O EFEITO DO AUMENTO DO CO₂ E DA TEMPERATURA NA PREFERÊNCIA E CONSUMO DE FOLHAS DE *Glycine max* (FABACEAE) POR *Spodoptera frugiperda* (LEPIDOPTERA: NOCTUIDAE)

Leandra Bordignon*¹, Ana Carolina V. Pires¹, Fabíola Ladeira², Yumi Oki¹, Lucas B. S. Tameirão, Mariana S. M. de Castro¹, Áurea R. Cordeiro, Erika R. G. D. Mota¹, Geraldo W. Fernandes¹, Simone M. Mendes³ e Katia G. B. Boregas³

¹Universidade Federal de Minas Gerais; ²Centro Universitário UNA; ³Embrapa Milho e Sorgo – [†]lb_bio@hotmail.com

Introdução

A soja, *Glycine max* (L.) Merril, é uma das culturas mais importantes do mundo por sua produção de alimento e geração econômica [1] sendo o Brasil o segundo maior produtor mundial. Porém, como toda cultivar, a soja também está sujeita a pragas, e frequentemente vem sendo atacada por *Spodoptera frugiperda* (J.E. Smith) que ficou conhecida como a lagarta-do-cartucho do milho [2] mas apresenta hábito polífago infestando outras culturas. Entretanto, as alterações climáticas previstas nos níveis de CO₂ atmosférico e temperatura [3] podem influenciar a composição nutricional e fatores aleloquímicos das folhas, resultando em mudanças no consumo e crescimento de insetos herbívoros [4]. Porém, ainda não se sabe como esta praga reagirá frente às modificações ocasionadas no clima num futuro próximo.

Dessa forma, o objetivo deste estudo foi verificar se as mudanças climáticas, através do aumento de CO_2 e temperatura, no cultivo da soja geram diferenças na preferência e consumo de folhas pela lagarta *Spodoptera frugiperda*.

Metodologia

Foram cultivadas plantas de soja da variedade BRS MG 760 S RR (Embrapa Soja) em câmaras de topo aberto com condições climáticas monitoradas e quatro tratamentos: CO₂ ambiente (~400 ppm) e temperatura ambiente, CO₂ ambiente e alta temperatura (aumento de três graus em relação a ambiente), alto CO₂ (~800 ppm) e temperatura ambiente e alto CO₂ e alta temperatura (três graus a mais que a ambiente), simulando a atmosfera de 2100 [3]. Folhas de soja dos quatros tratamentos foram oferecidas a larvas recém-eclodidas de *S. frugiperda*, oriundas de criação da Embrapa Milho e Sorgo.

Foi feito um arranjo dos quatro tratamentos comparandoos dois a dois e em seguida dois testes foram realizados: (I) a preferência pelo cartucho em um ensaio em placas de Petri com 10 lagartas e 20 repetições para cada comparação e (II) a área consumida, avaliada através do consumo de discos foliares dos pares de tratamentos comparados, com 12 repetições. Em ambos ensaios as placas foram fechadas, evitando o contato com a luz e mantidas a temperatura de 25 ± 1°C. Depois de 24 horas foram avaliadas a preferência e aera foliar consumida. O cálculo da área consumida foi feito através do software Sigma Scan Pro. Os dados de ambos os experimentos foram analisados através de GLM.

Resultados e Discussão

Não houve diferenças significativas na preferência de *S. frugiperda* pelos cartuchos de folhas de soja dos quatro tratamentos (p>0,05 para todas as combinações). Não foi observada também a diferença no numero de lagartas encontradas nos discos foliares de todos os pares de

combinações testadas (p>0,05), embora notou-se diferença no consumo foliar entre os discos. Folhas do tratamento alto CO_2 foram mais consumidas pelas lagartas quando estavam sujeitas a temperatura ambiente (área média de consumo=38%) que quando alta temperatura (28%) (p=0,008). Observou-se também que quando as folhas estavam em temperatura ambiente, as que estavam em alto CO_2 foram mais consumidas (45%) do que as que estavam em CO_2 ambiente (23%) (p<0,001).

O aumento CO_2 pode ter influenciado na qualidade nutricional e consequentemente na taxa de consumo foliar das lagartas. A elevação do CO_2 propicia um aumento na taxa de fotossíntese e uma maior assimilação de carbono das plantas, consequentemente levando um aumento de biomassa. No entanto, a concentração de nitrogênio não é aumentada com aumento da concentração de CO_2 atmosférico ocasionando uma diluição de nitrogênio em relação à concentração de derivados de carbono [4], apresentando-se desta forma para uma relação de menor qualidade proteica, assim as lagartas de S. frugiperda precisaram consumir maior quantidade de material para suprir as suas necessidades nutricionais.

Conclusões

Não houve preferência pelos cartuchos e discos foliares dos tratamentos avaliados, porém foi observado maior consumo nas folhas desenvolvidas em alto CO₂.

Agradecimentos

Ao CNPq, Fapemig e Embrapa.

Referências Bibliográficas

[1] SCHMUTZ, Jeremy et al. 2010. Genome sequence of the palaeopolyploid soybean. **Nature**, 463: 178–183.

[2] Busato, G. R.; Grutzmacher, A. D.; Garcia, M. S.; Giolo, F. P.; Martins, A. F. 2002. Consumo e utilização de alimentos por *Spodoptera frugiperda* (J. E. Smith) (Lepidoptera: Noctuidae) originária de diferentes regiões do Rio Grande do Sul, das culturas do milho e do arroz irrigado. **Neotropical Entomology**, 31: 525-529.

[3] IPCC 2010. Climate change 2010: The scientific Basis. Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press: Cambridge, UK.

[4] Stiling, P. & Cornelissen, T. 2007. How does elevated carbon dioxide (CO_2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO_2 -mediated changes on plant chemistry and herbivore performance. **Global Change Biology**, 13: 1-20.