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Abstract

Skin secretion of Hypsiboas punctatus is the source of a complex mixture of bioactive compounds where peptides and small
proteins prevail, similarly to many other amphibians. Among dozens of molecules isolated from H. punctatus in a proteomic
based approach, we report here the structural and functional studies of a novel peptide named Phenylseptin
(FFFDTLKNLAGKVIGALT-NH2) that was purified as two naturally occurring D- and L-Phes configurations. The amino acid
epimerization and C-terminal amidation for both molecules were confirmed by a combination of techniques including
reverse-phase UFLC, ion mobility mass spectrometry, high resolution MS/MS experiments, Edman degradation, cDNA
sequencing and solid-phase peptide synthesis. RMSD analysis of the twenty lowest-energy 1H NMR structures of each
peptide revealed a major 90u difference between the two backbones at the first four N-terminal residues and substantial
orientation changes of their respective side chains. These structural divergences were considered to be the primary cause of
the in vitro quantitative differences in antimicrobial activities between the two molecules. Finally, both molecules elicited
equally aversive reactions in mice when delivered orally, an effect that depended entirely on peripheral gustatory pathways.
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Introduction

According to Stahl [1], multifunctional drugs are agents with

more than one therapeutic mechanism and it has been observed

that almost all existing drugs have more than one known

pharmacological target when higher doses exceeding the remedial

recommendations are administrated. Fine-tuned with Paracelsus̀

legendary quote, the multifunctional concept of a drug depends

upon a given concentration to reveal its multiple pharmacological

activities. Among many others, a classical example of this principle

is Aspirin [2], the well-known drug used for more than a century as

analgesic, antipyretic and anti-inflammatory, in the end 1960̀s was

also confirmed experimentally to be an effective inhibitor of

platelet aggregation [3], therefore an important agent for ischemic

stroke prevention [4]. Pondering these facts and more recent ones

[5], it is reasonable to ask: why the multifunctional drug principle

should be confined only to small molecules, natural products and/

or their synthetic analogs? Would peptides and proteins also show

similar properties under comparable experimental conditions?

How many different structures, functional sites and therefore

biological activities a single polypeptide chain would display after

an extensive investigation?

A noteworthy indication towards a more comprehensive answer

to these questions was given by Brandenburg and co-authors [6] in

their recent review on antimicrobial peptides, when the multi-

functional drug attributes of this class of molecules and a possible

range of different applications were underlined.

The other end of the same spectrum show us that in principle,

from the organism perspective, any exogenous substance alone

may represent a potential hazardous to its integrity and/or

survival. Living beings are equipped with numerous barriers,

defense strategies and metabolic mechanisms to deal with physical,

chemical and biological threats. In all that, small and macromol-

ecules may be found acting in both ways, as belligerent and

defense agents depending on the situation. It is interesting to note

that animals may engender complex multimodal signals combined

with volatile and toxic substances that play critical roles in defense

strategies as well as in social interactions of a number of animal

species [7–10]. In plants, it was demonstrated that homoterpene

could also be released from damaged aerial tissues induced by

herbivore attacks revealing a signaling mechanism similar to those
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in animals [11,12]. In other words, many molecules may have

multiple functions and activities depending on the metabolic target

and relative concentration.

As for amphibians, it is widely known that they protect

themselves against various biotic hazards using an intricate

collection of strategies including noxious secretions, aposematism,

deimatic behavior and evasive tactics [13]. The granular glands in

anurans̀ skin store extraordinary quantities of toxic compounds

[14–17], which are also the most evident molecular ingredients of

some aversive chemosensory signals released against potential

predators to reduce the chances of future attacks [18,19], as

exemplified by the fact that some amphibian eggs and larvae are

perceived as repulsive by some fish and birds [20–22]. Amongst

the great variety of substances secreted by these glands, several of

them are antimicrobial peptides [15,23–28] typically characterized

by basic, linear and amphiphilic primary structures of 30–35

residues in a single-chain [27,29–31]. Although their protecting

roles as microbicidal agentes have been thoroughly investigated

during previous decades, little is known about other biological

activities that antimicrobial peptides may display [32,33]. In the

present work, we report the 1H NMR structures and functional

studies of a novel antimicrobial peptide that also displays aversive

gustatory properties in mice models. The peptide naturally

occurring in two enantiomeric configurations was isolated from

Hypsiboas punctatus skin secretion and sequenced by a combination

of ion mobility mass spectrometry, Edman degradation and cDNA

methodologies.

