Adaptabilidade e Estabilidade de Cultivares de Milho no Nordeste Brasileiro: Safra 2011/2012

Carlos Roberto Martins¹, <u>Hélio Wilson Lemos de Carvalho</u>¹, Emiliano Fernandes Nassau Costa¹, Milton José Cardoso², Cleso Antônio Patto Pacheco³, Leonardo Melo Pereira Rocha³, Paulo Evaristo Oliveira Guimarães³, Vanessa Marisa Miranda Menezes⁴, Maitte Carolina Moura Gomes⁴

Resumo

O objetivo deste trabalho foi averiguar a adaptabilidade e a estabilidade de quarenta e cinco híbridos de milho em quinze ambientes do Nordeste brasileiro, na safra 2011/2012, para fins de recomendação. Utilizouse o delineamento experimental em blocos ao acaso com duas repetições. Ao parâmetros de adaptabilidade e estabilidade foram estimados utilizando-se o modelo bissegmentado de Cruz, Torres e Vencovsky. Os híbridos avaliados mostraram comportamento diferenciado nas condições desfavoráveis de ambientes. Os híbridos BI 9435 PR, 8 K 90007 H, BG 9619 PR, P 3862 H,BH 9727 PR, 30 K 64 H e DKB 399 justificaram suas recomendações para os ambientes favoráveis, enquanto os 7 B 7366 HX e AS 1555 YG qualificaram-se para os ambientes desfavoráveis. Aqueles híbridos que evidenciaram adaptabilidade ampla constituíram-se em ótimas alternativas para exploração comercial no Nordeste brasileiro.

Introdução

A cultura do milho ocupa lugar de destaque no Nordeste brasileiro pelo alto potencial que representa para essa região como fonte de alimento. Além disso, a cultura alcança altos níveis de produtividade em áreas de cerrados inseridas nos estados da Bahia, Maranhão e Piauí (Cardoso et al., 2012) e em áreas de agreste e de tabuleiros costeiros localizadas nos Estados da Bahia, Sergipe e Alagoas (Carvalho et al., 2012). Os plantios, nessa região, ocorrem nas mais variadas épocas, indo de dezembro a janeiro, em áreas de cerrados e, de abril a junho, em áreas de tabuleiros e agreste, nos mais variados sistemas de produção, exigindo grande adaptação dos genótipos nos diversos ambientes de plantio.

Para os melhoristas a estabilidade das cultivares frente às variações ambientais é tão importante quanto à busca por cultivares de elevado potencial para a produtividade. A ocorrência da interação cultivar x ambiente tem grande importância, principalmente para o caráter produção de grãos, sendo necessário, em caso de presença dessa interação, realizar estudo de adaptabilidade e estabilidade visando recomendação de cultivares com alta adaptabilidade e estabilidade fenotípica.

Diante deste aspecto, realizou-se o presente trabalho visando avaliar a adaptabilidade e a estabilidade de cultivares de milho quando submetidas a diferentes ambientes no Nordeste brasileiro, para fins de recomendação.

Material e Métodos

Os ensaios, compostos por 45 cultivares, foram instalados na Região Nordeste do Brasil, na safra 2011/2012. Os municípios contemplados foram Mata Roma, Colinas, São Raimundo das Mangabeiras, Brejo, Paraibano e Balsas, no Estado do Maranhão; Teresina, Uruçuí, Bom Princípio e Nova Santa Rosa, no Piauí e Poço Redondo, Umbaúba, Nossa Senhora das Dores e Frei Paulo, em Sergipe. Esses municípios estão localizados entre as latitudes 3° 11', em Uruçuí e Bom Princípio e 12° 22', em Umbaúba.

Utilizou-se o delineamento experimental em blocos ao acaso, com duas repetições. Cada parcela constou de quatro fileiras de 5,0 m de comprimento, espaçadas de 0,70 m e com 0,20 m entre covas, dentro das fileiras. As duas fileiras centrais foram colhidas para determinação da produtividade. As adubações realizadas nesses ensaios seguiram as orientações dos resultados das análises de solo de cada área experimental.

- 1 Engenheiro Agrônomo, Pesquisador da Embrapa Tabuleiros Costeiros Aracaju/SE, email: carlos.r.martins@embrapa.br, helio. carvalho@embrapa.br, emiliano.costa@embrapa.br
- 2 Engenheiro Agrônomo, Pesquisador da Embrapa Meio Norte Teresina/PI, email: milton@cpamn.embrapa.br
- 3 Engenheiro Agrônomo, Pesquisador da Embrapa Milho e Sorgo Sete Lagoas/MG, email: cleso@cnpms.embrapa.br, leonardo@cnpms.embrapa.br, paulo.evaristo@embrapa.br
- 4 Estagiaria da Embrapa Tabuleiros Costeiros Aracaju/SE, email: vanessammm2003@hotmail.com, maitte_carolina@hotmail.com

Os dados de produtividade foram submetidos à análise de variância, considerando-se o efeito de tratamentos como fixo e os demais como aleatórios. Em seguida, foi realizada a análise conjunta dos experimentos. Para isso, verificou-se a existência de homogeneidade das variâncias residuais obtidas nas análises individuais sempre que a razão entre o maior e o menor quadrado médio residual foi inferior a sete (Gomes, 1985).

