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Abstract 

Savannas are globally important ecosystems of great 
significance to human economies. Savannas exist in water-
limited regions which forces tree canopies open and 
heterogeneous. The open canopy structure allows grass to 
co-dominate in the savannas by occupying different niches 
in space and time. Leaf area index (LAI) and fraction of 
photosynthetically active radiation absorbed by vegetation 
(FPAR) characterize vegetation canopy functioning and 
energy absorption capacity. LAI and FPAR are key 
parameters in most ecosystem productivity models and 
global models of climate, hydrology, biogeochemistry and 
ecology. Given the above, this study aimed to develop an 
equation of LAI calibrated by savannah in semiarid 
northeastern Brazil and proposed a model to better estimate 
the LAI for dry forest, such as the savanna (Caatinga). The 
model developed in this study may be used to improve the 
estimates of  Leaf Area Index [LAI] in dry forest with NDVI. 
One model for savanna-specific of leaf area index (LAI) has 
been developed. The use of S Curve statistical methods to 
calibrate the leaf area index (LAI) proved to be an efficient 
method. The model development gives good results in most 
of the LAI range known for Caatinga stands in Northeast of 
Brazil. The Root Mean Square Error (RMSE) calculated on an 
independent LAI dataset was 0.10, which is about 6% of the 
average measured LAI. This method offers a simple and 
operational alternative to application of complex and 
computationally intensive techniques, and could be used to 
design other species-specific LAIs. This study reinforces the 
importance of developing models to better estimate the LAI 
in different ecosystems since there are no similarities of the 
LAI between dry and humid climate. 
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Introduction 

Tropical savannas cover about one-eighth of the global 

land surface (Giambelluca et al., 2009) and are 
characterized by high plant species diversity. The 
livestock grazing on tropical savannas is the world’s 
most extensive land use. The 1960s, however, marked 
the beginning of the expansion of large-scale 
agriculture and planted pastures across the savannas 
in Brazil (Caatinga e Cerrado). Despite its extent, biotic 
richness, and vulnerability to impacts of human 
activities, this biome has received relatively little 
attention from researchers in comparison with tropical 
rain forests. Savanna covers about 45% of the area of 
South America (Scholes & Archer, 1997), most of 
which is composed of the Cerrado that is an important 
regulator of energy and mass exchange with the 
atmosphere (Miranda et al., 1997). However, the 
interactions between grasses and deeply rooted trees 
and shrubs and the effects of these interactions on 
energy and water balances are not well understood 
(Meinzer et al., 1999). 

Savannas that are globally important ecosystems of 
great significance to human economies (Sankaran et al. 
2005) exist in water-limited regions, which forces tree 
canopies open and heterogeneous (Eagleson & Segarra, 
1985), (Ryu & Science, 2010). The open canopy 
structure allows grass to co-dominate in the savannas 
by occupying different niches in space and time. The 
co-dominance of trees and grass defines the functions 
and metabolisms in the savanna ecosystems (Higgins, 
Bond, & Trollope, 2000);(House et al., 2003). However, 
how to quantify canopy architecture and monitor 
structure, function, and metabolism in savanna 
ecosystems remains challenging.  

The importance of studying vegetation dynamics has 
been recognized for decades. A key driver has been 
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the interest in understanding the patterns of terrestrial 
vegetation productivity and its relationships with 
global biogeochemical cycles, (Viña, 2004).  

Vegetation indices (VIs) to monitor terrestrial landscapes 
by satellite sensors were first developed in 1970s and 
have been highly successful in assessing vegetation 
condition, foliage, cover, phenology, and processes 
such as evapotranspiration (ET) and primary 
productivity, related to the fraction of photosynthetically 
active radiation absorbed by a canopy (fPAR), (Glenn, 
Huete, Nagler, & Nelson, 2008). 

