

# Geoquímica, mineralogia e atributos de Gleissolos de dois leques aluviais no Pantanal Norte<sup>(1)</sup>

## Alexandre Ferreira do Nascimento<sup>(2)</sup>; Sheila Aparecida Correia Furquim<sup>(3)</sup>; Raphael Moreira Beirigo<sup>(4)</sup>; Jairo Calderari de Oliveira Júnior<sup>(5)</sup>; Eduardo Guimarães Couto<sup>(6)</sup>, <u>Pablo Vidal-Torrado</u><sup>(7)</sup>

<sup>(1)</sup> Trabalho executado com recursos da FAPESP (processo 2009/50422-3).

<sup>(2)</sup>Pesquisador da Embrapa Solos UEP Recife, Rua Antônio Falcão, 402, Boa Viagem, Recife, PE. E-mail: alexandre.nascimento@embrapa.br; <sup>(3)</sup>Professora da Universidade Federal de São Paulo; <sup>(4)</sup>Doutorando em Solos e Nutrição de Plantas da Universidade de São Paulo; <sup>(5)</sup>Professor da Universidade Federal de Mato Grosso. <sup>(7)</sup>Professor da ESALQ-Universidade de São Paulo.

**RESUMO:** As características dos legues aluviais no Pantanal podem influenciar na gênese de solos dessa planície por possuírem diferentes áreas fonte de sedimentos. O objetivo deste trabalho foi estudar dois Gleissolos nos leques aluviais dos rios São Lourenço e Cuiabá, respectivamente, no Pantanal Norte. Análises de rotina, teores de C total e análise elementar total foram determinados na TFSA. A mineralogia da argila foi feita por DRX. Os perfis foram classificados como GLEISSOLO HÁPLICO Alumínico típico(GXa). As principais diferencas observadas são os teores de C total, mais elevados no GXa1 (São Lourenco), a presenca de plintita no GXa2 (Cuiabá), e os teores médios de Fe<sub>2</sub>O<sub>3</sub> e CaO, mais elevados no GXa2. Essas pequenas diferenças entre os dois solos podem estar relacionadas ao contexto geomorfológico de cada local, tendo em vista que o GXa1 está em uma planície fechada que permanece inundada por mais tempo, o que permite o maior acúmulo de C, por outro lado, por estar em uma planície aberta, o GXa2 drena mais rápido, o que pode ter contribuído para a formação da plintita e maior acumulo de Fe<sub>2</sub>O<sub>3</sub>.

**Termos de indexação:** Solos inundados, alumínio, pedogênese, sistema deposicional, área fonte.

#### INTRODUÇÃO

O Pantanal é uma grande bacia sedimentar que possui vários leques aluviais, sistemas distributários responsáveis deposicionais pela dinâmica atual de inundação, transporte dos sedimentos oriundos das áreas a montante e deposição na planície (Assine & Soares, 2004). No norte dessa grande planície destacam-se os legues do São Lourenço e do Cuiabá, que recebem os nomes dos principais rios da região (Assine & Soares, 2004).

Esses dois leques possuem áreas de produção de sedimentos, também chamadas de áreas fonte (Assine & Soares, 2004), com diferenças geológicas importantes que podem contribuir para a formação dos solos da planície (Barros et al., 1982; Del'Arco et al., 1982). Essas diferenças já foram observadas nas águas de drenagem oriundas dessas duas áreas (Rezende Filho et al., 2012), contudo, informações referentes à influência nos sedimentos e na gênese dos solos dessa planície ainda são escassas.

Dessa forma, busca-se com esse trabalho estudar dois solos inundáveis no Pantanal Norte que possuem sedimentos depositados pelo leque aluvial do São Lourenço e do Cuiabá.

#### MATERIAL E MÉTODOS

O estudo foi desenvolvido na RPPN SESC Pantanal, situada entre as coordenadas 16°32' -16°49'S e 56°03' - 56°26'W, município de Barão de Melgaco - MT - ao norte do Pantanal. Com base em geomorfológicos estudos prévios foram selecionados dois perfis, o primeiro em uma planície fechada do legue aluvial do São Lourenço, e o segundo em uma planície aberta no leque aluvial do Cuiabá, ambos em locais inundáveis. Para este estudo foram realizadas expedições ao campo no período de vazante e no período de inundação do Pantanal Norte. No período de vazante os perfis representativos foram abertos, descritos e coletados de acordo com Santos et al. (2005). No período de inundação foram realizadas as medidas de altura de inundação.