Materials and Methods

1. Amphibian Skin Secretion
Adult specimens of H. punctatus were collected in Palmas,

Tocantins, Brazil. All procedures in this study were approved and

performed are under the license IBAMA 0637/91 AC. The frog

skin glands were subjected to mild electrical stimulation (6 V

during 1 min) and skin secretion was collected in ice-cold Milli-Q

H2O, filtered, and freeze-dried and stored at 280uC, as described

by Prates, et al 2004 [34,35].

2. Peptide Purification
The crude extract was dissolved in aqueous 0.1% trifluoroacetic

acid (TFA), then fractionated by RP-HPLC (Class VP Shimadzu

Co., Japan) using a VydacH 218TP510 semi-preparative C18

column (Grace VydacH TP, USA). The fractions were eluted in a

120 minutes linear gradient of Solvent A (0.1% TFA in Milli-Q

H2O) and Solvent B (0.1% TFA in acetonitrile) using a

2.5 mL̇min21 flow rate. Chromatographic fractions containing

peptides of interest were submitted to further purification steps on

analytical columns VydacH 218TP54 C18 (Grace VydacH TP,

USA), SourceTM 5 RPC ST (GE Healthcare, WI), and Shim-

Pack-XR-ODS (30.0 mm62.0 mm) C18 column on an Ultra-Fast-

Liquid-Chromatographer (UFLC Prominence System Shimadzu

Co., Japan). All the experiments were monitored at 216 and

280 nm (or 254 nm when phenylalanine residues were present),

collected manually, frozen, lyophilized, and stored at 220uC.

3. Mass Spectrometry Analysis and Peptide Sequencing
The accurate molecular mass values of the peptides were

determined by ESI-micrOTOF-Q II (Bruker Daltonics, Ger-

many). The purity of each chromatographic fraction was evaluated

by MALDI-TOF/MS (UltraFlex III, Bruker Daltonics, Germany)

using close external calibration under reflector mode. Approxi-

mately 20 nM of lyophilized peptide was dissolved in Milli-Q

H2O, mixed to a saturated solution of a-cyano-4-hydroxycinna-

minic acid, spotted on a MALDI sample plate, and dried at room

temperature. Peptide fragmentation was obtained by MALDI-

TOF MS/MS experiments and the resulting data were analyzed

manually using both Pepseq [36] and Flex Analysis 3.0 (Bruker

Daltonics) softwares. The synthetic peptides were analyzed with a

high-capacity ion trap LC/MSn system HCT Ultra ETD (Bruker

Daltonics, Germany) equipped with a standard ESI ion source,

with full scan data in UltraScan mode between m/z 100–3000, in

positive mode, and with a fixed accumulation time of 30 ms.

Additionally, amino acid sequencing was performed by the

automated Edman degradation method on a PPSQ-23 protein

peptide sequencer (Shimadzu Co., Japan).

4. Structural Studies on Ion Mobility Mass Spectrometry
Experiments were performed on a both MALDI Synapt G1 and

ESI G2 HDMS instrument (Quadrupole Ion Mobility High-

Definition mass spectrometry – Waters Co. MA, USA) equipped

with nano-electrospray ionization source. All spectra were

acquired by direct infusion of 1 mL?min21 at a range of 300 up

to 2000 m/z. Cross section calculations of Phenylseptin were

conducted as described [37].

5. Nucler Magnetic Resonance (NMR)
The sample was prepared dissolving the peptide at 2 mM in a

60% TFE/D2O (v/v) solution. The NMR experiments were

conducted at 20uC on a Bruker Avance III spectrometer (Bruker

DRX-800) operating at 800 MHz for the 1H frequency. The

Total Correlation Spectroscopy (TOCSY) spectra were acquired

using the MLEV-17 pulse sequence. The spectral width was

determined as 6,900 Hz, and the 512 t1 increments were collected

with eight transients of 4,096 points. NOESY spectra were

acquired using mixing times of 80, 100, 120, 140 and 160 ms. For

this experiment, the spectral width was 6,900 Hz and the 512 t1
increments were collected with 16 transients of 4,096 points for