Os parâmetros de adaptabilidade e estabilidade foram estimados pelo método de Cruz et al., (1989).

Resultados e Discussão

A análise de variância conjunta evidenciou interação cultivar x ambiente e diferenças entre médias de cultivares e de ambiente em relação á produtividade de grãos, o que revela adequação de um estudo de adaptabilidade e estabilidade. O valor do coeficiente de variação foi de 10,0 %, indicando excelente precisão ambiental (Lúcio et al., 1999).

No tocante aos parâmetros de adaptabilidade e estabilidade (Tabela 1), estimados conforme Cruz et al., (1989), nenhum dos genótipos avaliados apresentou o comportamento ideal preconizado pelo modelo: média alta (b₀>média geral), adaptabilidade a ambientes desfavoráveis (b₁<1), responsividade a melhoria ambiental (b₁+b₂>1), desvios da regressão (s²d) não significativos (alta estabilidade) e R²>80% que, segundo Cruz & Regazzi(1977), são indicativos de que o genótipo previsibilidade razoável por apresentar bom ajuste às retas de regressão. Portanto, a seleção e a recomendação dos genótipos deverão ser específicas e individuais para cada situação de ambiente favorável e desfavorável.

Assim, foram considerados como híbridos com potencial de recomendação para os ambientes favoráveis os que evidenciaram produtividade média de grãos superior à média geral (b₀>média geral), alta sensibilidade aos ambientes desfavoráveis (b₁>1) e respostas à melhoria ambiental (b₁+b₂>1), tais como os BI 9435 PR, 8 K 90007 H, BG 9619 PR e P 3862 H. Os híbridos BH 9727 PR, 30 K 64 H e DKB 399, por serem exigentes nas condições desfavoráveis e apresentarem rendimentos médios de grãos acima da média geral também devem ser sugeridos para exploração comercial nos ambientes favoráveis. Por outro lado, os genótipos que evidenciaram baixa sensibilidade aos ambientes favoráveis (b₁< 1), a exemplo dos 7 B 7366 HX e AS 1555 YG associadas altos rendimentos de grãos (b₀>média geral), têm suas recomendações para os ambientes desfavoráveis. Os materiais que evidenciaram adaptabilidade ampla (b₀=1) e elevados rendimentos de grãos (b₀>média geral), constituem-se em excelentes alternativas para a agricultura regional, a exemplo dos BI 9076 PR, 30 R 50 H, P 3696 H, DKB 330 YG, 2 B 710 H, entre outros. Nesse grupo de materiais de melhor adaptação (b₀>média geral), os que mostraram os desvios da regressão significativos evidenciaram baixa estabilidade nos ambientes estudados, apesar de Cruz et al., (1989) considerarem que aqueles materiais com estimativas de R²>80% não devem ter seus graus de previsibilidade comprometidos.

Tabela 1 Estimativas de parâmetros de adaptabilidade e estabilidade de 45 cultivares de mandioca em 10 ambientes, na região do meio norte+ Nordeste, pelo método de Cruz et al (1989). CV(%) = 10,1 e média = 8908 kg/ha.

Cultivares	Médias de grãos (kg/ha)			b1	b_2	b ₁ +b ₂	s_d^2	$R^2(\%)$
	Geral	Desfavorável	Favorável	. 01	o_2	$o_1 \cdot o_2$	S d	IX (70)
BI 9435 PRO	10510	8605	11780	1.85**	1.24ns	3.10**	1290754**	72
8K 90007 H	10134	8654	11120	1.43*	1.47*	2.90**	141234ns	83
BI 9076 PRO	9954	8730	10770	1.33ns	2.60**	3.93**	1370259**	62
BG 9619 PRO	9949	8167	11136	1.71**	0.99ns	2.70*	95025ns	88
30 R 50 H	9948	8592	10851	1.27ns	-0.19ns	1.07ns	1588421**	47
P 3862 H	9944	8307	11035	1.81**	1.13ns	2.94**	1193267**	72
7 B 7366 HX	9931	9408	10280	0.62*	3.29**	3.91**	436116*	64
P 3696 H	9803	8407	10733	1.33ns	0.71ns	2.05ns	463856*	71
BH 9727 PRO	9766	8262	10768	1.63**	0.40ns	2.03ns	602928**	75
2 B 710 HX	9730	8495	10553	1.33ns	0.51ns	1.85ns	130493ns	80
30 K 64 H	9638	7953	10761	1.51**	0.25ns	1.76ns	414559*	76
DKB 399	9583	8157	10534	1.39*	-0.96ns	0.44ns	8388**	62

