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ABSTRACT 
 

This paper reviews the recent advances 
in the understanding of the fruit ripening 
process and describes future challenges. Fruit 
ripening is a complex developmental process 
which is orchestrated by the expression of 
ripening-related genes under the control of a 
network of signaling pathways. In climacteric 
fruit components responsible for the production 
of climacteric ethylene have been identified. 
Less progress has been made on non-climacteric 
fruit. Great advances have been made in the 
characterization of transcription factors (ERFs, 
RIN, etc…) that induce gene expression through 
the binding to their promoters. Genetic 
resources, genome sequencing and “omics” 
tools have been developed bringing a huge 
amount of data that will help to draw together 
an integrative network of regulatory and 
signaling pathways responsible for triggering 
and coordinating the ripening process. The 
discovery that some ripening events are 
controlled at the epigenetic level and, not in 
relation with the DNA sequences, opens novel 
perspectives. 
 
Keywords: climacteric and non-climacteric fruit; 
ethylene; hormones; transcription factors; 
omics tools. 
 

INTRODUCTION 
 

Postharvest science is the study of the 
physiology of plant tissues and organs after their 
detachment from the plant. Because 
postharvest science is concerned with living 
organs, physiological and technological aspects 
are intimately linked. For instance, early studies 
have been carried out to understand the basic 
mechanisms of respiration of harvested organs. 
They have established that respiration is an 
essential component in the determination of 
postharvest shelf-life. These studies have served 
as a base for the definition of postharvest 
technologies devoted at reducing respiration 
such as cold storage, pre-refrigeration and, 
modified, controlled and dynamic atmospheres. 
In recent years postharvest science has 
integrated a number of modern methods such 
as molecular biology, biotechnology, and 
“omics” tools (metabolomics, proteomics, and 
transcriptomics) in order to elucidate the 
mechanisms of fruit ripening during which fruit 
develop their sensorial and nutritional quality. 
In this review we will concentrate on the most 
recent developments in the mechanisms of fruit 
ripening and development of quality. Challenges 
and perspectives offered by these new 
developments will be addressed. 
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1. ROLE OF ETHYLENE IN FRUIT RIPENING AND 
QUALITY 

 
1.1 Climacteric and non-climacteric ripening 
 

Climacteric fruit are characterized by a 
ripening-associated increase in respiration and 
in ethylene production whereas non-climacteric 
fruits undergo ripening without any ethylene-
associated respiratory peak. Horticultural 
products derived from leaves, roots, and tubers 
are also non-climacteric. However, various 
studies on fruit attached to the plant have 
indicated that changes in the levels of CO2 and 
ethylene occur at various stages of fruits 
development in non-climacteric fruit. 

Nevertheless the timing of the 
climacteric syndrome in non-climacteric fruit is 
not related to the ripening period per se. In 
grapes it occurs at véraison (Chervin et al., 
2004), and in citrus, in young immature fruit 
(Katz et al., 2004). In strawberries, ethylene 
production starts to increase once the fruit 
reaches the red ripe stage, but not before 
(Lannetta et al., 2006). It is now considered that 
some aspects of the ripening of non-climacteric 
fruit are regulated by ethylene and in 
climacteric fruit, some ripening pathways are 
independent of ethylene action. Differential 
cross-talks between ethylene and other 
phytohormones probably operate in each type 
of fruit (Pech et al., 2008; Paul et al., 2012). An 
extensive list of climacteric and non-climacteric 
fruit has been provided by Watkins (2002). 
However, there are still a great number of 
underexploited, non-traditional fruits in the 
world, especially in tropical areas (Rufino et al., 
2009) which have not been characterized in 
terms of the presence or absence of climacteric 
behavior. 
  
1.2 Ethylene biosynthesis 
 

The transition from system 1 to system 2 
in climacteric fruit it has long been considered 
that two distinct systems of ethylene 
biosynthesis take place during fruit 
development. System 1 is characterized by auto-
inhibitory ethylene production and is 

