon. Specifically, we investigated change in
area impacted by selective logging, change in tall canopy (30 m + ) area, change in lidar canopy structure metrics,
and change in above ground biomass (AGB) using a model-based statistical framework. Ground plot measure-
ments were only available from the time of the 2010 lidar acquisition. A simple differencing of the 2010 and
2011 lidar canopy height models identified areas where canopy over 30 m tall had been removed. Area of tall
canopy dropped from 22.8% in 2010 to 18.7% in 2011, a reduction of 4.1%. Using a relative density model
Selective logging (RDM) technique the increase in area of roads, skidtrails, landings, and felled tree gaps was estimated to be 17.1%.
Tropical forest management A lidar-based regression model for estimating AGB was developed using lidar metrics from the 2010 lidar
Lidar o acquisition and corresponding AGB ground plot measurements. The estimator was then used to compute
Amazon forest monitoring AGB estimates for the site in 2010 and 2011 using the 2010 and 2011 lidar acquisition data, respectively.
A model-based statistical approach was then used to estimate the uncertainty of the changes in AGB be-
tween the acquisitions. Change in RDMs between lidar acquisitions was used to classify each 50 m cell in
the study area as impacted or non-impacted by logging. The change in mean AGB for the entire study
area was —9.1 Mg ha=! + 1.9 (mean + SD) (P-value < 0.0001). The change in mean AGB for areas
newly impacted in 2011 was —17.9 + 3.1 Mg ha~' (P-value < 0.0001) while the change in mean AGB
for non-impacted areas was significantly less at —2.6 & 1.1 Mg ha™! (P-value = 0.009). These results pro-
vide corroborating evidence of the spatial extent and magnitude of change due to low-intensity logging in
tropical forests with heavy residual canopy cover.
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1. Introduction

Selective logging of high value timber is an important land use in the
Brazilian Amazon (Asner et al., 2005) and in other tropical regions
(Curran et al., 2004; Wright, 2010). At the beginning of this century,
the area of Brazilian forest subjected to selective logging was similar
to the area deforested (Asner et al., 2005). Both deforestation (INPE,
2013) and logging activities (Pereira, Santos, Vedoveto, Guimaraes, &
Verissimo, 2010) have declined at similar rates in the Brazilian Amazon
but despite these declines both activities still affect several thousand
square kilometers of forest area every year.

Reducing Emissions from Deforestation and Forest Degradation
(REDD) has been proposed as a means to mitigate carbon dioxide emis-
sions (Angelsen, 2008). Gross carbon dioxide emissions from tropical
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deforestation (excluding regrowth and carbon losses from peat and
mineral soil) accounted for approximately 0.8 Pg-C (1 Pg = 1015 g)
during the period 2000 to 2010 or approximately 10% of global an-
thropogenic carbon dioxide emissions (Baccini et al., 2012; Harris,
Brown, Hagen, Baccini, & Houghton, 2012; Harris, Brown, Hagen,
Saatchi, et al., 2012). The carbon released from forest degradation
is highly uncertain because both the area affected and carbon loss
through degradation are poorly quantified. In Brazil, logging, an
important degradation pathway, may have emitted as much as
0.1 Pg-C y~! from 1999 to 2002 (Asner et al., 2005).

Logging damage is generally quantified not in carbon terms but rath-
er in terms of ground damage and canopy damage either as a proportion
of area logged or on a per tree harvested basis (Pereira, Zweede, Asner, &
Keller, 2001, 2002; Picard, Gourlet-Fleury, & Forni, 2012). Carbon diox-
ide emissions from logging depend on the original forest carbon stocks,
the intensity of logging, the quality of the logging management, and the
rate of recovery following logging (Keller, Asner, Silva, & Palace, 2004;
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Keller, Palace, Asner, Pereira, & da Silva, 2004; Pinard & Putz, 1996). Be-
cause adequate field sampling of remote logged forest areas is costly
and difficult (d'Oliveira, Reutebuch, McGaughey, & Andersen, 2012),
we have few data on carbon losses caused by logging and as such a
great uncertainty regarding the potential for carbon mitigation for
REDD by improved management of tropical selective logging.