each F1. The 1H–13C HSQC spectra were acquired with F1 and

F2 spectral widths of 27,160 and 8,993 Hz respectively. The 400 t1
increments were collected with 56 transients of 1,024 points. The

acquisitions were carried out in an edited mode allowing CH and

CH3 correlations could show a positive phase and CH2

correlations, a negative phase. The 1H–15N HSQC spectra were

acquired with F1 and F2 spectral widths of 27,160 and 8,993 Hz,

respectively. Eighty t1 increments were collected (with 400

transients of 1,024 points), for each free induction decay. NMR

spectra were analyzed using NMRVIEW, version 5.0.3. NOE

intensities obtained at 120 ms mixing times were semi-quantitative

converted into distance restraints using the calibration described

by [38]. The highest intensity peaks corresponded to restraints

with upper limit of 2.8 Å, the medium intensity with 3.4 Å, and

the weakest peaks, with 5.0 Å. The backbone atoms chemical shift

values were used to generate the dihedral angle restraints, using

the TALOS+ software [39]. Structures were calculated (200) using

these restraints on the Xplor-NIH v.2.17 software [40] by

simulated annealing protocol. The structure calculation started

with an extended model, with 14000 steps at high temperature,

6000 steps during cooling and a time step of 0.005 ps. The

generated structures were then submitted to a refinement

procedure, using again a simulated annealing calculation, using

the Internal Variable Module [41] available in Xplor-NIH, with

the Hydrogen-Bonding Database, Ramachandran Torsion-Angle

Database and the Carbon Chemical Shift potentials. Among the

refined structures, the 20 lowest-energy ones were selected to

represent the model ensemble and then validated on Procheck on-

line software [42].

Conformational and Functional Effects
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6. Gene Cloning, cDNA Sequencing and Analysis
Total RNA from H. punctatus was extracted using the Trizol

reagent according to a previously described protocol [23]. Reverse

transcription of total RNA (1 mg) was performed with d(T)-anchor

primer and the Superscript Reverse Transcriptase kitTM (Invitro-

gen), according to the manufacturer’s instructions. PCR reactions

were performed using degenerate primers designed based on

conserved signal peptide [24]. The amplified cDNA fragments

were cloned into pGEM-T easyH (Promega, Maldison, WI, USA)

and sequenced in both strands using an ABI Prism 3700 DNA

Analyzer system with BigDyeTM terminator and POP-5TM

Polymer (Applied Biosystem Perkin Elmer). Comparisons of the

cloned cDNA sequence with other GenBankTM database sequenc-

es were performed using the BLASTp software [43] from the

NCBI databank (http://www.ncbi.nlm.nih.gov). The Conserved

Domain Database search (CDD-Search) from the NCBI site was

used to compare motif identity and similarity with known

conserved domains [44]. Sequence alignments were obtained by

CLUSTAL W software [45] and were edited using BIOEDIT

[46]. The calculated molecular mass of deduced proteins and

sequenced peptides were determined by the Protein Machine

software available at the Expasy website (http://us.expasy.org/

tools/).

7. Solid Phase Peptide Chemical Synthesis
The peptides L-Phes, D-Phes and one synthetic short-analog L-

Phes.1 were manually synthesized by solid phase using the Fmoc/

t-butyl strategy. An Fmoc-PAL-PEG-polystyrene resin was used

for synthesis of the amidated C-terminal segment. Cleavage and

final deprotection were conducted with a TFA:thioanisole:etha-

nedithiol:triisopropylsilane (91.5:5:2.5:1, v:v:v:v) solution for 1

hour at room temperature. Peptide purification was performed

through RP-HPLC with a Vydac 218TP1022 preparative column

and purity was assessed by MALDI-TOF/MS.

8. Antimicrobial Assays
The antimicrobial activity of the peptides L-Phes and D-Phes

were investigated using the bacterial strains Pseudomonas aeruginosa

ATCC 27853, Staphylococcus aureus ATCC 43300, and Escherichia

coli ATCC 25992. In addition, we investigated the antimicrobial

activity of the peptides towards a phytopathogenic bacterium

Xanthomonas. axonopodis pv glycines ISBF 327 obtained from

Embrapàs microorganism collection. All microorganisms were

grown in stationary culture at 37uC and after that were transferred

to Mueller-Hinton liquid medium, according to the National

Committee for Clinical and Laboratory Standards (NCCLS) to

perform the bioassays (NCCLS Institute protocols). The peptide

was dissolved up to 8-fold in Mueller-Hinton liquid broth. The

highest peptide concentration used in the assay was 131 mM in an

initial inoculum of 2.5.105 cfu?mL21 (colony-forming units/mL).