responsible for the basal production of ethylene 
levels in vegetative tissues, in non-climacteric 
fruit and at the pre-climacteric stages of 
climacteric fruit. System 2 operates during the 
climacteric burst and is autocatalytic. The two 
systems are distinguished by the expression of 
specific members of ACC synthase (ACS) genes 
(Barry et al., 2000). Yokotani et al. (2009) have 
investigated the mechanisms of the system 1 to 
system 2 transition in tomato fruit where the 
expression of an EIL transcription factor 
involved in the ethylene-transduction signal was 
suppressed. Despite ethylene insensitivity, the 
system 2-associated ACSs genes, LeACS2 and 
LeACS4, exhibited significant expression that 
could not be inhibited by 1-MCP. These data 
indicate that system 2 is regulated at least 
partially by ethylene-independent 
developmental factor(s), but largely by an 
ethylene-dependent autocatalytic system. In 
winter varieties of pears, the system 1-to-
system 2 transition of ethylene production 
cannot develop unless fruit are stored at low 
temperature. The cold treatment stimulates the 
ethylene-independent expression of a specific 
ACS gene that initiates ethylene production, and 
puts into motion the expression of system 2-
associated ACSs (El-Sharkawy et al., 2004). A 
cold treatment, although not absolutely 
required, is also capable of hastening and 
synchronizing the onset of the climacteric rise of 
ethylene production and ripening of Bartlett and 
Conference pears, as well as in some apple ( 
Pech et al., 2012) and peach varieties (Begheldo 
et al., 2008). The absence of climacteric 
behavior has been assigned to the absence of 
system 2 autocatalytic ethylene production in 
some guava varieties associated with a lack of 
ACC synthase activity (Liu et al., 2012a). The 
transition from system 1 to system 2 is also 
modulated at the level of the ethylene 
receptor(s). The ethylene receptor(s) negatively 
regulate ethylene signal transduction and 
suppress ethylene responses. It has been 
demonstrated that a reduction in the levels of 
either LeETR4 or LeETR6 ethylene receptors 
causes an early-ripening phenotype in tomato 
fruit (Kevany et al., 2008). It is concluded that 
the levels of receptor would act as a sensor for 
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memorizing cumulative ethylene exposure and 
would determine the timing of the onset of 
ripening. The low level of ethylene production 
of immature fruit by system 1 would be 
responsible for a reduction in the amount of 
receptor protein and therefore in an increase in 
ethylene sensitivity. How ethylene biosynthesis 
genes are regulated at the transcriptional level 
has been one of the challenges of the recent 
years. 
 
1.3 The role of transcription factors in the 
regulation of ethylene biosynthesis and action 
and in fruit ripening 
 

In recent years, studies have been 
dedicated to the identification of transcription 
factors capable of binding to the promoters of 
ethylene biosynthesis genes and of regulating 
their expression. Lin et al. (2008), using in silico 
analysis observed that the LeACO1 promoter 
harbors putative cis-elements capable of 
binding a class-I homeo-domain leucine zipper, 
HD-Zip. Using gel retardation assays they 
demonstrated that a tomato HD-Zip, LeHB-1, 
interacted with the promoter of LeACO1. The 
inhibition of LeHB-1 expression by virus-induced 
gene silencing (VIGS) greatly reduced LeACO1 
mRNA levels and fruit ripening. It is therefore 
concluded that LeHB1 stimulates ethylene 
synthesis by activating the transcription of 
LeACO1 . Using the VIGS strategy, Itkin et al. 
(2009) performed a functional screen of tomato 
transcription factors that identified the 
TOMATO AGAMOUS-LIKE 1 (TAGL1) MADS box 
gene as altering tomato fruit pigmentation. In 
fact, transient promoter-binding assays 
indicated that TAGL1 participates in the control 
of ethylene production by the activation of the 
ACS2 gene. 

A number of transcipiton factor mutants 
with altered ripening processes have been 
characterized (Giovannoni, 2007). Among these, 
the ripening inhibitor (rin) corresponded to a 
MADS-box genes, non-ripening (nor) to a 
member of the NAC domain transcription factor 
family and Colorless non ripening (Cnr) to a SBP-
box gene. In a large-scale chromatin immune-
precipitation experiment Fujisawa et al. (2013) 

found that MADS-RIN directly controls the 
expression of 241 target genes containing a RIN-
binding site in their promoters. These genes are 
involved in the biosynthesis and perception of 
ethylene (as LeACS2, LeACS4, NR, and E8). 
Particularly interesting is that MADS-RIN is 
involved in switching on system-2 ethylene 
through the induction of LeACS2 (Ito et al., 
2008) and LeACS4 (Martel et al., 2011), up-
regulating NOR and CNR (Martel et al., 2011), 
and down-regulating HB-1 (Lin et al., 2008). 
Ethylene production is negatively regulated by 
two Ethylene Response Factors, AP2a that binds 
to CNR (Karlova et al., 2011) and ERF6 whose 
binding target remains unknown (Lee et al., 
2012). Other components of the RIN targeting 
system are two homologs of the Arabidopsis 
FRUITFULL transcription factor, FUL 1 and 2 that 
form a complex with RIN and CNR to control 
several ethylene-independent aspects of the 
ripening process (Bemer et al., 2012). MADS-RIN 
lso binds to its own promoter (Fujisawa et al., 
2013) resulting in an auto-regulation process. It 
has also been demonstrated that CNR is 
required for RIN-binding activity (Martel et al., 
2011). Overall these data indicate a complex 
mechanism for the regulation of ethylene 
biosynthesis in climacteric fruit including 
ethylene-dependent and developmentally 
regulated factors (Figure 1). Moreover, RIN also 
targets genes involved in other many ripening 
processes such as cell wall degradation and 
aroma biosynthesis (Qin et al., 2012; Fujisawa et 
al., 2013). 