As amostras coletadas foram passadas em peneira com malha de 2 mm para obtenção da Terra Fina Seca ao Ar (TFSA) e submetidas às análises químicas e físicas de rotina para obtenção do pH em água, fósforo trocável (P), soma de bases trocáveis (SB), capacidade de troca de cátions (T), saturação da T por bases (V), saturação da T por alumínio (m) e teores de argila, silte e areia. A análise do carbono total (C) da TFSA foi realizada utilizando o analisador elementar de combustão seca (LECO<sup>®</sup> CN-2000). A análise elementar quantitativa total foi realizada na TFSA das amostras dos horizontes utilizando a Espectrometria de raio-x por energia dispersiva (EDX - Shimadzu EDX700HS).

A fração argila total e argila fina de 2 horizontes, um de cada perfil, foi submetido à análise mineralógica por difração de raio-X, seguindo Jackson (1979). As lâminas preparadas com argila orientada foram submetidas aos seguintes tratamentos:  $Mg^{2+} a 25 \ ^{\circ}C$ ;  $Mg^{2+} e$  etilenoglicol (EG); K<sup>+</sup> a 25 \ ^C; K<sup>+</sup> a 300 \ ^C; K<sup>+</sup> a 500 \ ^C. As amostras



### XXXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO 28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

foram irradiadas no intervalo de leitura de 3 a 35 °20 ao passo de 0,02 °20 no aparelho de Raio-X Rigaku MiniFlex II, com tubo de Cobre (Cu) e monocromador de grafite.

Os picos dos difratogramas da fração argila fina tratadas com Mg<sup>2+</sup> e EG foram submetidos a decomposição utilizando o modelo de Lorentzian. As áreas dos picos obtidas no difratrograma com EG foram utilizados na estimativa semiquantitativa da porcentagem de cada mineral da matriz (Moore e Reynolds, 1989). , bem como para se calcular o índice de componentes expansíveis na estrutura de mica, usando a fórmula:

Em que I(001) e I(003) correspondem as áreas dos picos  $d_{001}$  e  $d_{003}$  da mica, respectivamente, saturada com Mg<sup>2+</sup> e EG. Índices superiores a 1 indicam interestratificação entre mica e material expansível (Srodón & Eberl, 1984). Além disso, também foi calculado o índice que indica o teor de ferro na estrutura da mica pela equação:

 $\begin{array}{ccc} I(001)/I(002) & \mbox{Eq. 2} \\ \mbox{Em que I}(001) \mbox{ e I}(002) \mbox{ correspondem as áreas} \\ \mbox{dos picos } d_{001} \mbox{ e } d_{002} \mbox{ da mica, respectivamente,} \\ \mbox{saturada com } Mg^{2+} \mbox{ (Huggett et al., 2001). Valores} \\ \mbox{maiores que 2 estão relacionados a teores altos de} \\ \mbox{ferro na camada octaedral da mica (Huggett et al., 2001).} \\ \end{array}$ 

#### **RESULTADOS E DISCUSSÃO**

Os dois perfis estudados foram classificados como GLEISSOLO HÁPLICO Alumínico típico - GXa (Embrapa, 2006). Pelo fato de receberem a mesma classificação e sigla, o perfil no leque aluvial do São Lourenço foi denominado GXa1, e o perfil do Cuiabá de GXa2 (**Tabela 1**). Datações por luminescência opticamente estimulada indicam idade holocênica para ambos perfis (Nascimento, 2012).

O local onde foi descrito o perfil GXa1 tem a vegetação composta por cambará (*Vochysia divergens*) e sub-bosque herbáceo e arbustivo adaptados a inundação, que, no pico máximo (maio de 2011), possui lâmina d'água de 0,5-0,8 m. Este local consiste de uma planície que acumula água de chuvas e, embora próximo do rio São Lourenço, atualmente recebe pouca influência hídrica deste (Nascimento, 2012).