Prompted by the international Governor's Climate and Forests Task
Force, the Brazilian State of Acre is implementing a sustainable develop-
ment policy that aims to promote integrated forest management, where
the native forests are providers of products (timber and non-timber)
and environmental services. The main objective is to aggregate value
to the standing forest, avoid deforestation and mitigate the climatic
change effects of forest destruction and degradation. This policy permits
Acre to participate in REDD carbon markets. In 2010 Acre enacted a law
to create the State System of Incentives for Environmental Services
(SISA). SISA establishes the legal and institutional framework for plan-
ning, monitoring, and marketing carbon credits associated with sustain-
able forest management practices (Acre State, 2010; Acre. Governo Do
Estado Do Acre, 2012). Economical, rapid, and reliable methods for
measuring carbon changes over large areas of managed forests would
assist Acre State with monitoring SISA efforts.

In remote forest areas, where ground-based monitoring of forest
carbon stocks is costly and difficult, lidar may be a valuable tool for es-
timation of forests carbon stocks, carbon stock changes, and forest deg-
radation through logging. Many studies have demonstrated that small-
footprint airborne lidar systems can be used to estimate above ground
biomass (AGB) in forest types ranging from boreal to tropical (e.g.,
Andersen, Strunk, & Temesgen, 2011; Asner et al,, 2010, 2011, 2012;
Beets et al, 2011; d'Oliveira et al, 2012; Gobakken et al., 2012;
Gonzalez et al., 2010; Hudak et al., 2012; Koch, 2010; Li, Andersen, &
McGaughey, 2008; Naesset, 2011; Nasset & Gobakken, 2008; Nystrom,
Holmgren, & Olsson, 2012). There are limited studies on the estimation
of structural and biomass change in temperate forests using lidar data
(Bollandsas, Gregoire, Naesset, & @yen, 2013; St-Onge & Vepakomma,
2004; Yu, Hyyppa, Hyyppa, & Maltamo, 2004) and even fewer in tropi-
cal forests (Dubayah et al., 2010; Kellner, Clark, & Hubbell, 2009; Meyer
et al., 2013), these studies focus on unmanaged tropical forests. Almost
no effort has been made to investigate the use of airborne lidar to detect
selective logging in tropical forests. Weishampel, Hightower, Chase,
and Chase (2012) compared lidar estimates of canopy gaps with
Landsat estimates of deforestation for the Caracol Archaeological Re-
serve in Belize and concluded that lidar can be used as a tool for mon-
itoring fine-scale canopy changes in areas affected by selective
logging.

In a study conducted in Antimary State Forest (FEA), Acre State,
Brazil, d'Oliveira et al. (2012) used lidar data to map forest biomass in
areas of low-intensity selective logging. Using near-ground lidar return
density, rather than overstory canopy gaps, d'Oliveira et al. (2012) suc-
cessfully mapped roads, skid-trails, landings and tree gaps under heavy
residual canopy. In 2011, selective logging of the FEA study site was
completed and a second lidar dataset was acquired. Our current study
adds a temporal dimension to the predecessor study by use of lidar
data collected in May-June 2010 (prior to logging in the northern
two-thirds of the area) and in November 2011 after selective logging
operations had been completed. We investigate how lidar acquired
before and after logging can be used to quantify changes in canopy
structure and AGB, both over the entire study area and specifically in
areas affected by selective logging, thereby complementing the work
of d'Oliveira et al. (2012). The objectives of the follow-up study herein
reported were to: 1) investigate changes in lidar canopy structure
metrics used in AGB estimation that were observed between lidar
acquisitions; 2) demonstrate how a lidar model-based approach can
be used to estimate change in AGB associated with low intensity selec-
tive logging; and, 3) demonstrate how changes in area of logging roads,
skidtrails, landings, and large tree gaps can be mapped using relative
density models (RDM).

2. Materials
2.1. Study site

The study area is located in FEA, 90 km northwest of the city of
Rio Branco, Acre State, Brazil. It is a 1000 ha block of mature tropical
forest from natural origins. In the study area there are predominately
two types of forest: dense tropical forests with uniform canopy and
emergent trees and open tropical forests with large occurrence of
lianas and palm trees. The area has rolling topography with annual
precipitation of 2000 mm. Under a management plan administered
by Acre State Government a volume of approximately 10-15 m? (ap-
proximately 12-18 Mg ha~! AGB) of merchantable timber was
harvested throughout the entire site using selective logging methods
(d'Oliveira et al., 2012). At the time of the first lidar acquisition (29
May, 2-3 June 2010), most of the roads and skidtrails had been
built and the majority of the trees planned for harvest had been
felled in the southern one third of the study area. By the time of the
second lidar acquisition (29 November 2011), road building and se-
lective logging operations had been nearly completed throughout
the entire study area.