The final volume was 100 mL per well, 50 mL of the peptide and

50 mL of the inoculum. The experiment was carried out in

stationary culture at 37uC, and the spectrophotometer readings

were performed 12 h after incubation. The minimal inhibitory

concentration (MIC) was determined based on three independent

measurements, using the optical density parameter (A595 nm).

Conventional antibiotics (ampicillin and chloramphenicol) had

their minimum inhibitory concentrations determined against the

three experimental bacterial strains.

9. Behavioral Gustatory Assays
Male, adult (8–10 weeks old) mice on a C57BL/6 background

were used for behavioral assays. Animals used in this study

included littermates generated from mice heterozygous for a

partial deletion of the Trpm5 gene, as previously described [47],

originally bred from mice generously donated by C. S. Zuker

(UCSD, San Diego, CA). Genotype was confirmed by PCR

amplification using specific primers for Trpm5 gene (forward 59-

ATTCTAGAGCCCACCCGCCCCATC-39 and reverse 59-

TTCACCTGCCCAGCCCTCATCTAC-39) and for PGK-neor

cassette that replaced exons 15 to 19 encoding the first five

transmembrane domains of Trpm5 in mutant animals (forward 59-

TTGCACGCAGGTTCTCCGGC-39 and reverse: 59-TA-

GAAGGCGATGCGCTGCGA-39). Heterozygous mice were

identified by amplification of both the Trpm5 gene and PGK-

neor cassette; knockout mice were identified by the absence of

Trpm5 gene but amplification of PGK-neor cassette; and wild-type

animals by absence of PGK-neor cassette but positive Trpm5 gene

amplification. Behavioral experiments were conducted in two

mouse behavior chambers enclosed in a ventilated and sound-

attenuating cubicle (Med Associates Inc., St. Albans, VT). Each

chamber was equipped with two slots for sipper tubing placement

in symmetrical locations of one of the walls. All slots were

equipped with licking detection devices (contact lickometers, Med

Associates Inc., St. Albans, VT, USA) performing with a 10 ms

resolution. All experiments were conducted in accordance with the

J.B. Pierce Laboratory and Yale University regulations on usage of

animals in research. All procedures performed in this study were

approved by the Animal Care and Use Committee of The J. B.

Pierce Laboratory.

9.1 Controls and stimulus concentrations. As a positive

control, well known plant bitter alkaloids were used: caffeine,

theophylline, and theobromine. Stimulus concentrations were

based on previous studies, which reported, in rats, that the

threshold for integrated cranial nerve responses is 10 mM for the

glossopharyngeal nerve and approximately 10–30 mM for the

chorda tympani [48]. Accordingly, we used 10–20 mM (as well as

the sub-threshold concentration of 5 mM) in our studies to

evaluate the role of Trpm5 in generating behavioral responses to

caffeine. Finally, to allow for comparisons between behavioral

responses across controls on a molar basis, we have used these

same concentrations in theophylline and theobromine experi-

ments. As a negative control we used free amino acid mixtures

corresponding to the peptide primary structures. Stimulus

concentrations were selected based on experiments conducted by

Maehashi and Huang, 2009, where it was shown that a 10–

20 mM threshold of free-amino acid is able to display bitter

response in mice and rats. For the peptides L-Phes, D-Phes, and L-

Phes.1 we considered the same concentrations as starting points.

9.2. Short-term two-bottle preference tests. Once habit-

uated to the behavioral chamber, each animal was presented with

two bottles, contained either water or the stimulus solution

prepared in distilled water. Animals were given free access to both

bottles during the experiment (10 minutes). The number of licks

for each sipper was recorded and used to calculate the preference

ratios (see below). To reduce confounds associated with side-biases,

mice were tested in each condition for four consecutive days with

daily inversion of bottle positions. The average preference ratio

across testing days was then calculated for each animal. Animals

had been water-deprived for 16 hours previous to the beginning of

each session.