O perfil GXa2 foi descrito em um local que possui vegetação composta predominantemente por arbustos adaptados inundação. chamado а localmente de espinheiro. A lâmina d'água de inundação foi de 2-2,2 m, que está relacionada as cheias do rio Cuiabá (Girard et al., 2010). A velocidade do fluxo superficial de água no perfil é mais elevada no início da inundação, 0,25 m s<sup>-1</sup>, e diminui a medida de a lâmina de inundação aumenta, chegando a 0,14 m s<sup>-1</sup> na máxima cheia (Girard et al., 2010).

A morfologia de ambos perfis é similar, possuindo horizonte A moderado, horizontes subsuperficiais com estrutura predominantemente prismática, consistência muito plástica e muito pegajosa quando molhados, cor úmida entre cinzento claro e cinzento escuro, mosqueados intragregados abundantes de cor vermelhovermelho claro, distintos de tamanho médio e grande. Uma importante diferença morfológica entre os dois perfis é a presença de plintita em um horizonte do GXa2. Os horizontes subsuperficiais mais profundos, Bg3 do GXa1 e Bgf do GXa2, se diferenciam dos horizontes B sobrejacentes por possuírem menor grau de desenvolvimento da estrutura prismática, comum nos horizontes subsuperficiais dos solos argilosos inundados desse ambiente (Nascimento, 2012).

O horizonte A do GXa1 se distingui do GXa2 por possuir menor teor de areia, maiores teores de argila e de C total, o que reflete em maior SB e T (Tabela 1). Isso pode ser atribuído aos fluxos superficiais presente no GXa2, com energia suficiente para transportar os materiais da fração argila, porém, insuficiente para transportar a areia, que permanece na superfície. A maior presença de areia no horizonte A do GXa2, que possui o quartzo como mineral predominante (Nascimento, 2012), tem reflexo também na geoquímica da sua TFSA, com maior teor de SiO<sub>2</sub> e menor de Al<sub>2</sub>O<sub>3</sub> em relação ao horizonte A do GXa1 (Tabela 2). Os fluxos superficiais, responsáveis pela remoção de material fino do horizonte superficial do GXa2, removem também o C adicionado pelas plantas na planície do rio Cuiabá. Por outro lado, por ser uma planície fechada, o que confere fluxo superficial quase inexistente no GXa1, o C adicionado pelas plantas permanecem no solo, resultando em maior acumulação.

Embora os horizontes subsuperficiais do perfil GXa2 apresentem maiores teores de argila e de C total, com exceção do horizonte Bg1, estes horizontes apresentam menor T, reflexo de uma mineralogia com menor quantidade de esmectita na argila fina (Tabela 3). A maior guantidade de esmectita na argila fina é mais provável nos solos oriundos do legue aluvial do Cuiabá, por possuir água de drenagem mais rica em Ca e Mg (Rezende filho et al., 2012), contudo, isso não foi observado. Dessa forma, a maior quantidade de esmectita na argila fina do horizonte do GXa1 pode ser atribuída ao contexto geomorfológico que se insere, drenando água de inundação majoritariamente а por evapotranspiração (Nascimento, 2012), o que confere condições para a neoformação desse tipo de argila (Huggett et al., 2001). Os índices da mica extraídos por meio dos difratrogramas da argila fina



## XXXIV congresso brasileiro de ciência do solo

28 de julho a 2 de agosto de 2013 | Costão do Santinho Resort | Florianópolis | SC

indicam que os dois solos possuem mica interestratificada com mineral expansível e baixa quantidade de ferro na sua estrutura (Srodón & Eberl, 1984; Huggett et al., 2001).

Ressalta-se que a matriz mineralógica da fração argila total e fina do Bg3 do GXa1 e Bg2 do GXe2 é composta predominantemente pela caulinita, com mica e esmectita em menores quantidades (**Figura 1; Tabela 3**).