2.2. Field data and biomass calculations

A forest inventory was conducted in May 2010 immediately be-
fore the first lidar flight. The inventory used a systematic random
sample (SRS) with plots that were nominally 50 m x 50 m in size,
evenly distributed along ten lines with a total of 50 sample plots
and a total sampled area of 12.5 ha or 1.25% of the total study area
(Fig. 1). All plants greater than 10 cm diameter at breast height
(DBH) were labeled, measured and identified. Oven-dry AGB (Mg)
was estimated for each plot using an allometric equation developed
for a similar forest in the southern Amazon (Nogueira, Fearnside,
Nelson, Barbosa, & Keizer, 2008).

AGB = exp(—1.716 + 2.413*Ln(DBH))/1000.

AGB includes bark, bole, branches, foliage, and flowering materials
above the ground surface. AGB in the ground plots varied from 96.9 to
493.6 Mg ha—! (mean 230.9 4+ 10.5 SE). Details of plot location, layout,
measurement protocols, and range of observed AGB are found in
d'Oliveira et al. (2012).

2.3. Lidar data sets

Two high-density discrete return lidar datasets were collected over
the study site. Both datasets were acquired by the same lidar vendor
using the same lidar sensor and with similar sensor settings and flight
parameters (Table 1). The 2010 dataset had a pulse density of 25 m 2
and above ground flying height of 500 m, compared to 14 m~2 and
600 m for the 2011 data. For both acquisitions, the lidar vendor deliv-
ered LAS point files, filtered ground point files, and 1-m resolution
bare earth digital terrain models (DTM). The expected positional accu-
racy (1 o) of the lidar measurements is approximately 0.1 m horizontal
and 0.12 m vertical (Optech Inc., 2008).

Many studies have documented that changes in sensor model,
sensor settings, flight parameters, and seasonal foliage status (leaf-on;
leaf-off) can cause changes in computed lidar metrics (Chasmer,
Hopkinson, Smith, & Treitz, 2006; Goodwin, Coops, & Culvenor, 2006;
Hopkinson, 2007; Magnussen, Nasset, & Gobakken, 2010; Magnusson,
Fransson, & Holmgren, 2007; Morsdorf, Frey, Meier, Itten, & Allgéwer,
2008; Nasset, 2009). Fortunately, in this study, with the exception of
pulse density, sensor and flight, parameters were very similar between
the 2010 and 2011 lidar datasets. Magnussen et al. (2010) concluded
that when pulse density is greater than approximately 1 m~2, effects
on computed lidar metrics should be very limited and calibration
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Fig. 1. Fifty ground plots superimposed on the bare earth lidar DTM. Each ground plot is approximately 0.25 ha (nominally 50 m x 50 m). The southern one-third of the site was selec-
tively logged a month prior to the May-June 2010 lidar mission. The northern two-thirds of the site was logged between June 2010 and November 2011.

between lidar datasets would not be warranted; therefore, no thinning
of the 2010 lidar data was performed and the datasets were used at
their acquired data densities.

3. Lidar processing
3.1. Calculation of 2010 and 2011 plot-level lidar forest structure metrics

The FUSION “PolyClipData” routine (McGaughey, 2010) was used to
extract all returns (first, intermediates, and last returns per pulse) from
the 2010 and 2011 LAS files that fell within the boundaries of each
ground plot. The ground surface elevation (interpolated from the 2010
bare earth DTM) was then subtracted from each return to normalize
topographic variation between plots (the mean difference between the
2010 and 2011 DTMs was 0.030 m). The FUSION “CloudMetrics” routine
was used to compute descriptive statistics for the lidar point cloud ver-
tical structure for each plot in 2010 and 2011 (Table 2). A 1 m minimum
height above ground threshold was used to exclude returns from low-
lying vegetation and the ground surface. A canopy overstory threshold

Table 1
2010 and 2011 lidar acquisition specifications.