9.3. Data analysis. Results from data analyses were

expressed as mean 6 SD. Analyses of behavioral data were

performed with the custom software Origin Professional (v8,

OriginLab, Northampton, MA) using 2-way or 1-way ANOVAs

followed by two-sample or independent one-sample t-tests.

Conformational and Functional Effects
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Bonferroni corrections for multiple comparisons were performed

whenever appropriate.

9.4. Lick response and preference measures. All two-

bottle preference tests were analyzed by calculating the preference

ratios as:

Preference for Sipper 1~
n(Sipper1)

n(Sipper1)zn(Sipper2)

Where n(.) denotes the total number of licks counted on a given

sipper during a session. These values were subjected to a 2-way

ANOVA genotype 6 stimulus concentration model and tested

against 0.5, which is the reference value meaning indifference with

respect to water.

Results

1. Phenylseptins on H. punctatus Skin Secretion
The crude skin secretion was fractionated by semi-preparative

reverse-phase HPLC and mass analyzed by both MALDI TOF-

TOF/MS and ESI Q-TOF/MS systems yielding about 20 major

fractions (Figure 1A) from which, components ‘‘a’’ and ‘‘b’’ eluted

at 61.0 and 64.3 minutes, respectively, showed identical molecular

masses and MS/MS spectra. Each of the fractions was submitted

to further purification steps on analytical scale to attain

homogeneous peptide samples (Figure 1B–1E), confirmation of

their distinct retention times, MALDI-TOF/MS monoisotopic

molecular mass analyses (M+H+ = 1954.20 Da, Figure 2A) and

primary structure elucidation from their corresponding MS/MS

data (Figure S1). For both components (a and b), de novo

sequencing based on the resulting sets of undistinguishable

daughter ion series revealed 100% similarity between the amino

acid sequences of the two components (see Table S1) bearing the

following 18 residue polypeptide chain: FFFDTLKNLAGKVI-

GALT-NH2. Edman degradation of the intact components and

their respective tryptic fragments excluded typical MS/MS data

ambiguities regarding leucine, isoleucine, lysine and glutamine

residues (Table S2). Moreover, the final sequence confirmation of

both peptide and Thr18 C-terminal amidation was achieved by

cDNA sequencing as shown in Figure 3 and ESI Q-TOF/MS

exact mass of M+2H+ = 977.561 m/z (1.0 ppm) determinations

(Figure S2).

2. One Single Gene Encoded Peptide
RT-PCR amplification produced various 320-bp fragments that

revealed one single nucleotide sequence encoding a canonical

antimicrobial pre-pro-peptide precursor (18) containing a deduced

18 residues peptide sequence (Figure 3A) identical to the

previously obtained by mass spectrometry and Edman degrada-

tion. The pre-pro-peptide precursor also showed primary structure

identity with antimicrobial sequences previously deposited in

GenBankTM from three different Ranidae species, Rana rugosa

(37% gaegurin), Rana temporaria (48% brevinin-2Ta and 46% 2Tb),

Rana esculenta (50% brevinin-2Ef), and from one Hylidae specie,

Litorea aurea (54% aurein 3.1; 56% aurein 2.5 and aurein 2.3; 57%

aurein 2.2) (Figure 3B). The unusual triple phenylalanine residues

at the N-terminal of the two putative antimicrobial peptides, their

discrepancies in retention times by RP-HPLC and the confirmed

complete sequence identity brought us to the hypothesis of a

possible epimerization of at least one amino acid residue along the

polypeptide chain, hence the name Phenylseptins for the two

peptide analogs. The gene sequence was deposited under the

genebank (gb|) accession number HQ012497.