Homologs of the MADS-RIN accumulate 
during the ripening of non-climacteric fruit such 
as strawberry (Vrebalov et al., 2002) and pepper 
(Lee et al., 2010) indicating that MADS box-
dependent ripening is probably conserved in 
non-climacteric fruit ripening. A comparative 
transcriptome analysis between tomato and 
pepper fruits using heterologous microarray 
hybridization indicated that divergent types of 
transcription factors were expressed in ripening 
tomato and pepper fruits, suggesting they may 
be key factors that differentiate these distinct 
ripening processes (Lee et al., 2010). The MADS-
RIN is a member of the SEPALLATA family of 
MADS box transcription factors. Interestingly a 
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SEPALLATA (SEP) 1/2 like ‘(FaMADS9) gene is 
necessary for the development and ripening of 
strawberry (Seymour et al., 2011) indicating that 

SEPALLATA genes play a role in the regulation of 
climacteric and non-climacteric ripening. 

 
Figure 1. Schematic representation of the role of transcriptional regulators in climacteric fruit ripening. 
The numbers between brackets associated with the interactions correspond to the following 
publications: (1) Ito et al. (2008); (2) Lin et al. (2008); (3) Itkin et al.( 2009); (4) Zhang et .( 2009); (5) 
Karlova et al.( 2011); (6) Martel et al. (2011); (7) Bemer et al.( 2012); (8) Lee et al. (2012); (9) Fujisawa et 
al.( 2013). Arrows indicate positive regulation and blunt-ended lines indicate repression. Circle arrows in 
bold on RIN and TAGL1 indicate auto-regulation. Arrows with a stair indicate the binding of the 
transcription factors to the promoter of the target genes.  
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Ethylene is perceived by membrane-
associated receptor proteins. The general 
biochemical and molecular characteristics of 
ethylene perception and signal transduction in 
ripening fruit are well established (Pech et al., 
2012). In tomato, ethylene receptors 
correspond to a family of genes comprising six 
members. Three of them, NR, LeETR4 and 
LeETR5 exhibit a significant increase during fruit 
ripening (Klee, 2002). Ethylene receptors have 
been identified not only in climacteric fruit but 
also in non-climacteric fruit (Trainotti et al., 
2005). The receptors interact with a Raf kinase–
like protein, CONSTITUTIVE TRIPLE RESPONSE1 
(CTR1) to release the transduction of the signal 
to the downstream elements (Ju et al., 2012). 
Such a mechanism has led to the definition of a 
negative regulatory model in which low 
amounts of receptor are required for 
stimulating ethylene responses. The model 
seems incompatible with the increased 
expression of the receptor during fruit ripening. 
However it has been clearly demonstrated that 
the levels of gene expression and the 
accumulation of the receptor protein are 
disconnected. When the levels of mRNA 
encoding the receptors increase in ripening 
fruit, the levels of the proteins decrease. 
Furthermore, ethylene stimulates the 
degradation of the receptor proteins 26S 
proteasome-dependent pathway(Kevany et al., 
2007). Beside post-translational regulation, 
ethylene perception is also controlled by a 
Green-Ripe (GR) protein, a tomato homolog of 
the Arabidopsis Reversion To Ethylene 
Sensitivity (RTE1), which acts as negative 
regulator of ethylene response. The Gr mutant 
fails to ripen as a consequence of inhibition of 
ethylene responsiveness (Barry et al. 2005). The 
signaling process downstream of CTR involves 
the activation by EIN2 of the ETHYLENE 
INSENSITIVE3 (EIN3) and EIN3-like (EIL) primary 
transcription factors that in turn activate 
secondary transcription  

Components of ethylene signaling have 
been extensively studied mainly in the 
Arabidopsis model plant revealing a linear 
transduction pathway that leads to the 
activation of transcriptional regulators 

belonging to the Ethylene Response Factor (ERF) 
type. These ERFs are members of the large 
AP2/ERF superfamily and they bind to a GCC box 
cis-element in the promoter of target genes in 
several plant species, regulate a number of 
biological processes including development, 
reproduction, responses to hormones, 
adaptation to biotic and abiotic stresses. They 
are supposed to regulate the expression of 
ethylene-responsive genes including ripening-
related genes, although thefunction of ERFs in 
fruit ripening are still unclear. However, new 
data are emerging that may link them to the 
control of some aspects of fruit ripening (Li et 
al., 2007; Lee et al., 2012). Modulation of 
expression of individual ERFs in tomato has 
demonstrated their role in plant development 
and ripening. Mainly enabling ethylene to 
regulate a wide range of physiological processes 
in a highly specific and coordinated manner 
(Pirello et al., 2012). ERF proteins also have 
been characterized in the apple (Girardi et al., 
2013) and, as reported by Xiao et al., (2013), in a 
number of other fruit, including banana, plum, 
persimmon, kiwi and longan, some of them 
related to expression of genes involved in 
ethylene biosynthesis, cell wall modification and 
senescence processes. 

The control of ERFs regulation and of 
their target gene is a biotechnological challenge. 
Indeed, these new insights will give opportunity 
to improve fruit quality thanks to a better 
resistance to biotic and abiotic stresses (e.g., 
cold, heat, and drought). Recently, more and 
more evidence is appearing that suggests that 
probably ERFs and micro RNAs could be better 
utilized for this purpose which should lead to 
more specific changes in ripening parameters 
(ethylene production, color changes, softening, 
etc). Further, there is an urgent need to develop 
transformation and regeneration protocols for 
various other fruits that are economically 
important and for which post-harvest spoilage is 
high (Bapat et al., 2010). 