Specification 2010 2011

Aircraft (twin-engine, fixed-wing) Embraer 810 Séneca Il Embraer 810 Séneca Il

Lidar sensor Optech ALTM 3100EA  Optech ALTM 3100EA
Acquisition dates 29 May, 2-3 June 23 November
Approx. flightline separation (m) 40 65

Above ground flying height (m) 500 600

Beam Divergence mrad (1/e) 0.25 0.25

Scan angle (+ degrees off nadir) 55 6

Swath width (m) 95 125

Swath sidelap (%) 60% 50%

Scan rate (hz) 70 70

Pulse rate (Khz) 50 50

Pulse density (m~2) 25 14

height of 2 m was used to compute lidar canopy cover metrics. The
2010 plot-level lidar metrics were merged with the summarized 2010
field plot data for regression modeling with the R statistical package (R
Development Core Team, 2012).

3.2. Regression model of AGB and change estimation

3.2.1. AGB regression model

Using the 2010 lidar plot-level metrics, multiple linear regression
techniques were used to develop relationships between lidar metrics
(Table 2) and field-measured AGB. Lidar predictor variables were se-
lected using the best subsets approach (R Package ‘leaps’, Lumley,
2009) in the R statistical package (R Development Core Team,
2012). Highly collinear predictor variables were dropped from the
model.

3.2.2. Lidar estimates of 2010 and 2011 AGB and AGB change

Using the FUSION “GridMetrics” routine the area-based lidar
metrics identified as predictor variables in the AGB regression
were computed over the entire study area at 50 m resolution. The
lidar regression model and the 2010 and 2011 lidar predictor raster
layers were then used in GIS to map AGB estimates across the study
area. Change in estimated mean AGB was then computed by
subtracting the 2010 mean AGB raster values from the 2011 values
(Fig. 2).

A model-based approach was used to estimate the uncertainty
(i.e. variance) of the estimated difference in mean AGB between
2010 and 2011 both across the entire study area and within impact-
ed and non-impacted areas (see Section 3.3.2 for description of log-
ging impact areas). The methodology described by McRoberts,
Nasset, and Gobakken (2013) for estimating the mean, and corre-
sponding variance, of forest growing stock volume in a lidar-
assisted, model-based statistical framework was extended to
allow for estimating the mean, and variance, of AGB change at the
Antimary site.
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Table 2
Summary of the lidar forest structure variables derived from the lidar point cloud for each
ground plot and for each 50 m by 50 m grid cell in the study area.

Minimum height above ground

Maximum height above ground

Mean height above ground

Quadratic mean height above ground

Median height above ground

Mode height above ground

Standard deviation of height above ground

Variance of height above ground

Coefficient of variation of height above ground

Interquartile distance of height above ground

Skewness of height above ground

Kurtosis of height above ground

AAD (average absolute deviation from the mean height) of height above ground

Height L-moments (L1, L2, L3, L4)

Height L-moment skewness

Height L-moment kurtosis

Percentile height values (1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th,
75th, 80th, 90th, 95th, 99th percentiles) of height above ground

Percentage of first returns above a specified height (canopy cover estimate)

Percentage of first returns above the mean height

Percentage of first returns above the mode height

Percentage of all returns above a specified height (alternate canopy cover estimate)

Percentage of all returns above the mean height

Percentage of all returns above the mode height

3.2.3. Variance estimation for lidar-based AGB change

As stated in McRoberts et al. (2013), the main assumption of model-
based inference is that each observation is a random variable with a
distribution of possible values. The main limitation of model-based
inference is that the estimates are not necessarily unbiased. However,
in the case of the Antimary study, the use of a model-based approach
allows for the estimate of AGB change, and an estimate of the precision
of this estimate, even without field-based measurements of AGB in
2011. Again, following McRoberts et al. (2013), if Y is the random vari-
able (AGB) with a mean p and standard deviation o the observed AGB
value at the ith pixel (y;) can be represented as: y; = i + €;
where €; ~ N(0,0%). The mean AGB at the ith pixel is then

given by p; = f(X;;B) which is estimated by ﬂ,-:f(Xi;[B),
where X; is the vector of lidar-based predictor variables (P25

and VAR) at the ith pixel (available for 2010 and 2011) and B
is the vector of P predicted regression coefficients.
The variance of the difference in the estimated mean biomass

between 2011 (ﬁ N, ﬂim) and year 2010 (,%, N 1;1,-20w> is given by:

N 1 .
v =2V

1. 1.
N Zl i ™ N Zl Hiso
1= =

N
Z”izon_“izom
i=1

1 N N . R N N
= N2 Z] Zl Cov (/.1,-20“ “Hiygo My _'ufzmo)
i=1 j=
1NN,
= N2 Z] leizon Vf?'ijmo
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where v, is the variance-covariance matrix for the regression model

parameter estimates, which in the case of P = 2 (such as this study),
is given by:

V(Bo)  Cov(Bo.P)

Gov
V() G

V= | Cov(py. o) Pr.f2)
Cov(fo) Cov(Paby)  V(B)

and the elements of Z given by:

0 ston 7X52mo ; B

This variance formulation was confirmed using a Monte Carlo simu-
lation approach, where 100,000 random samples from the sampling dis-

tribution of the estimated regression model coefficients ( (N3 (B, VB)) )

were drawn and used to predict mean AGB for 2010 and 2011 over the
entire study area. The difference between the mean AGB for 2010 and
2011 was then calculated at each iteration of the simulation, and after
100,000 iterations an estimate of the sampling distribution of the differ-
ence between the means was obtained. The variance of the sampling
distribution obtained via Monte Carlo simulation was very close to
that obtained using the analytical variance estimator given above; and
furthermore, confirmed our expectation that the distribution of the dif-
ference between means was normally distributed (P-value for Shapiro-
Wilk test of normality = 0.997).

3.3. Canopy height models and relative density models (RDMs)

3.3.1. Calculation of change in high canopy area from canopy height models
The highest return in each 1 m? area was used to create 1 m-
resolution canopy surface models (CSM) for each lidar dataset.
The 2010 DTM was then subtracted from each CSM to create 1 m-
resolution canopy height models (CHM) for 2010 and 2011. ArcGIS
Spatial Analyst Raster Calculator (ESRI, 2011) was used to map
areas with canopy height greater than 30 m in 2010 and 2011.
Change in areas with canopy height greater than 30 m was then
mapped by subtracting the 2010 areas from the 2011 areas.

3.3.2. Calculation of change in area impacted by logging from relative
density models

The FUSION “Cover” algorithm was used to create 1 m-resolution
RDMs using the 2010 and 2011 lidar datasets. The RDMs were used to
identify areas impacted by roads, skidtrails, landings, and tree gaps
associated with selective logging (Fig. 3). A RDM is a raster layer of
the relative percentage of lidar returns within a user-specified above
ground height stratum. For each raster, the percentage value was
computed by dividing the number of returns in the height stratum
from 1 m to 5 m above ground by the total number of returns below
5 m, multiplied by 100 (d'Oliveira et al., 2012, Fig. 3).

By examining the 2010 and 2011 RDMs, the areas impacted by
forest operations (roads, landings, skidder trails and canopy gaps
due to tree removal) were visually distinguished from the
undisturbed areas. The impacted areas were manually digitized in
GIS. A 6 m buffer was added to the digitized centerlines of main
roads and a 4 m buffer to skidtrails. A 20 m buffer was added to
the digitized center point of landings and a 25 m buffer to harvested
tree gaps to account for typical widths of these features (Fig. 4). The
polygons of buffered impacted areas were converted to a 5 m reso-
lution raster. For each year, this 5 m impact raster was intersected
with the lidar-predicted AGB raster (50 m resolution). Those cells
in the AGB raster that contained impacted cells were classified as
disturbed to some degree by selective harvesting. Change in area
of impacted area was computed by summing the area of the 50 m
impacted cells for each lidar acquisition.

3.4. Differences between 2010 and 2011 lidar canopy metrics

Although ground plot remeasurement data were not available for
2011, because of the similar acquisition parameters, the lidar metrics
computed from each acquisition's point cloud are repeat measurements
that can be compared for the purpose of understanding change in the
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forest canopy structure associated with selective logging. The 2010 and 4. Results

2011 lidar datasets were analyzed for significant differences in the lidar

metrics selected as explanatory variables in the AGB model. Two-tailed 4.1. Lidar AGB regression model

paired t-tests were conducted between the 2010 and 2011 AGB model

explanatory variables for the 50 ground plots and for the set of 50 m A multiple linear regression model using: 1) the 25th percentile
cells where new logging impacts were identified via changes in the height above ground of all lidar returns (P25); and, 2) the variance
RDM:s. of all lidar return heights above ground (VAR) as predictor variables