3. D-phenylalanine is Present in Native D-Phes
Reverse-phase UFLC on a Shim-Pack-XR-ODS (2.0 mm i.d.6

30.0 mm) C18 column analyses determined that Phes ‘a’ was

associated with a retention time of 11 minutes, and Phes ‘b’ with a

retention time of 12 minutes (Figure 2B – black line). After

enzymatic digestion with immobilized trypsin, UFLC analyses

were performed to determine the retention times of all fragments

from of these peptides (Figure S3 and Table S2). These analyses

demonstrated that the fragments 1–7, corresponding to Phes ‘b’ N-

terminal region (FFFDTLK; M+H+ = 917.55 Da) showed almost

one minute difference in retention time when compared with the

same fragment in Phes ‘a’. In order to investigate the presence of a

D-phenylalanine residue at the second N-terminal position as

suggested by previous related works [49–52], analogs containing

[D-Phe2]-Phes and [L-Phe2]-Phes (henceforth D-Phes and L-

Phes, respectively) were synthesized. After RP-UFLC native Phes

‘a’ co-eluted with L-Phes, while native Phes ‘b’ co-eluted with D-

Phes (Figure 2B). In order to verify the presence of a D-

phenylalanine residue at the N-terminal fragment, three possible

analogues have been synthetized: [D-Phe1]-Phes, [D-Phe2]-Phes

and [D-Phe3]-Phes. The three analogues (M+3H+977.7) were

analyzed by RP-UFLC-MS and the individual retention time for

each peptide was confirmed demonstrating that D-Phe2 analogue

has similar retention time (over 12 min.) as the naturally occurring

D-Phes peptide. (Figure S4).

4. Conformational Studies of Phenylseptin Analogs by
Ion Mobility Mass Spectrometry (IM-MS)

In order to investigate possible conformational attributes of both

Phenylseptins, these molecules were submitted to IM-MS analyses

revealing at least two conformers (M+3H+ = 652.04 m/z) with

comparable intensities for L-Phes and a major one for D-Phes with

determined drift times of 10.45, 12.89 and 10.80 ms, respectively

(Figure 4A). These results suggest higher degrees of freedom for

the L-Phes structure in the gas phase in comparison to the D-Phes

molecule.

5. NMR Structures of the Phenylseptins
Both NMR structures of L- and D-Phenylseptins at 60% TFE

were produced using total sets of 361 and 373 NOEs, respectively

(see Table 1 for details). NOEs correlations at the peptides three

phenylalanine N-terminal region indicated significant structural

differences between L- and D-Phes most likely due to Phe2

enantiomerization (Figure 4). Nevertheless strong NOEs correla-

tions of the sequential dNN(i,i+1) and daN(i,i+3) obtained for the rest

of the molecule (residues 4–18) indicated classical a-helical

conformations at that region for both peptides (Figure 4F–4G).

The Root Mean Square Deviation (RMSD) analyses of all

backbone atoms for individual structures were 0.5360.21 for L-

Phes and 0.3860.18 for D-Phes, and no distance violations greater

than 11 was observed. The RMSD values for segment 4–17 were

similar between L-Phes and D-Phes (0.2260.09 and 0.2260.08,

respectively), while L-Phes showed 0.4060.22 for the1Phe-3Phe

segment and D-Phes showed 0.0860.06. In the calculated D-Phes

structure it was observed that Phe1 and Phe3 aromatic rings have

significant interactions whilst Phe2 share NOEs with the peptide

side chain with Leu6 producing a more structured N-terminal

than in L-Phes (Figure S5).

6. Phenylseptins Display Different Antimicrobial Activities
In vitro antimicrobial tests revealed that both peptides exhibited

distinct levels of activities against pathogenic S. aureus (ATCC

29313), E. coli (ATCC 25922) and P. aeruginosa (ATCC 27853).

Conformational and Functional Effects
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Overall, D-Phes was more effective than L-Phes and Magainin

(classical positive control) [15] against these pathogenic bacteria

but less active than DS01 [53], which was used as the most potent

antimicrobial peptide (our group̀s positive control) (Table 2).

When tested against the soybean phytopathogen, Xanthomonas

axonopodis pv glycines, D-Phes was found to be 8-fold more effective

than L-Phes (4.1 and 32.7 mM, respectively).

7. Bitterness Motif Hypothesis
Analyses of Phenylseptin sequences revealed that their Phe-rich

N-terminals share sequence similarities with the bitter Phe-Phe-

Figure 1. Phenylseptin peptides present on H. punctatus skin secretion. Chromatographic profile of H. punctatus crude extract and
Phenylseptin isolation. (A) The crude extract was eluted with 0.1% TFA (Solvent A) and 95% acetonitrile containing 0.1% TFA (Solvent B), under a
linear gradient of solvent B for 120 minutes in a semi-preparative C18 column. The identified Phenylseptin peptides ‘a’ and ‘b’ (B and D, respectively)
were further purified by reverse-phase polystyrene/divinyl benzene chromatography using a 5 RPC ST 4.6 mm/150 mm column under optimized
gradient of acetonitrile at a flow rate of 1.0 mL?min-1. After these two separation steps, final purification of the peptides ‘a’ and ‘b’ (C and E,
respectively) was obtained using Ultra Fast Liquid Chromatography using a Shimpack-XR-ODS column under a linear gradient of acetonitrile at a flow
rate of 0.4 mL?min-1. In all steps of purification the absorbance was measured at 216 nm, and when necessary at 254 or 280 nm.
doi:10.1371/journal.pone.0059255.g001