In non-climacteric strawberries, 
correlated with the late increase in ethylene 
synthesis in red-ripe fruit, there is an increase in 
the expression of the FaEtr2 ethylene receptor 
which is closely related to the tomato LeETR4) 
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(Trainotti et al., 2005). In pepper, EIL-like genes 
are induced during ripening (Lee et al., 2010). 
Grape traditionally has been classified as non-
climacteric, but studies have shown that grape 
berry tissues have a fully functional pathway for 
ethylene synthesis and that this pathway is 
activated just before veraison (Chervin et al., 
2004). Using a qRT-PCR platform encompassing 
the whole ERF/AP2 superfamily present in the 
grapevine, Licausi et al. (2010) show how 
AP2/ERF-like genes are expressed in both 
vegetative and reproductive tissues at different 
developmental stages. Skin and flesh tissues 
from grape berries differ greatly during the 
transition from veraison to full ripeness with 
respect to ERF-gene expression. In the skin, 31 
genes were up-regulated at least four-fold and 
18 were down-regulated. In the flesh tissues, 
only 18 AP2/ERF genes were up-regulated and 
30 down-regulated. Two AP2 genes, VvAP2-5 
and VvAP2-16, homologs to the 
Arabidopsis PTL3 (AIL-6) and PTL4 (BBM), 
respectively were strongly up-regulated in skin 
tissues during ripening, whereas an AIL-9 
homolog, VvAP2-9, was repressed. The 
expression of ethylene receptor(s) together with 
the expression of downstream signaling 
elements in non-climacteric fruit reinforces the 
concept that climacteric and non-climacteric 
fruit share a minimum of common regulatory 
pathways. The observations that some aspects 
of non-climacteric fruit ripening are inhibited by 
the ethylene perception inhibitor 1-MCP also 
supports a role for ethylene in non-climacteric 
fruit ripening (Villarreal et al., 2010). Future 
experiments should be dedicated to confirm at 
the molecular level the role of ethylene 
perception and signaling in the regulation of 
some ripening-related genes in non-climacteric 
fruit, for instance, by knocking-down ethylene 
perception. 
 
1.5 Inheritance and genetic diversity of the 
climacteric character 
 

Studies on the inheritance of the 
climacteric character have been possible in fruit 
species where non-climacteric and climacteric 
genotypes were present. Such has been the case 

for melon. Périn et al. (2002), using a 
segregating population of melons resulting from 
a cross between a climacteric and a non-
climacteric melon found that the climacteric 
character was under the control of two 
duplicated independent loci. However, the 
potential genes involved were not identified. 
Crosses of Honeydew melons producing 
undetectable levels of ethylene with Cantaloupe 
melons producing high levels of climacteric 
ethylene gave F1 hybrids that generated 
ethylene in a climacteric manner (Ezura et al., 
2002). Intriguingly, some introgression lines, but 
not all, generated from two non-climacteric 
melons exhibited a climacteric character 
(Obando et al., 2007). The absence of system 2 
autocatalytic ethylene production has been 
suggested as responsible for the non-climacteric 
character of some guava varieties (Liu et al., 
2012a). In some plum varieties, categorized as 
climacteric-suppressed, the level of ethylene is 
too low to allow proper ripening but treatment 
with propylene, a homolog of ethylene, was 
capable of inducing the whole ripening process 
(Abdi et al., 1997). Understanding the 
inheritance of the climacteric character is highly 
challenging. The number of genes and 
regulatory elements involved in ethylene 
production and perception is high so that 
different and complex genetic components 
probably exist for the control of climacteric 
ethylene. In addition, the number of genetically 
compatible fruit species comprising both 
climacteric and non-climacteric fruit is 
extremely limited so that studying the 
inheritance of the ripening character is not easy. 
 
1.6 Ethylene synthesis and storage life 
 

It has long been recognized that long 
storage life is associated with low ethylene 
production. Mutations of specific ACS genes 
appear to be responsible for the postharvest 
behavior of these genotypes. In apple fruit, the 
fruit-specific MdACS1 gene is highly expressed 
during fruit ripening and is responsible for 
climacteric ethylene production. Low ethylene 
production is conferred by the presence in some 
cultivars of two allelic forms of the gene, 