The advantages of using remote sensing for 
monitoring terrestrial ecosystems have been well 
documented in Brazil (B. B. Silva et al., 2013), (J. D. 
Galvíncio, Pimentel, & Mendonça, 2012), (Pereira, 
França, & Galvincio, 2012), (L. G. da Silva & Galvincio, 
2012), (Moura et al., 2012), and (J. D. Galvíncio, Naue, 
Angelotti, & Moura, 2011) and exterior, (Fang, Wei, & 
Liang, 2012), (W. Wang et al., 2012), (Liu, Chadwick, 
Roberts, & Still, 2011), (Yilmaz, Hunt, & Jackson, 2008), 
(Asner & Warner, 2003), (Knyazikhin, Martonchik, 
Myneni, Diner, & Running, 1998) and (Bonan, 1995).  

The ratio of leaf surface area to unit ground surface 
area, called Leaf Area Index (LAI), is a measure of 
carbon and water balance in plants, because it 
describes the potential surface area available for leaf 
gas exchange, (Viña, 2004). LAI is an important 
parameter controlling many biological and physical 
processes of the vegetation, including the interception 
of light and water (rainfall and fog), attenuation         
of light through the canopy, transpiration, 
photosynthesis, autotrophic respiration, and carbon 
and nutrient (e.g. nitrogen, phosphorus, etc) cycles. At 
low to intermediate densities of vegetation, small 
increases in LAI can substantially enlarge the potential 
for whole-plant gas exchange; thus LAI is a major 
controller of both gross primary production and 
evapotranspiration of the canopy. At high plant 
densities, self- shading becomes a limiting factor, and 
thus increases in LAI do not directly lead to an 
increment in productivity, (Viña, 2004). 

Leaf area index (LAI) and fraction of 
photosynthetically active radiation (0.4–0.7 Am) 
absorbed by vegetation (FPAR) characterize 
vegetation canopy functioning and energy absorption 
capacity. LAI is defined as one sided green leaf area 
per unit ground area in broadleaf canopies and as the 
projected needle leaf area in coniferous canopies(Sea et 
al., 2011). LAI and FPAR are key parameters in most 
ecosystem productivity models and global models of 

climate, hydrology, biogeochemistry and ecology, 
(Myneni et al., 2002). 

The global savanna biome is characterized by 
enormous diversity in the physiognomy and spatial 
structure of the vegetation, (Hill et al., 2011). Savannas 
are fundamentally two-layer vegetation systems with 
a grassland understorey overlaid with a variable 
density of shrubs and trees in both a continuum and a 
patch arrangement: if the woody plants are absent 
then the land cover should be classified as grassland, 
and if the woody plants are so dense that the grasses 
are absent then the land cover should be classified as 
shrub land or forest. As two-layer vegetation systems 
they provide one of the most complex problems for 
retrieval of vegetation properties from remote sensing 
and consequently very specific difficulties in relation 
to modeling, and coupling remote sensing with 
modeling.(Hill et al., 2011). 

Savannas are defined as tropical and sub-tropical 
vegetation types where woody plants and grasses co-
dominate. They are characterized by a seasonal change 
of water availability with distinct rainy and dry 
seasons. Decades of research have identified not only 
water, but also nutrients, herbivory, and fire as major 
drivers of savanna vegetation dynamics,(Kutsch et al., 
2008). 

The importance of LAI estimates for ecosystem 
monitoring and assessment of vegetation dynamics 
was well known, and these estimates are of paramount 
importance for the understanding of ecosystem 
productivity and climatology, hydrology, biogeo-
chemistry process and ecology. Move towards 
increasingly improve these estimates will always be of 
interest to the scientific community. 

It is known that many of the equations used to 
estimate LAI are resulting of calibration in irrigated 
area where vegetation is with great water conditions. 
These equations are not suitable for estimating LAI in 
dry forest, as in the case of forests found in the 
semiarid region of Northeast Brazil (Caatinga). To 
improve these equations, an alternative that has been 
applied in the present data is obtained from field 
spectroradiometry and portable meters of LAI. These 
methods have the advantages of not being destructive 
and so obtaining a large sample of data and improving 
a statistical evaluation of the data and models 
developed. 