Todos os horizontes subsuperficiais do GXa2 apresentam maior soma de bases e V% em relação aos horizontes subsuperficiais do GXa1. Salienta-se que ambos os solos possuem elevada saturação por alumínio trocável nos horizontes subsuperficiais, sendo ligeiramente maior no GXa1. O elevado valor de m% pode estar associado aos ciclos alternados de inundação que promovem a ferrólise (Brinkman, 1970), processo comum neste ambiente, que promove também a diminuição do pH, como observado no presente estudo, apresentando todos os solos reação fortemente ácida (Embrapa, 2006).

A TFSA dos horizontes dos perfis estudados apresenta, em média, resultados químicos totais semelhantes (Tabela 2). Entretanto, destaca-se a quantidade média de Fe<sub>2</sub>O<sub>3</sub> maior no GXa2, que evidencia uma hidrologia com maior oscilação do lençol freático, levando inclusive à formação de plintita (Bgf), dinâmica condicionada pela planície, mais aberta e com drenagem mais rápida que a do GXa1 (Nascimento, 2012). Outro destaque é a ocorrência, mesmo em pequena quantidade, de CaO em dois horizontes do GXa2, que pode ser atribuído à área fonte de sedimentos do legue aluvial do Cuiabá, que possui maiores áreas com ocorrência de calcários em relação a área fonte de sedimentos do GXa1, leque do São Lourenço (Barros et al., 1982; Del'Arco et al., 1982).

#### CONCLUSÕES

Os Gleissolos no Pantanal Norte que possuem idade holocênica e diferentes áreas fonte de sedimentos não apresentam diferenças geoquímicas e pedológicas expressivas.

As diferenças observadas nos Gleissolos estudados estão relacionadas mais à configuração geomorfológica e à dinâmica de cada local, e não à natureza geoquímica dos sedimentos e das águas dos sistema fluviais que os originaram, uma vez que possuem formações geológicas com litologia semelhante em suas áreas fonte.

#### AGRADECIMENTOS

À FAPESP (processo 2009/54372-0, 2009/50422-3 e 2011/11905-9). Ao SESC Pantanal pelo apoio logístico para realização da pesquisa.

#### REFERÊNCIAS

- ASSINE, M.L. & SOARES, P.C. Quaternary of the Pantanal, west-central Brazil. Quaternary International, 114: 23–34. 2004.
- BARROS, A.M.; SILVA, R.H.; CARDOSO, O.R.F.A.; FREIRE, F.A.; SOUZA JUNIOR, J.J.; RIVETTI, M.; LUZ, D.S.; PALMEIRA, R.C.B. & ASSINARI, C.C.G. Geologia da Folha SD.21 (Cuiabá). In: Projeto RADAMBRASIL. Rio de Janeiro, Ministério de Minas e Energia, 1982. p. 25-192.
- BRINKMAN, R. Ferrolysis, a hydromorphic soil forming process. Geoderma, 3: 199-206, 1970.
- DEL'ÀRCO, J.O.; DA SILVA, R.H.; TARAPANOFF, I.; FREIRE, F.A.; MOTA PEREIRA, L.G.;.SOUZA, S.L.; PALMEIRAS, R.C.B. & TASSINARI, C.C.G. Geologia da Folhas SE. 20/21 (Corumbá). In: Projeto RADAMBRASIL. Rio de Janeiro, Ministério de Minas e Energia, 1982. p. 25-160.
- EMBRAPA. Centro Nacional de Pesquisa em Solos. Sistema Brasileiro de Classificação de Solos. 2.ed. Rio de Janeiro, EMBRAPA, Centro Nacional de Pesquisa de Solos, 2006. 306p.
- GIRARD, P.; FANTIN-CRUZ, I.; OLIVEIRA, S.M.L. & HAMILTON, S.K. Small-scale spatial variation of inundation dynamics in a floodplain of the Pantanal (Brazil). Hydrobiologia, 638: 223–233, 2010.
- HUGGETT, J. M.; GALE, A.S.; CLAUER, N. The nature and origin of non-marine 10 Å clay from the Late Eocene and Early Oligocene of the Isle of Wight (Hampshire Basin), UK. Clay Minerals, 36: 447–464, 2001.
- JACKSON, M.L. Soil chemical analysis: advanced course. Madson, 1979. 895 p.
- MOORE, D.M. & REYNOLDS JR., R.C. X-Ray diffraction and the identification and analysis of clay minerals. Oxford University press, New York, 1989. 378 pp.
- NASCIMENTO, A.F. Relações pedologia-geomorfologiasedimentologia no Pantanal Norte. Piracicaba, Escola Superior de Agricultura Luiz de Queiroz -Universidade de São Paulo, 2012. 200p. (Tese de Doutorado).
- REZENDE FILHO, A.T.; FURIAN, S; VICTORIA, R.L.; MASCRÉ, C.; VALLES, V. & BARBIERO, L. Hydrochemical variability at the Upper Paraguay Basin and Pantanal wetland.. Hydrology and Earth System Sciences, 16: 2723-2737, 2012.
- SANTÓS, R.D.; LEMOS, R.C.; SANTOS, H.G.; KER, J.C. & ANJOS, L.H.C. Manual de descrição e coleta de solo no campo. 5 ed. Viçosa, Sociedade Brasileira de Ciência do Solo, 2005. 100p.
- SRODÓN, J. & EBERL, D.D. Illite. In: BAILEY, S.W., ed. Micas: Reviews in Mineralogy, 13. Washington, D.C: Mineralogical Society of America, 1980. p. 495–544.