http://www.sciencedirect.com/science/article/pii/S0734975009001803#bib21
http://www.sciencedirect.com/science/article/pii/S0734975009001803#bib21
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MdACS1-1 and MdACS1-2 (Harada et al. 2000). 
Cultivars homozygous for the MdACS1-2 allele 
showing low transcription due to the insertion 
of a retro-transposon-like element have low 
ethylene production and longer shelf life 
(Harada et al. 2000). Another ACS gene, 
MdACS3a, negatively regulated by ethylene is 
also pivotal in regulating the transition from 
system 1 to system 2 ethylene synthesis (Wang 
et al. 2009).In fact three ACS3 genes are present 
in apple among which MdACS3b and MdACS3c 
are not expressed due to a transposon-like 
insertion in their 5’ flanking region. MdACS3a 
has two null allelotypes, one affecting the 
enzyme activity of the encoded protein and one 
deficient in transcription activity (Wang et al., 
2009). However the MdACS3a null mutations 
affect the ripening phenotype of late harvest 
apple cultivars only, indicating that the 
MdACS3a genotype alone cannot explain the full 
spectrum of ethylene production and the 
storage characteristics of apples (Bai et al., 
2012). In Japanese pear fruit, where the shelf-
life is also determined by the level of ethylene 
production, two types of ACS genes (pPPACS1 
and pPPACS2) were identified. Cultivars that 
produce high levels of ethylene possess at least 
two copies of pPPACS1 and those producing 
moderate levels of ethylene have at least two 
copies pPPACS2 (Itai et al., 1999).In peaches, the 
stony hard phenotype associated with long 
shelf-life has been attributed to a low level of 
ethylene production. Among three ACS genes, 
Pp-ACS1 is strongly expressed in melting-flesh 
peach varieties, but it is not expressed in stony 
hard peaches. Therefore the absence of 
expression of Pp-ACS1 is considered as the 
responsible for the low ethylene production and 
suppression of softening of stony hard peaches 
(Tatsuki et al., 2006). These data indicate that 
low ethylene production could be due to 
mutations in one or the other of ethylene 
synthesis gene alleles. Extending the storage life 
of fruit can be achieved case by case by using 
the low-ethylene producing and slow-ripening 
mutants (e.g., alcobaca, nor) for genetic 
breeding. 
 

2. OTHER HORMONES AND HORMONE 
CROSS-TALKS 

 
The major emphasis of research on the 

regulatory mechanisms of fruit ripening has 
been on ethylene. However, functional 
characterization of several tomato (Solanum 
lycopersicum) mutants defectives in ethylene 
response, such as rin and Never Ripe, the 
transgenic fruits with reduced expression of ACS 
and ACO, and the use of 1-MCP, have 
strengthened the evidence for the existence of 
several ethylene-independent ripening events in 
climacteric fruits. Furthermore, the application 
of 1-MCP in non-climacteric fruit has 
demonstrated the existence of several 
processes in these fruit types for which ethylene 
performs regulatory roles, such as loss of 
firmness in strawberries (Villarreal et al., 2010), 
and the synthesis of anthocyanins in grapes 
(Chervin et al., 2004). 

The role of other hormones on fruit 
maturation has become apparent thanks to the 
development of new strategies, such as the use 
of a varied collection of tomato mutants 
defective both for signaling and for the 
synthesis of hormones such as indole-3-acetic 
acid (IAA), abscisic acid (ABA) and methyl 
jasmonate (MJ). 

The identification of the elements of the 
signal transduction pathways of these hormones 
has revealed that some of its components may 
be targets in the signaling of more than one 
hormone. This fact points to a mechanism by 
which different hormones may act on the same 
pathways, sometimes exerting similar effects, 
sometimes the opposite. Among some examples 
is the synthesis of lycopene in tomato fruit; 
although often referred to as an event ethylene-
dependent, it can be enhanced by exogenous 
ABA treatment (Zhang et al., 2009). Likewise, 
several transcription factors of the ERF family 
have altered patterns of expression in IAA-
treated peach fruit (Trainotti et al., 2007), and 
some members of the ARF (auxin response 
factor) family are inhibited or stimulated in 
tomatoes after exogenous ethylene treatment 
(Jones et al., 2002). The MJ promoted 
accumulation of lycopene in MJ-deficient 
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tomato spr2 and def1. Interestingly, the post-
harvest treatment with MJ in NR tomato fruit, 
which notably does not accumulate lycopene, 
induced the expression of several genes 
encoding enzymes of the carotenoid 
biosynthetic pathway, resulting in the 
accumulation of lycopene in fruits, and 
suggesting the existence of a regulatory 
mechanism independent of NR (LeETR3) 
receptor signaling (Liu et al., 2012).  

The tools for wide expression analyses 
("omics" technologies) will provide an 
unprecedented increase in the information 
about the mechanisms by which auxin, abscisic 
acid and jasmonates affect the ripening of both 
climacteric and non-climacteric fruits, allowing 
detection of changes in thousands of genes, 
proteins and metabolites simultaneously. For 
now, the picture that emerges suggests that the 
biochemical changes during fruit ripening are 
the result of a multi-hormonal dialogue, more 
than the action of an isolated hormone (McAtee 
et al., 2013). The biggest challenge in this area 
will be to identify the points of crosstalk 
between these different hormonal classes. This 
challenge will require not only the adoption of 
new experimental designs (some examples are 
given in Allwood et al. 2011) or new means for 
the exogenous treatments with hormones and 
their respective inhibitors of action and/or 
biosynthesis (e.g., hormone slow-release 
polymer films), but also a major effort to 
integrate the huge amount of information that 
will be generated by such experiments. 
 