Given the above, this study aims to develop an 
equation of LAI calibrated by savannah in semiarid 
northeastern Brazil and proposed a model to better 
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estimate the LAI for dry forest, such as the savanna 
(Caatinga). 

Materials and Methods 

Study Area 

The spatial location of the research sites under study is 
in the municipalities of Petrolina and Serra Talhada in 
the state of Pernambuco, Northeastern Brazil, Fig. 1.  

 
FIG. 1 SPATIAL LOCATION OF THE MUNICIPALITIES SERRA 

TALHADA AND PETROLINA IN BRAZIL. 

Field Data  

Data were collected on a grid 500 x 500 meters, which 
corresponds to an area of 250,000 m2 per site. A total 
of  two sites, one in Serra Talhada and another in 
Petrolina, each was divided into a grid of 5 x 5 or 25 
sampling points. In 32 samples reflectance data and 
LAI were obtained. These data varied temporally and 
spatially corresponding to days: 05/19/2011, 06/14/2011 
to 06/16/2011, 03/15/2012 to 05/17/2012, 11/22/2012, 
November/28 and 29/2012, 02 and 03 of the April of 
2013, Long Term Ecological Program-LTER, sites, in 
Brazil PELD, obtained in Petrolina and Serra Talhada. 

Spectral Reflectance Data  

Spectral reflectance was measured between 336 and 
1045 nm with a spectral resolution of 1 nm, covering 
visible and near-infrared portions of the 
electromagnetic spectrum. Fieldspec HandHeld (ASD, 
Boulder, USA) fitted with a fiber optic probe having a 
25° field of view was used. The spectroradiometer was 
optimized using reference white plate(Josiclêda D 
Galvíncio, Naue, Angelotti, & Moura, 2011). 

Leaf Area Index  

Leaf area index (LAI) was measured using a plant 

canopy analyzer (Accupar, Decagon Devices, Inc. 2365 
NE Hopkins Ct. Pullman, WA 99163-USA), which 
estimates LAI based on attenuation of light by the 
canopy at various angles. The Accupar is a linear 
ceptômetro used to measure light interception in plant 
canopies and to calculate the leaf area index. Contains 
80 independent sensors (1cm). It was measures 
photosynthetically active radiation (400-700 nm) with 
a range from 0 to 2.500 µmol/m2s. The resolution is 1 
µmol/m2s. 

IKONOS Satellite Data 

The IKONOS satellite data were acquired for the 
PELD, site 22, (http://www.ufpe.br/sercaatinga). The 
data were delivered in a geo-registered, UTM 
projection with 11-bit radiometric resolution.  

The image used data corresponding to 08/26/2008, 
with azimuth 49.7925, 60.79709 elevation and time of 
satellite passage: 13: 13 GMT. The IKONOS satellite 
sensor has a spatial resolution of 1 m. This image 
covers the area of the site 22 of PELD in Petrolina. The 
area located in savanna (Caatinga) preserved of the 
Embrapa Tropical semiarid, with coordinates (09º 09 'S 
latitude and 40º 22' W longitude), Fig. 2. 

 
FIG. 2 IKONOS IMAGE, SITE 22, PELD, PETROLINA-PE. 

NDVI-Normalized Difference Vegetation Index 

The reflectance data was obtained NDVI using 
average reflectance from 630 to 700 nm (red) and mean 
reflectance between 760 to 850 nm (near infrared). 

Test Methods 

Linear regression was applied and tested in the 
following models: Linear (1), Logarithmic (2), Inverse 
(3), Quadratic (4), Cubic (5), Compound (6), Power (7), 
S (8), Growth (9) and Exponential (10). 

1)  Linear 

Model whose equation is  
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Y = b0 + (b1 * t)                                                           (1) 
The series values are modeled as a linear function 
of time. 