2010 AGB
(Mg/ha)

I o- 100
I 100-
[ 200-
[ 300-
[F] 400-
I so0-

8888

2011 AGB
(Mg/ha)
B o- 100
[ 100-
[T 200-

]
288
BEbss

AGB Change
(Mg/ha)
I 200+
I -200 10 150
I -150t0 -100
[ -100t0 50
[[7]-s0t0-25
d [ ] -25t0-10
[ ]-10t0-5

I st0 10
d I 10 to 25+

Fig. 2.2010 (a), 2011 (b), and change (c) in AGB estimated at 50 m raster resolution with the lidar regression model. Impacted areas identified by the 2011 RDM are superimposed (black
outlines).
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Fig. 3.2010 (a) and 2011 (b) lidar relative density models showing location of roads, skidtrails, landings, and large tree gaps. The southern third of the area was selectively logged in 2010;
the northern two-thirds was selectively logged between the 2010 and 2011 lidar flights. The gray scale represents the lidar return density (black = low, light = high) in the RDM height
stratum (1 m to 5 m above ground). Main and secondary roads, landings, skidtrails and logged tree gaps are black. The 2011 (green) tall canopy areas (with trees taller than 30 m) are
superimposed over the 2010 (red) tall canopy areas (c). An enlarged section in the northern two-thirds of the site (d) identifies where individual large trees (red crowns) were removed
between lidar acquisitions. (For interpretation of the references to colors in this figure legend, the reader is referred to the web version of this article.)

provided a robust, parsimonious regression model for AGB (Table 3).
The multiple R? value for this model is 0.70 and the standard error of
the regression is 41.5 Mg ha™'.

4.2. Estimated changes in area impacted by selective logging, AGB, and
high canopy

The RDMs show that between the 2010 and 2011 lidar acquisitions,
roads, skidtrails, and landings were built throughout the northern two-
thirds of the study area that had not been logged in 2010 (Fig. 3). For
the total study site the proportion of 50 m cells that contained some
level of logging disturbance identified via the RDMs changed from
21.2% to 62.9% (Fig. 4; Table 4). Between lidar acquisitions change in
mean AGB for the entire study area was —9.1 Mgha™'4+ 1.9
(mean =+ SD) (Table 4). A significance test (assuming that the sampling
distribution of the difference between means is normally distributed, as
confirmed via Monte Carlo simulation — see Section 3.2.3) indicated
that the difference was statistically significant (P-value < 0.0001). The
change in mean AGB in 50 m cells that were not newly impacted in
2011was —2.6 + 1.1 Mg ha~! (P-value = 0.01); whereas, the change
in mean AGB for newly impacted cells was —17.9 & 3.1 Mg ha™"!
(P-value < 0.0001). It should be noted that only a small portion of
each impacted 50 m cell is occupied by roads, skidtrails, landings,
or large tree gaps; rather, the impacted 50 m cells provide a spatial
estimate of areas where felling of trees and construction of logging
access were likely to cause some associated canopy damage. The ac-
tual area of these logging features (computed from RDM 5 m cells)
increased from 6.6% in 2010 to 23.7% in 2011, an increase of 17.1%.
The proportion of the study area with canopy taller than 30 m
dropped from 22.8% in 2010 to 18.7% in 2011, a reduction of 4.1%.

4.3. Differences in lidar canopy metrics used for AGB estimation

Paired t-tests of 2010 and 2011 P25 and VAR lidar metrics computed
for the 50 ground plots and for those 50 m cells that were newly

impacted between lidar acquisitions are given in Table 5. P25 decreased
in 2011 and was significantly different (P < 0.01) between acquisitions;
whereas, no significant difference was found for VAR (P < 0.59). For the
newly impacted cells (n = 1691) which had a much higher amount of
change due to selective logging P25 decreased and was significantly
different (P < 0.0001); whereas, no significant difference was found
for VAR (P < 0.82).