Conformational and Functional Effects
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Figure 2. UFLC analysis and molecular mass determination of Phenylseptin mixture. (A) The accurate molecular masses and purity of Phes
peptides were determined by MALDI-TOF/MS and the observed molecular mass was 1954.2 Da for both molecules. (B) Analytical chromatographic
profile of natural (black line) and synthetic L-Phes (red dash line) and D-Phes (blue dash line). The two peptides were mixed in similar molar
concentrations and load into an Ultra Fast Liquid Chromatography using a Shimpack-XR-ODS column under a linear gradient of acetonitrile at a flow
rate of 0.4 mL?min-1. The two distinct fractions eluted around 11 and 12 minutes corresponded to L-Phes and D-Phes, respectively.
doi:10.1371/journal.pone.0059255.g002

Conformational and Functional Effects
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Phe motifs shown in Figure 5 [54]. Therefore, we hypothesized

that the triple-phenylalanine N-terminal sequences found in the

two peptides would also produce similar aversive behavioral

responses to those produced upon stimulation of oral bitter taste

sensors.

8. Gustatory Preference Tests Involving Prototypical
Bitters in Trpm5 KO and WT Mice

The methylxanthines caffeine, theophylline and theobromine

are prototypical bitter tastants and were used as positive controls

for bitter detection in WT animals and bitter-insensitivity in KO

animals at 5, 10 and 20 mM concentrations. For the caffeine

experiments, we designed a mixed-model two-way stimulus

concentration 6 genotype ANOVA 6 which revealed, as

expected, a robust effect of genotype (p,0.0003) on preference

ratios. Similar analyses performed for theophylline revealed

equally robust effects of genotype on preference ratios

(p,0.001). In addition, these ANOVAs revealed significant

stimulus concentration 6 genotype interactions (p,0.02 and

p,0.008; caffeine and theophylline, respectively). The interaction

effects prompted repeated measures one-way ANOVA models for

each genotype separately (Table S3), which revealed a significant

main effect of stimulus concentration on preference ratios in WT

(p,0.02 and p,0.01, caffeine and theophylline, respectively), but

not in KO mice (p = 0.4 and p = 0.95, caffeine and theophylline,

respectively). For theobromine this analysis revealed neither

significant main effect of genotype (p = 0.17) nor interaction

(p = 0.4) on preference rations, although it was the only stimuli to

show a significant effect of stimulus concentration (p,0.02). One-

way ANOVAs performed for each genotype separately confirmed

a significant effect of theobromine concentrations in WT (p,0.04),

but not in KO (p = 0.29). Post-hoc analyses of the individual

preference ratios for each stimulus confirmed that, while WT mice

displayed significantly higher preferences for water against 10–

20 mM caffeine, 5-10-20 mM theophylline and 20 mM theobro-

mine, KO mice were uniformly indifferent to all choices. Our

findings so far show that, in 10 min-long two-bottle preference

tests, Trpm5 KO mice are indifferent all concentrations of

methylxanthines, while some concentrations (10–20 mM caffeine;

5–10–20 mM theophylline; 20 mM theobromine) are robustly

avoided by WT mice. All control results are depicted in Figure 6A–

6C and Table S3.