2)  Logarithmic 

Model whose equation is  
Y = b0 + (b1 * ln(t))                                                     (2) 

3)  Inverse 

Model whose equation is 
Y = b0 + (b1 / t)                                                           (3) 

4)  Quadratic 

Model whose equation is  
Y = b0 + (b1 * t) + (b2 * t**2)                                   (4) 

The quadratic model can be used to model a series 
that "takes off" or a series that dampens. 

5)  Cubic 

Model that is defined by the equation 
Y = b0 + (b1 * t) + (b2 * t**2) + (b3 * t**3)               (5) 

6)  Power 

Model whose equation is  
Y = b0 * (t**b1) or ln(Y) = ln(b0) + (b1 * ln(t))       (6) 

7)  Compound 

Model whose equation is  
Y = b0 * (b1**t) or ln(Y) = ln(b0) + (ln(b1) * t)       (7) 

8)  S-curve 

Model whose equation is  
Y = e**(b0 + (b1/t)) or ln(Y) = b0 + (b1/t)               (8) 

9)  Growth 

Model whose equation is  
Y = e**(b0 + (b1 * t)) or ln(Y) = b0 + (b1 * t)          (9) 

10)  Exponential 

Model whose equation is  
Y = b0 * (e**(b1 * t)) or ln(Y) = ln(b0) + (b1 * t)  (10) 

Where Y is dependent variable (estimated) (This 
study, LAI), b0 and b1 are constant, t is 
independent variable (This study, NDVI). 

To evaluate the models, we used the Pearson 
correlation coefficients (r), coefficient of determination 
(r2), Ajusted r2, Std Error of the Estimate, Sum of 
Squares, difference (df), Mean Square, F- degrees of 
Freedom and significance level. 

After choosing the model that best fitted the data 

observed, LAI was made to estimate LAI with the new 
model. 

The new model development in this study was 
compared with the model by (Bastiaanssen, 1995) in 
SEBAL (Surface Energy Balance Algorithm for Land) 
model. We calculated the absolute error between the 
LAI estimated and observed. 

Aplication of the New Model in IKONOS Image 

The new model was applied to the IKONOS image 
configuration described in item 2.5. The equations 
used for radiometric calibration and of reflectance are 
presented below. 

Radiometric calibration of the IKONOS 

The radiometric calibration of satellite sensors 
IKONOS can be obtained by Equation 11: 

410 DN
L

Coef BandaWith
λ

λ
λ λ

=                             (11) 

where DNλ is digital number in band λ, Coef λ and 
Banda with λ are the coefficient of calibration in band λ, 
Table 1. 

TABLE 1 RADIOMETRIC CALIBRATION COEFFICIENT OF BY BAND. 

Wavelength (μm) Calibration 
coefficient 

Band 
withλ 

Esunλ 
2 1(Wm μm )− −  

Band 1 (0,45 – 0,52) 728 71,3 1930,9 
Band 2 (0,51-0,60) 727 88,6 1854,8 

Band 3 (0,63 – 0,70) 949 65,8 1556,5 
Band 4 (0,76 – 0,85) 843 95,4 1156,5 

Pan 161 403 1375,8 

Reflectance 

The reflectance was estimated by Equation 12  
2L d

L
ESUN CosZ

λ
λ

λ

π
=                                (12) 

where λL  is spectral radiance in bandλ, λESUN  is 
spectral irradiance of each band at the top of the 
atmosphere ( 2 1Wm μm− − , Table 1), Z is solar zenith 
angle and 2d  is square of the average distance Earth-
Sun and estimated by:  

1 0,033cos( .2 / 365)rd DSA π= +                 (13) 
where DSA represents the day of the year sequential 
and cos is rad. The mean value year ( rd ) is 1 (one). 
This value rd  can fluctuate between 0.97 and 1.03. 