5. Discussion
5.1. Differences in lidar estimates of AGB and lidar explanatory metrics

In this study, we estimated AGB change to be —9.1 Mg ha~' over
the whole study area during the time between lidar acquisitions. In
addition to a reduction in AGB associated with selective logging, one
would expect an increase in AGB for residual trees due to growth during
the 1.5 years between lidar acquisitions. AGB change due to logging
alone is likely considerably more than lidar-predicted AGB change
because lidar-based AGB change is the aggregate of all canopy change
(growth, including regeneration in gaps, mortality, seasonal changes
in leaf and flower mass, and reductions due to selective logging).
Malhi et al. (2004) reported net stem wood productivity (growth,
regeneration, and mortality) from 10 near-by natural forest sites in
southern Peru to be approx. 3.5 Mg C ha~' yr—! (approx. 7 Mg ha™!
AGB). Vieira et al. (2004) reported that a forest near Rio Branco, Brazil
was accumulating C in live AGB at rates of 1.0-1.5 Mg C ha=! yr™!
(approx. 2-3 Mg ha~! AGB). In a 12-year forest dynamics study in a
bamboo dominated forest within FEA where similar selective logging
had occurred, d'Oliveira, Guarino, Oliveira, Ribas, and Acufia (in press)
estimated an annual AGB accumulation of approx. 7 Mg ha=! yr—!
(standing trees and ingrowth). Similar growth (7 Mg ha~' yr~! or
10 Mg ha™ ! AGB for the 1.5 years between lidar acquisitions, assuming
a C:AGB conversion factor of 0.5) would be expected in our FEA study
site. Aggregating this expected growth with AGB change, total reduction
due to logging was likely at least 19 Mg ha~' (8% of mean AGB) for the
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Fig. 4. 2010 (black) and 2011 (gray) buffered polygons impacted by logging (roads, skidtrails, landings, and large tree gaps) and 50 m rasters where logging disturbance was detected in

each lidar acquisition.

entire study area. These estimates are of the same magnitude as planned
selectively logging removal rates (10-15 m® ha—' ~ 12-18 Mg ha™!
AGB) for the entire site. It should be noted that to estimate periodic
above ground carbon change, it is not necessary to estimate AGB change
components (e.g., growth, logging removals, logging residuals, mortali-
ty), rather, only change in total AGB is needed.

In a prior study, d'Oliveira et al. (2012) used the 2010 lidar dataset in
a model-assisted approach to estimate the mean AGB in several man-
agement units and for the entire area. A model-assisted approach
could not be undertaken for 2011 AGB estimates (or for the change in
AGB between 2010 and 2011) because a rigorous remeasurement of
the ground plots that included diameter measurements of residual
trees was not conducted at the time of the second lidar acquisition.
Therefore, a model-based approach was used to obtain precision esti-
mates for AGB change. Although this provides an indication of the pre-
cision of the AGB change, the assumptions underlying model-based
and model-assisted approaches are different and the results are difficult
to compare directly. However, given the high cost and logistical com-
plexities associated with field work in remote areas, it is likely that
this situation - where a remeasurement is acquired with lidar data
but not field data - will be encountered quite commonly in the future.
In these cases, the model-based approach presented here will provide
a means to quantify the precision (and significance) of this estimated
change, albeit under the assumptions of a model-based framework.

In future studies, we recommend that a remeasurement of plots be
conducted at the time of each lidar acquisition to allow model-assisted

Table 3
Lidar AGB (Mg ha~!) regression model.
Estimate Std. error tvalue P-value
Intercept —132.67 38.93 —341 0.001
P25 16.18 2.84 5.69 0.000
VAR 2.08 0.26 7.99 0.000

estimates of AGB precision and eliminate any bias associated with using
a regression developed from another time period or area.

Paired t-tests of the P25 lidar explanatory metric indicate that cano-
py structure had changed between acquisitions. d'Oliveira et al. (2012)
note that P25 is likely well correlated with the center of mass (CM) of
the AGB. Selective thinning removed predominately larger trees,
resulting in a reduction in both the AGB and CM of the canopy. Selective
logging did not appear to change VAR, likely because increases in VAR
associated with new gaps in the canopy were likely offset by decreases
in VAR caused by loss of larger, upper canopy trees. In future studies we
recommend that, when possible, a control block (where logging is not
planned) be flown in all acquisitions. This would provide more confi-
dence in stability (and perceived changes) of lidar metrics between ac-
quisitions. Additionally, such a control block would allow estimation of
net change expected between acquisitions in the area not due to selec-
tive logging.