DKB 330 YG	9568	8667	10169	1.04ns	1.93**	2.98**	158419ns	76
AS 1596 RR2	9336	8425	9944	0.95ns	1.41ns	2.36ns	217161ns	68
2B 678	9326	8266	10032	1.11ns	0.24ns	1.35ns	-139587ns	84
AS 1590 YG	9280	8390	9872	0.83ns	1.34ns	2.18ns	-103568ns	78
BH 9546	9270	8158	10012	1.03ns	0.14ns	1.18ns	299198ns	63
30 K 73 H	9210	8532	9661	0.74ns	1.59*	2.33ns	558821**	50
P 4285 H	9195	8 284	9802	0.99ns	1.23ns	2.22ns	436310*	62
AS 1596	9104	8058	9801	1.08ns	0.46ns	1.54ns	144534ns	72
SYB 7 B 28 VIP	9075	8052	9757	0.87ns	-2.32**	-1.45**	456414*	52
3 H 842	9073	7923	9840	1.06ns	-0.04ns	1.01ns	365388*	62
AS 1555 YG	9061	8820	9221	0.49**	2.72**	3.21**	548154**	50
BRS 1055	8978	8277	9445	0.65ns	-0.85ns	-0.20ns	52594ns	50
30 F 53 HR	8977	7515	9951	1.28ns	-1.51*	-0.22ns	645014**	63
DKB 117 RR2	8943	8175	9455	0.78ns	0.06ns	0.83ns	-87666ns	68
BH 8547	8792	7488	9660	1.14ns	-1.48*	-0.34ns	363125*	64
STATUS VIP	8784	8059	9267	0.70ns	0.84ns	1.55ns	287032ns	50
IMPCTO TL	8772	7698	9488	1.09ns	-0.23ns	0.86ns	16517ns	76
1 F 640	8733	7529	9536	0.93ns	-3.27**	-2.34**	710164**	54
BRS 1040	8700	7991	9173	0.62*	-0.71ns	-0.09ns	-71620ns	55
DKB 245	8607	7926	9060	0.69ns	-1.29ns	-0.60*	166024ns	48
BRS 1060	8441	7223	9253	1.05ns	-2.13**	-1.08**	619623**	55
IMPACTO	8408	7873	8765	0.59*	-0.03ns	0.5ns	410365*	33
3 H 813	8177	7310	8755	0.89ns	-1.13ns	-0.24ns	-76631ns	72
BRS 1030	8138	7167	8785	0.88ns	-1.79*	-0.91**	77703ns	65
1 G 748	8079	7306	8595	0.79ns	0.63ns	1.42ns	650006**	43
2 E 530	7911	6913	8577	0.90ns	0.15ns	1.05ns	-277024ns	88
AS 1565	7903	7431	8218	0.39**	0.69ns	1.08ns	630481**	19
BRS 2022	7875	7148	8359	0.68ns	0.41ns	1.04ns	-36000ns	61
SHS 7090	7629	7128	7963	0.42**	-1.46*	-1.04**	-14000ns	40
SHS 5550	7601	6576	8284	0.94ns	-2.49**	-1.55**	514852**	55
BRS 2020	7492	6480	8167	0.79ns	-1.19ns	-0.40*	113369ns	56
BRS 4103	6799	6200	7197	0.40**	-0.42ns	-0.02ns	526789**	16
PRE 12 S 12	6733	5522	7540	0.91ns	-2.93**	-2.02**	1700838**	35

^{**} e * Significativos a 1% e 5% de probabilidade, respectivamente, pelo teste t de Student, para b. ** e * Significativos a 1% e 5%, respectivamente, pelo teste F para s²_d. As médias seguidas pelas mesmas letras não diferem entre si pelo teste de Scott-Knott a 5% de probabilidade.

Referências

Cardoso MJ, Carvalho HWL de, Rocha LMP, Pacheco CAP, Guimarães PE de O, Parentony SN, Oliveira IR. (2012). Identificação de cultivares de milho com base na análise de estabilidade fenotípica no Meio Norte brasileiro. **Revista Ciência Rural**: v.43, n.2, p.3 46-353.

Carvalho HWL de, Cardoso MJ, Oliveira IR, Pacheco CAP, Lira MAL, Tabosa JN, Ribeiro SS (2011). Adaptabilidade e estabilidade de milho no Nordeste brasileiro. **Revista Científica Rural**: URCAMP, v.13, n.1, p. 15-29.

Cruz CD, Regazzi AJ (1997). **Modelos biométricos aplicados ao melhoramento genético.** 2.ed. Editora UFV, Viçosa, p. 390.

Cruz CD, Torres RA de, Vencovsky R. (1989) An alternative approach to the stability analisis by Silva and Barreto. **Revista Brasileira de Genética**: v.12, 567 - 580.

Gomes FP (1990). Curso de estatística experimental. 8ª Ed. Editora Nobel, São Paulo. 450p.

Lúcio AD, Storck L, Banzatto DA (1999). Classificação dos experimentos de competição de cultivares quanto à sua precisão. Pesquisa Agropecuária Gaúcha: v. 5, p. 99 -103.