Results and discussion 

We evaluated the ten models proposed in tis study. 
The model that best fit was S-curve with r = 0.781 
(Table 1). It can be said that there is a strong 
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correlation between NDVI and LAI. The NDVI is 
sensitive to changes in leaf area, pigments and water 
relations in plants(Moura et al., 2012). A marked 
relationship has been observed between FAPAR 
(Fraction of Absorbed Photosynthetically Active 
Radiation) and NDVI, (R2 = 0.923). In this study, the 
new model development taking into account the 
NDVI and FAPAR, is a model based on natural 
physical processes. Thus, it is suggested that the 
proposed model is great to evaluate the dynamic 
variations of natural ecosystem in study. (Moura et al., 
2012) claimed that it is necessary to analyze the 
relationship under different weather conditions and 
the state of the vegetation to be more confident with 
the results, since the savanna vegetation has 
deciduous species and their behavior depends on the 
availability of soil water. 

Models based on physical processes proved to be a 
promising alternative to describe the transfer and 
interactions of radiation inside the canopy based on 
physical laws and thus providing an explicit 
connection between the biophysical variables and 
canopy reflectance (Galvincio, Moura, Silva, Silva, & 
Naue, 2013). 

TABLE 2 MODEL SUMMARY 

R R Square Adjusted R Square Std. Error of the Estimate 
.781 .609 .596 .270 

The independent variable is NDVI. 

Table 2 displays a summary analysis of variance for 
selected model. Note that the sum of squared errors is 
equal to 3.401 in the regression, the difference is 1 and 
the degrees of Freedom is 46.800 with a significance 
level of 0.00. 

TABLE 3 ANOVA 

 Sum of Squares df Mean Square F Sig. 
Regression 3.401 1 3.401 46.800 .000 
Residual 2.180 30 .073   

Total 5.582 31    
The independent variable is NDVI. 

TABLE 4 COEFFICIENTS 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

B Std. Error Beta 
1 / NDVI -.542 .079 -.781 -6.841 .000 

(Constant) 1.426 .172  8.312 .000 
The dependent variable is ln(Leaf Area Index [LAI]). 

The coefficients of the equation are shown in Table 3. 
According to the data, the LAI can be estimated by the 
following equation: 

LAI = EXP (1.426+ (-0.542/NDVI)              (14) 
where 1.426 is constant b0 and -0.542 is constant b1.  

Or  
Ln(LAI) = 1.426 + (-0.542/NDVI)                (15) 

The relationship between NDVI and LAI with MODIS 
images, in forest sites from western oceanic to 
continental zones, and from boreal to Mediterranean 
countries was examined by (Q. Wang, Adiku, 
Tenhunen, & Granier, 2005). The results of this study 
were high correlations in period of the leaf in plant 
and low correlation when no leaf in plant. It was 
shown that possible reasons for this would be 
background reflectance following snowmelt. Thus, 
although the NDVI–LAI relations were good for the 
individual years for the leaf production stage (R2 were 
0.99, 0.99, and 0.98), the relationship was poor when 
all the data were pooled over years (R2 of 0.03)(Q. 
Wang et al., 2005). This may be attributed to the fact 
that each individual year has a different background 
NDVI, which should be corrected before applying the 
NDVI data over years. Indeed, when the background 
NDVI was corrected before pooling the data, the LAI–
NDVI relation was improved and the following was 
the result for relative NDVI and LAI during the leaf 
production period.  

This discussion is important because errors in the 
savanna of the relationship NDVI and LAI are similar. 
In special in this study by reason of caatinga losing 
their leaves in the dry. Many of the models are great in 
rainy season but err for the dry period. 

The relationship between observed values and 
estimated LAI can be seen in Figure 3. In general, the 
new model accompanying with change in LAI 
observed. The Mean Square Error for the new model 
was 0.10. 

 
FIG. 3 RELATIONSHIP BETWEEN OBSERVED AND MODEL LAI. 

In study of (Li & Wang, 2013) four types of indices for 
deriving canopy LAI were examined. The results 
revealed that all the identified best indices had the 
wavelength combinations (λ1 and λ2) within the 900–
1100 nm domain. It had an Root Mean Square Error 
(RMSE) of 0.62, 0.85, 0.96, and 1.22 m2/m2, and a BIAS 
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of 0.42, 0.47, 0.55, and 1.01 m2/m2 for simulated 
datasets. 