Table 4

Estimates of mean and change in AGB (Mg ha™'), the percent area of canopy that was
greater than 30 m tall and change in tall canopy cover, the portion of study site identified
as being roads, skidtrails, landings, or large tree gaps from the RDMs.

2010 2011 Change
Area AGB  Area AGB  Area AGB

Total study site 100.0% 232.1 100.0% 223.0 100.0% —9.1
50 m cells impacted by logging 21.2% 2285 629% 2191 41.7% -

50 m cells not impacted by 78.8% 233.0 372% 2296 -— -
logging 41.7%

50 m cells newly impacted in 423% 2364 423% 2184 - -
2011 179

50 m cells not newly impacted in ~ 57.7% 2289 57.7% 2263 - —2.6
2011

1 m canopy cover >30 m tall 22.8% - 187% - —41% -

5 m cells RDM logging features 6.6% - 23.7% - 171% -
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Table 5

Comparisons of lidar P25, and VAR explanatory variables between lidar acquisitions for the
ground plots and the 50 m cells that were newly impacted in 2011 (two-tailed paired t-
tests).

Paired t-test variables Paired t-test statistics

Variable Variable Variable Variable P- Mean of
name mean name mean value differences
Total study area (n = 50)

2010 P25 12.59 2011 P25 11.87 0.01 —0.72
2010 VAR 77.04 2011 VAR 77.68 0.59 0.64
Newly impacted cells (n = 1691)

2010 P25 12.67 2011 P25 11.57 0.0001 —1.10
2010 VAR 79.04 2011 VAR 78.96 0.82 —0.08

5.2. Changes in area impacted by selective logging and high canopy

Examining Figs. 2(c) and 3(d), it is apparent that changes in tall
overstory canopy (30 m+) estimated directly from the CHMs, the
expansion of roads, skidtrails, landings, and felled tree gaps detected
in the 2011 RDM, and reductions in AGB are spatially correlated. The
percentage of area in tall canopy was reduced considerably more in
the northern two-thirds of the study area where most of the new selec-
tive logging occurred. Our reported portion of impacted area (23.7%) is
much higher than Pereira et al. (2002) reported for ground damaged by
selective logging in the Eastern Amazon (approx. 5-10%) despite the
greater log volume extracted at those sites. This difference is likely
attributed to different definitions and measurement methods. In
our study we define impacted areas as those having low RDM values
(i.e., areas where understory vegetation had likely been removed or
crushed during logging activities). These impacted areas would in-
clude the actual road, skidtrail, and landing surfaces and adjacent
areas where considerable understory damage had occurred as trees
were felled, limbed, and skidded. We also included felled tree gaps.
Pereira et al. (2002) restricted their definition to actual ground dam-
age (road, skidtrail, and landing widths where soil damage or dis-
placement occurred) and did not include felled tree gaps. Although
these canopy and impact area changes are not useful in estimation
of AGB change, they do provide corroborating evidence of the extent
and spatial distribution of very low-intensity selective logging that is
difficult to positively identify with the most remote sensing techniques.

6. Conclusions

This work demonstrates the potential of airborne lidar for quantifica-
tion of structural changes (at both ground and canopy levels) in selective-
ly logged tropical forests even at very low logging intensities. A model-
based approach was used to quantify the uncertainty of the change in
AGB for the entire study area as well as impacted and non-impacted
areas. These results indicate that lidar could be a valuable tool for
REDD-related carbon monitoring systems, and may provide a means to
quantify changes in aboveground carbon attributable to low-intensity se-
lective logging activities that would be very difficult to detect using other
forms of remote sensing (satellite imagery, etc.). In future studies, we rec-
ommend that lidar sensor and mission specifications remain similar. This
will provide some level of confidence that AGB predictions (either gener-
ated using a regression model developed over similar forest sites, or from
the same site, but applied with lidar data from a different acquisition as in
the case of this study) are observations from the same “superpopulation”
and therefore the assumptions behind model-based inference remain
valid. Additionally, when possible, a control block where logging is not
planned between lidar acquisitions should be flown to determine if
there are any significant changes in lidar explanatory metrics. Further
study is needed to determine if considerably lower lidar pulse densities
(1-4 m™~2) can provide similar results, while reducing acquisition costs.
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