Tabela 1 - Granulometria, pH, carbono (C), fósforo trocável (P), soma de bases trocáveis (SB), CTC (T), saturação de bases (V) e alumínios (m) de solos sob influência do leque aluvial do São Lourenço (GXa1) e do Cuiabá (GXa2)

| Hor. | Prof.                                     | Areia | Silte | Argila  | pH H₂O     | С          | Р           | SB                | Т                | V  | m  |
|------|-------------------------------------------|-------|-------|---------|------------|------------|-------------|-------------------|------------------|----|----|
|      | cm                                        |       | %     |         |            | g kg⁻¹     | mg kg⁻¹     | cmol <sub>c</sub> | kg <sup>-1</sup> | %  | /  |
|      |                                           |       | GLEIS | SOLO HÁ | PLICO Alui | mínico típ | oico - GXa1 |                   |                  |    |    |
| Α    | 0-30                                      | 5     | 26    | 69      | 4,7        | 31,8       | 2           | 6,2               | 21,4             | 29 | 36 |
| Bg1  | 30-50                                     | 7     | 49    | 44      | 4,4        | 8,4        | 0           | 1,2               | 11,2             | 11 | 81 |
| Bg2  | 50-105                                    | 2     | 32    | 66      | 4,7        | 5,6        | 0           | 1,7               | 16,7             | 10 | 88 |
| Bg3  | 105-150                                   | 6     | 31    | 63      | 4,9        | 4,8        | 0           | 2,5               | 14,7             | 17 | 78 |
|      | GLEISSOLO HÁPLICO Alumínico típico - GXa2 |       |       |         |            |            |             |                   |                  |    |    |
| Α    | 0 - 20                                    | 22    | 24    | 54      | 4,5        | 13,9       | 2           | 5,4               | 16,2             | 33 | 42 |
| Bg1  | 20 - 60                                   | 5     | 17    | 78      | 4,6        | 7,5        | 1           | 7,8               | 13,4             | 24 | 73 |
| Bg2  | 60 - 120                                  | 2     | 14    | 84      | 4,6        | 7,5        | 1           | 8,4               | 12,9             | 22 | 73 |
| Bgf  | 120 - 150                                 | 9     | 13    | 78      | 4,7        | 5,2        | 1           | 7,8               | 10,5             | 32 | 58 |

Hor. = horizonte; Prof. = profundidade

Tabela 2 - Resultados da análise elementar total da terra fina seca ao ar dos horizontes do GXa1 e GXa2

 Unarrow Resultados da análise elementar total da terra fina seca ao ar dos horizontes do GXa1 e GXa2

 Unarrow Resultados da análise elementar total da terra fina seca ao ar dos horizontes do GXa1 e GXa2