Table 4 shows value of LAI estimated (new model and 
SEBAL) and observed and error of new model and 
SEBAL. 

Table 5 value of observed and estimated leaf area index (new model 
and SEBAL) and absolute errors of estimated. 

Leaf Area Index 
[LAI] 

LAI New 
model 

LAI 
Sebal 

Error 
Sebal 

Error New 
model 

1.72 1.532486 0.17255 1.54745 0.187514 
1.11 1.377083 0.294847 0.815153 -0.26708 
2.19 1.986452 1.059161 1.130839 0.203548 
1.84 1.984388 1.056123 0.783877 -0.14439 
1.48 1.344119 0.194006 1.285994 0.135881 
1.83 0.911027 0.094412 1.735588 0.918973 
1.45 1.428 0.313593 1.136407 0.022 
1.56 1.489318 0.253545 1.306455 0.070682 
1.47 1.54762 0.17176 1.29824 -0.07762 
1.73 1.559975 0.299082 1.430918 0.170025 
1.48 1.542821 0.266588 1.213412 -0.06282 
1.4 1.865484 0.525775 0.874225 -0.46548 
1.6 1.921666 0.481509 1.118491 -0.32167 
1.76 1.792904 0.541882 1.218118 -0.0329 
1.62 1.20032 0.195214 1.424786 0.41968 
1.92 1.768639 0.166038 1.753962 0.151361 
2.07 1.361062 0.2834 1.7866 0.708938 
1.69 1.768639 0.166038 1.523962 -0.07864 
1.77 1.361062 0.2834 1.4866 0.408938 
1.93 1.760243 0.348163 1.581837 0.169757 
1.27 1.712505 0.417355 0.852645 -0.4425 
1.3 1.849692 0.452062 0.847938 -0.54969 
1.53 1.635197 0.346178 1.183822 -0.1052 
1.72 1.851896 0.087054 1.632946 -0.1319 
0.31 0.63024 -0.00539 0.315388 -0.32024 
0.67 0.818731 0.076402 0.593598 -0.14873 
0.56 0.730442 0.000589 0.559411 -0.17044 
0.65 0.78498 0.126754 0.523246 -0.13498 
1.45 0.920525 0.246092 1.203908 0.529475 
1.02 0.980852 0.319665 0.700335 0.039148 
0.98 0.919669 0.278617 0.701383 0.060331 
1.14 0.937536 0.272295 0.867705 0.202464 

Média = 1.444375 1.414862 0.305774 1.138601 0.029513 

Note that the absolute error of the New model was 
0.029 and the absolute error of SEBAL was 1.138. 
RMSE for SEBAL 1.44 and the new model 0.10 have 
yet been obtained. Note that the new model provides a 
better estimate of LAI when compared with the 
SEBAL. Statistical result similar to that found in this 
study was obtained from calibrating the Eucalyptus 
LAI for MODIS images. The authors obtained a 
coefficient of determination of 0.68 with a significance 
level of 0.001(Le Maire, Marsden, Nouvellon, Stape, & 
Ponzoni, 2012). 

Indirect determination of LAI, as an important 
measure of canopy structure, is affected by clumping 

of needles in conifer species and to a lesser extent of 
leaves in deciduous species. Clumping seems to be the 
main factor causing errors in the LAI estimation, 
(Jonckheere et al., 2004). 

 

 
FIG. 4 LAI NEW MODEL. 

 

 
FIG. 5 LAI SEBAL 

IKONOS 

LAI was estimated using the new model (Fig. 4) and 
the model proposed in SEBAL (Fig. 5) in IKONOS 
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image. In general, the new model presented LAI 
greater than 0.12 while the LAI estimated from the 
formula proposed by SEBAL was less than 0.08. 
Comparing Figs. 4 and 5 to Fig. 2, it is noted that the 
new model has values more consistent with reality 
than the LAI estimated with SEBAL. 