3 CONTRIBUTION OF HIGH THROUGHPUT 

TECHNOLOGIES TO THE UNDERSTANDING 
OF THE FRUIT RIPENING PROCESS 

 
The main changes occurring during 

ripening and maturation derive from 
programmed, complex physiological processes 
further influenced by environmental conditions, 
biotic/abiotic stress and postharvest 
treatments. Given the multigenic factors 
affecting processes the study of single pathways 
and responses will provide a complete 
elucidation of the fruit ripening. In order to 
better understand how environmental factors, 

stress and postharvest treatment sand their 
inter-relationships affect fruit ripening, the most 
recent research strategies, including holistic 
studies in genomics, transcriptomics, 
proteomics and metabolomics will be needed 
(Seymour et al., 2013). 

 
3.1. Genome sequencing 
 
The genomes of twelve fleshy fruit 

species has been fully sequenced (Table 1). This 
will open a number of new opportunities: (i) 
making an inventory of the genes belonging to 
the same family, (ii) identifying regulatory 
elements and binding-site motifs, (iii) facilitating 
marker-assisted selection and (iv) allowing the 
cloning of candidate genes responsible for 
quantitative trait loci or responsible for 
mutations. Great progress can be expected in 
the near future from the sequencing of the 
genome of wild relative species which will 
further our understanding of the impact of 
domestication on genomes of cultivated crops. 
This will be facilitated by the use of novel high 
throughput sequencing technologies. Using the 
reference genomes as guides, the identification 
of alleles contributing to specific characters will 
become easier. Progress remains also to be 
made in the assembly of the gene sequences on 
the chromosomes. For some species (tomato), 
the assembly is quitean advanced stage, but is 
not the case for several other species. In 
addition, annotation in terms of gene functions 
is far from being completed. 

 
3.2. Transcriptomics 
 
The transcriptomics (simultaneous 

analysis of transcriptional levels of thousands of 
genes) is the "omics" technology that has 
evolved more quickly. By means of DNA 
microarrays, researchers have analyzed patterns 
of transcription in a number of fruits including 
grapes (Deluc et al., 2007), tomato (Alba et al., 
2005) and citrus (Cercos et al., 2006). However, 
the technology of DNA microchips is dependent 
on the prior existence of a database of ESTs or 
whole genomes, and is limited to the set of 
selected genes that form the microarray. Such 
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limitations may now be circumvented by the 
Next-Generation Sequencing (NGS) technologies 
(Illumina Hi-Seq, SOLiD, and Roche FLX) that are 
capable of providing the sequencing of whole 
expressed genomes in a few days. Based on the 
counting frequency of the mRNAs sequences 
(RNA-Seq) in a sample, a virtually entire 
expressed genome can be assessed in a single 
run. This will push transcriptomic analysis to a 
new level. The increasing availability of whole 
genomes sequenced (Table I), as well as the 
rapid fall in the cost of the analysis (with many 
companies that outsource the service) will make 
RNA-Seq replace DNA chips over the next years. 

Although RNA-Seq generates a large amount of 
data in a short time, the bioinformatic analyses 
of a single experiment may require months of 
intensive computer work. A major challenge will 
be the development of user-friendly pipeline 
tools, including statistical analyses that 
streamline the processing steps of data 
generated by sequencing machines. This is 
undoubtedly the biggest bottleneck to 
transcriptomics becoming a tool with easy 
access to postharvest scientists. 
 
 

  
Table 1. Inventory of references related to the genome sequences of fruit species and TILLING 
collections 

Species References 

Sequence data  

Grapevine (Vitis vinifera) Jaillon et al. (2007) 

Papaya (Carica papaya) Ming et al. (2008) 

Cucumber (Cucumis sativus) Huang et al. (2009) 

Apple (Malus domestica) Velasco et al. (2010) 

Strawberry (Fragaria vesca) Shulaev et al. (2011) 

Tomato (Solanum lycopersicum) Tomato Genome Consortium (2012) 

Banana (Musa acuminata) D’Hont et al.(2012) 

Melon (Cucumis melo) Garcia-Mas et al. (2012) 

Sweet orange (Citrus sinensis) Xu et al. (2012) 

Peach (Prunus persica) Arús et al. (2012) 

Pear (Pyrus bretschneideri) Wu et al. (2013) 

Water melon (Citrullus lanatus) Guoet al. (2013) 

TILLING collection  

Tomato micro-tom (Solanum lycopersicum) Saito et al. (2011) 

Tomato (Solanum lycopersicum) Minoia et al. (2010) 

Melon (Cucumis melo) Dahmani-Mardas et al. (2010) 

Melon Piel de Sapo (Cucumis melo) Gonzalez et al. (2011) 

 
3.3. Postranscriptional 
 

Regulation by microRNAs. MicroRNAs 
represent a ubiquitous class of short RNAs that a 
crucial in mediating gene silencing at the post-
transcriptional level. Zuo et al. (2013) and 
Karlova et al. (2013) have identified more than 
100 conserved miRNAs in tomato.A number of 
them show differential expression during fruit 
ripening and in response to ethylene. Some of 
the targets for these micro RNAs are predicted 

to be involved in several aspects of the fruit 
ripening process. We are still at the beginning of 
understanding of the role of microRNAs in fruit 
ripening.  
  