 Unarrow Resultados da análise elementar total da terra fina seca ao ar dos horizontes do GXa1 e GXa2

 Unarrow Resultados da análise elementar total da terra fina seca ao ar dos horizontes do GXa1 e GXa2

| Hor. | Prof.                                     | SiO <sub>2</sub> | $AI_2O_3$ | Fe <sub>2</sub> O <sub>3</sub> | K <sub>2</sub> O | SO₃  | MnO  | MgO  | CaO  | TiO <sub>2</sub> | ZrO <sub>2</sub> |
|------|-------------------------------------------|------------------|-----------|--------------------------------|------------------|------|------|------|------|------------------|------------------|
|      | cm                                        |                  |           |                                |                  | %    |      |      |      |                  |                  |
|      | GLEISSOLO HÁPLICO Alumínico típico - GXa1 |                  |           |                                |                  |      |      |      |      |                  |                  |
| Α    | 0-30                                      | 64,0             | 26,9      | 4,4                            | 2,2              | 0,12 | 0,03 | 1,30 | 0,00 | 0,91             | 0,00             |
| AC   | 30-50                                     | 70,7             | 18,7      | 6,1                            | 2,2              | 0,16 | 0,02 | 1,00 | 0,00 | 1,05             | 0,04             |
| Cg1  | 50-105                                    | na               | na        | na                             | na               | na   | na   | na   | na   | na               | na               |
| Cg2  | 105-150                                   | 59,4             | 28,7      | 6,9                            | 2,3              | 0,10 | 0,00 | 1,51 | 0,00 | 1,09             | 0,04             |
|      | Média                                     | 64,7             | 24,7      | 5,8                            | 2,3              | 0,13 | 0,03 | 1,27 | 0,00 | 1,02             | 0,04             |
|      | GLEISSOLO HÁPLICO Alumínico típico - GXa2 |                  |           |                                |                  |      |      |      |      |                  |                  |
| Α    | 0 - 20                                    | 74,0             | 16,6      | 5,1                            | 2,1              | 0,17 | 0,04 | 1,11 | 0,00 | 0,84             | 0,08             |
| Bg1  | 20 - 60                                   | 63,1             | 24,6      | 7,7                            | 2,0              | 0,10 | 0,08 | 1,38 | 0,38 | 0,71             | 0,03             |
| Bg2  | 60 - 120                                  | 60,4             | 26,5      | 7,6                            | 2,6              | 0,11 | 0,04 | 1,67 | 0,00 | 1,07             | 0,04             |
| Bgf  | 120 - 150                                 | 61,2             | 25,6      | 9,3                            | 1,3              | 0,10 | 0,03 | 1,28 | 0,28 | 0,90             | 0,04             |
|      | Média                                     | 64,7             | 23,3      | 7,4                            | 2,0              | 0,12 | 0,05 | 1,36 | 0,33 | 0,88             | 0,05             |

Hor. = horizonte; Prof. = profundidade

| Tabela 3 - | Resultados  | da análise | semiquanti | tativa dos |
|------------|-------------|------------|------------|------------|
| minerais   | e índices d | a mica das | amostras a | nalisadas  |

| Minoral                                                    | Bg3 - GXa1     | Bg2 - GXa2 |  |  |  |
|------------------------------------------------------------|----------------|------------|--|--|--|
| Willerdi                                                   | Quantidade (%) |            |  |  |  |
| Caulinita                                                  | 64             | 64         |  |  |  |
| Mica                                                       | 13             | 16         |  |  |  |
| Esmectita                                                  | 23             | 20         |  |  |  |
|                                                            | Índice (       | da Mica    |  |  |  |
| l <u>(001)/(003) (Mg<sup>2+</sup>)</u><br>(001)/(003) (EG) | 2,2            | 2,2        |  |  |  |
| l (001)/(002) (Mg <sup>2+</sup> )                          | 0,6            | 0,3        |  |  |  |



Figura 1 – Difratogramas (°2θ CuKα) da argila total e fina do horizonte Bg3 do GXa1 e Bg2 do GXa2. Es = Esmectita. Mi = Mica. K = Caulinita.