The spatial relation between the values of the new 
model and SEBAL is showed in Fig 6, indicating a 
relation of r2 = 0.977, ie, physically the two models 
respond spatial variations of LAI in the local. However, 
the new model proposed here best represents the 
quantitative value of LAI spatially. 

 
FIG. 6 RELATIONSHIP BETWEEN LAI NEW MODEL 

AND LAI SEBAL. 

The study took place in an evergreen scrub oak 
ecosystem in Florida (Pontailler, Hymus, & Drake, 
2003). Vegetation reflectance was measured in situ 
with a laboratory-made sensor in the red (640–665 nm) 
and near-infrared (750–950 nm) bands to calculate the 
normalized difference vegetation index (NDVI) and 
derive the leaf area index (LAI). LAI estimates from 
this technique were compared with two other 
nondestructive techniques, intercepted photosynthetically 
active radiation (PAR) and hemispherical photographs, 
in four contrasting 4 m2 plots in February 2000 and 
two 4 m2 plots in June 2000. Beer’s law was employed 
to derive LAI from PAR interception and gap fraction 
distribution to derive LAI from photographs. The 
plots were harvested manually after the measure-
ments to determine a “true” LAI value and to calculate 
a light extinction coefficient (k). The technique based on 
Beer’s law was affected by a large variation of the 
extinction coefficient, owing to the larger impact of 
branches in winter when LAI was low. Hemispherical 
photographs provided satisfactory estimates, slightly 
overestimated in winter because of the impact of 
branches or underestimated in summer because of 
foliage clumping. NDVI provided the best fit, showing 
only saturation in the densest plot (LAI = 3.5). It was 
concluded that in situ measurement of NDVI is an 

accurate and simple technique to nondestructively 
assess LAI in experimental plots or in crops if 
saturation remains acceptable(Pontailler et al., 2003). 

Leaf area index (LAI) is a key variable functionally 
related to plant biomass production. Accurate 
estimation of LAI is important for monitoring 
vegetation dynamics, and LAI information is 
essentially required for the prediction of microclimate 
and various biophysical processes within and below 
canopy(Fan, Gao, Brück, & Bernhofer, 2008). The 
traditional, direct and destructive method of 
measuring LAI is time-consuming. Modern gap 
fraction technique can assess LAI fast and easily, 
however, its application is problematic with 
vegetations of low stature. Alternatively, NDVI 
(Normalized Difference Vegetation Index) as a widely 
used spectral reflectance index has been shown to be a 
good estimator of LAI to estimate LAI indirectly.  In 
situ measurements of NDVI and LAI at three sites in 
semiarid grassland in Inner Mongolia, China were 
carried out during the growing season. Based on these 
sites, a general linear and exponential relationship 
were developed, which can be used for various 
grazing intensity grasslands and also for higher 
vegetation cover area (e.g. wetland) in the region. 
Thesituation similar in dry forest in Nordeste of the 
Brazil was investigated. An equation was developed 
that can be used for estimating LAI suitable for the 
natural range of vegetation in this area during the 
growing season under both normal and dry weather 
conditions. By simply applying NDVI measurements 
and these relation- ships, the vegetation status and 
grass yield in the area will be rapidly and 
nondestructively estimated, which is helpful for 
livestock management and sustainable land use. 

Conclusions 

The model developed in this study may be used to 
improve the estimates of  Leaf Area Index [LAI] in dry 
forest with NDVI. We have developed one model for 
savanna-specific of leaf area index (LAI). 

The use of S Curve statistical methods to calibrate the 
leaf area index (LAI) was proved to be efficient.  

The model development gave good results in most of 
the LAI range known for Caatinga stands in Nordeste 
of Brazil. The Root Mean Square Error (RMSE) 
calculated on an independent LAI dataset was 0.10, 
which is about 6% of the average measured LAI. 
However, high LAI values were still difficult to 
retrieve with such an index. The indices were tested 
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on a dataset showing a large range of climate 
conditions. In addition, validation on a larger dataset 
would be useful to confirm their accuracy. 
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