3.4. Proteomics 
 

The proteomic studies in fruits is 
particularly challenging, given the difficulty of 
extracting protein in these tissue types, 
generally rich in phenolic compounds, pigments, 
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sugars and complex carbohydrates. Some 
proteomic works on fruits after harvest have 
used gel-based approaches (usually 2D-
electrophoresis, 2D-E) coupled to various mass 
spectrometry (MS) techniques (Hertog et al., 
2011). Use of Fluorescence Difference Gel 
Electrophoresis (DIGE) substantially improves 
the gel reproducibility, one of the main 
problems in the application of 2D-E. Although it 
can resolve hundreds of proteins in a single gel, 
this approach is time consuming and tedious. 
However, many researchers have reported the 
identification of proteins associated with the 
ripening process, such as aldehyde 

-1,3-
glucanase, in fruit samples at various stages of 
maturation (e.g., apple, tomato, grape, citrus 
and plum, Palma et al., 2011) 

The use of prior separation by Nano-LC 
coupled MS/MS, in a gel-free approach along 
with a count the frequency of reading masses of 
the peptides (MS counting) has increased the 
resolution of proteomic analysis in fruits. MS 
technologies, such as the Orbitrap® mass 
analyzer, have evolved to get high sensitivity 
and accuracy in the determination of the masses 
of thousands of peptides in a single analysis. 
Thus, increasing even more the resolving power 
of mass spectrometers, improving the 
extraction of proteins from fruits and pre-
preparation protocols for Nano-LC and the 
creation of bioinformatic tools that facilitates 
the proteome data analysis and its integration 
with transcriptomics and metabolomics data 
must be the next challenges to be met for the 
advancement of proteomics studies on 
postharvest. 
 
3.5. Metabolomics of fruit ripening and quality 
 

Metabolomics is based on the high 
throughput analysis of metabolites in order to 
define the global biochemical profiles of 
biological systems. In fruit physiology it has 
been used primarily for characterizing the 
metabolic changes occurring during fruit 
ripening (Hertog et al., 2011). As mentioned in 
Bernillon et al. (2013), it has also been used to 
assess metabolic diversity and genetic 

variations, variations between growing seasons, 
the effect of biotic and abiotic stresses and of 
cultural practices. Metabolomics research 
generates a wide range of data matrices that 
often stay descriptive and generate correlation 
networks whose biological relevance is not 
always established. Nevertheless it provides an 
in-depth knowledge on fruit composition and 
nutritional value which may be helpful for 
guiding the improvement of fruit quality 
through plant breeding and cultural practices. 
 
3.6. High throughput search for the target genes 
of transcriptional regulatory proteins 
 

The binding of transcription factors to 
the promoter region of ripening related genes 
has been assessed recently by gel-retardation 
assays for studying the characteristics of the 
interaction between ERFs and the GCC box 
(Tournier et al., 2003) and the binding of the 
LeHB-1 tomato homeobox protein with the 
promoter of LeACO1 (Lin et al., 2008). Another 
method that has been used successfully is a 
transient expression assay in tobacco 
protoplasts co-transformed with a 
transcriptional regulator construct driven by the 
35S constitutive promoter and reporter 
constructs harbouring the gene coding the 
Green Fluorescent Protein driven by the target 
promoter. This method has been applied to 
functional analysis and binding affinity of 
tomato ERFs (Pirello et al., 2012). The same 
approach can be used for many other 
transcription factor families, such as ARFs and 
MYB.  

In the recent years, a method has been 
established that allows identifying the target 
genes of transcriptional regulatory proteins by a 
chromatin immunoprecipitation (ChIP) analysis 
using an antibody against the transcription 
factor protein. This method has been applied to 
the identification of the target genes of the RIN 
transcription factor (Ito et al., 2008; Fujisawa et 
al., 2011; Martel et al., 2011; Qin et al., 2012). 
The method has been scaled-up by coupling 
ChIP with DNA microarray analysis leading to 
the identification of 241 target genes containing 
RIN binding sites in their promoter regions 
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(Fujisawa et al., 2013). In order to fully assess 
the biological function of the interaction, the 
binding of a given transcriptional protein to the 
promoter region of such an elevated number of 
genes probably requires confirmation one by 
one by other methods. This approach will be 
useful to identify targets of important regulators 
of gene transcription related to fruit ripening, 
such as NOR, TAGL1, HB and members of the 
ERF, ARF and MYB families. 
 
3.7. Systems biology 
 

System biology aims at understanding 
complex biological systems such as fruit ripening 
using a combination of approaches (e.g. 
metabolomics, transcriptomics, proteomics) in 
order to establish a network of interactive 
regulatory events. A review has been published 
on how system biology can be used in 
postharvest research (Hertog et al., 2011). So far 
only one study has used system biology for 
unraveling regulatory networks during tomato 
fruit ripening (Osorio et al., 2011). It has been 
found that the correlation between the levels of 
a transcript and the abundance of the 
corresponding protein was lower during early 
ripening than at later stages, indicating changes 
in the importance of posttranscriptional 
regulation during the ripening process. On the 
contrary, a very strong correlation was found 
between gene transcription and specific 
metabolite groups. This study is a good example 
of the outputs of system biology in providing a 
network of key candidate regulators possibly 
involved in fruit ripening. However the network 
is based on mathematic correlations that 
require biological confirmation. This approach 
wil be useful to reveal specific points of 
regulation of the different hormonal classes that 
influences the fruit ripening. 
 
3.8. Functional genomics 
 

The function of a gene in planta can be 
determined by different means. Knocking-down 
gene expression through the antisense and RNAi 
technologies has been largely used for 
elucidating the role of a single gene in planta. 

Many examples exist in the area of postharvest 
physiology (Pech et al., 2005).The Virus Induced 
Gene Silencing (VIGS) strategy that uses a virus 
vector for transferring the antisense gene in a 
plant has often been used, but is restricted to 
few plant species due to the requirement of 
virus-host compatibility. It has been used in 
tomato for understanding the role of some 
transcription factors on the fruit ripening 
process (Zhou et al., 2012). In order to 
overcome functional redundancy in the case of 
multigene families, the Chimeric Repressor 
Silencing Technology consisting of the use of a 
SRDX repression domain is very efficient and has 
been employed in tomato (Itkin et al., 2009). 
When the function of the encoded protein can 
be easily evaluated in vitro, heterologous 
expression of the gene in yeast or bacteria is a 
method of choice. 

TILLING (Targeting Induced Local Lesions 
IN Genomes) consists in generating a collection 
of ethyl methanesulphonate (EMS) mutants, 
identifying interesting phenotypes and 
detecting single-nucleotide mutations to 
identify the gene allele responsible for the 
phenotype. This technology has led to the 
isolation of two allelic gene mutants of tomato 
(Sletr1-1 and Sletr1-2) resulting in reduced 
ethylene responses (Okabe et al., 2011) and 
several alleles of tomato light signaling genes 
affecting phenylpropanoid and carotenoid 
composition (Jones et al., 2012). A TILLING 
platform of cantaloupe melons has allowed the 
characterization of a missense mutation in the 
CmACO1 gene. As expected, the mutation 
inhibits fruit ripening and extends fruit storage 
life (Dahmani-Mardas et al., 2010). The 
functional characterization of new allele genes 
responsible for some ripening by TILLING is 
facilitated by the availability of genome 
sequences. TILLING strategies could be included 
in breeding programs. They have the advantage 
of not employing genetic engineering methods 
for which consumers are often reluctant, but 
they require the building-up and screening of a 
mutant collection for each individual elite line 
used for genetic crosses. All the methods of 
functional genomics mentioned above are 
complementary, but we are still far from 
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understanding the role in planta of several 
hundred of genes that are differentially 
expressed in ripening fruit. 
 
3.9. Epigenetics 
 

The possibility that epigenetics events 
(i.e. not related to DNA sequences) are involved 
in the fruit ripening process was first suggested 
by the study of the tomato colorless non-
ripening (Cnr ) mutant. The Cnr gene encodes a 
SQUAMOSA promoter binding protein–box 
transcription factor and the mutation is related 
to heritable cytosine hyper-methylation of the 
promoter (Manning et al., 2006). It was later 
demonstrated that the hyper-methylation of the 
Cnr promoter prevented the binding of RIN 
transcription and, as a consequence of Cnr gene 
expression and fruit ripening (Zhong et al., 
2013). Whole-genome bisulfite sequencing 
indicated that DNA methylation in the 5′ ends of 
genes (predicted to correspond to the 
promoters) gradually declines during fruit ripen-
ing. Interestingly promoter methylation remains 
high in the two ripening mutants Cnr and rin. So 
far, breeding for improving shelf-life and quality 
of fruit is relying on genetic variations only. 
Strategies exploiting epigenetic variations 
should now be considered. 
 
CONCLUSIONS 
 

In climacteric fruit the molecular basis 
for the transition from immature to mature fruit 
has made great progress with a better 
knowledge of the System1 to System2 ethylene 
production. The role of transcriptional 
regulation has received great development. The 
understanding of the role of other hormones 
and their interactions with ethylene is at the 
beginning. In contrast with climacteric fruit, the 
ripening mechanisms of non-climacteric fruit 
for, which ethylene does not play a major role, 
has made much less progress. 

The sequencing of the genomes and the 
use of “omics” techniques is in full 
development. It has already provided a large 
amount of information on the metabolic, 
proteomic and transcriptomic changes occurring 

during fruit ripening. However more work is 
needed to bring an integrative picture of the 
biological function of the ripening-related genes 
and transcriptional regulators. Epigenetics 
represents a new area which is opening novel 
perspectives. 
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