9. Gustatory Preference Tests Involving Phenylseptins in
Trpm5 KO and WT Mice

After methodology validation, we tested both Phenylseptin

peptides and one shorter analog. The analog L-Phes.1 was used as

a control to investigate the importance of the full peptide

Figure 3. One single gene encoding Phes peptide. (A) Nucleotide sequences of clone encoding precursor of selected Phenylseptin peptides.
The putative signal peptide (in box), acidic spacer (dash underline) and mature peptide (bold underline), C-terminal codon for Glycine (blue
underline) and stop codon (asterisk) are indicated. The nucleotide sequences were deposited in the NCBI Nucleotide Sequence Database under
HQ012497 annotated accession code. (B) Predicted amino acid sequence alignment of Phenylseptin with previously sequenced Hylidae peptides
aurein, ranateurin, brevinin and gaegurin. Sequence alignments were done using CLUSTAL W software and were edited with the BIOEDIT software.
doi:10.1371/journal.pone.0059255.g003
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Figure 4. Structural studies on L- and D- Phenylseptin peptide isomers by Ion Mobility Mass Spectrometry (IM-MS) and Nuclear
Magnetic Resonance (NMR). (A) L-Phes and D-Phes were individually analyzed showing that each one (M+3H+ = 652.04 m/z) can assume at least
two major conformations with distinct amounts of each type. L-Phes conformations at 10.45 and 12.89 ms and D-Phes conformations at 10.80 and

Conformational and Functional Effects

PLOS ONE | www.plosone.org 8 April 2013 | Volume 8 | Issue 4 | e59255



sequence. We reasoned that the peptide N-terminal might be a

crucial modulator of bitterness potency in these peptides. The

peptides were tested at 0.01 mM, 0.1 mM and 1 mM in

behavioral tests identical to those previously described. WT

(N = 7) and KO (N = 7) mice were exposed to 10-min two-bottle

preference tests where choice was given between a Phes solution

and (distilled) water. Analysis of two-way genotype 6 peptide

concentration ANOVA designed as above revealed a robust effect

of genotype for L-Phes (F1,12 = 31.9, p,0.0002), D-Phes

(F1,12 = 21.2, p,0.0006) and L-Phes.1 (F1,12 = 76.1, p,0.0005),

on preference ratios. Conversely, no concentration effects were

detected for L-Phes (F1,12 = 1.12, p = 0.31), D-Phes (F1,12 = 1.32,

p = 0.27) or L-Phes.1 (F1,12 = 1.23, p = 0.30). Also, no significant

peptide concentration 6 genotype interactions for L-Phes

(F1,12 = 0.29, p = 0.75), D-Phes (F1,12 = 1.32, p = 0.27) or L-Phes.1

(F1,12 = 0.04, p = 0.84), on the preference ratios. Pairwise compar-

isons using post-hoc Tukey tests showed that even in low

concentrations WT mice rejected the peptides, while KO mice

remained indifferent. As observed for the control experiment with

methylxanthines, post-hoc analyses on individual preference ratios

of peptides confirmed that WT mice demonstrated high prefer-

ence for water, while KO mice were indifferent to the choices

given. Specifically, WT mice have shown significant higher

aversion against all concentrations of L-Phes, D-Phes and L-

Phes.1 (one-tailed t-tests, p,0.05; Figure 6D–6F). In summary, we

attribute the aversive oral properties of the Phenylseptins tested

entirely to their gustatory, possibly bitter-like, properties, given the

strong impairments observed in mice lacking the taste ion channel

TRPM5.

10. Peptide Primary Structure and Gustatory Perception
1 mM of each amino acid free present in L-Phes and D-Phes

sequences were mixed and the resulting solutions were offered to

the mice in two-bottle preference tests as above. The two-way

ANOVA free-amino acid solution X genotype model showed no

significant effect for L-Phes (p = 0.20), D-Phes (p = 0.19) and L-

Phes.1 (p = 0.23), or interactions (L-Phes p = 0.37, D-Phes

p = 0.41, and L-Phes.1 p = 0.35) on preference ratios for both

preparations. One-way ANOVAs were performed separately for

each genotype using the amino acid preparation as factor. There

were no effects on preference ratios in either WT or KO mice. In

fact, as expected for the tested concentration, both WT and KO

mice were equally indifferent to 1 mM free amino acid solution

(Figure 6G), indicating the importance of the primary structure for

the activity.

Discussion

The present work reports a novel peptide named Phenylseptin

(Phes), purified from the skin secretion of H. punctatus. This peptide

naturally occurs in two different primary structures constituted by

L-Phe2 and D-Phe2 (Figure 2 and S3) and C-terminal amidation

at Thr18. Both sequences display distinct in vitro antimicrobial

activities but similar sensorial aversive properties on mice. It was

observed that the epimerization of the second N-terminal

phenylalanine residue induced a 90u conformational change at

the N-terminal of the D-Phes structure (Figure 4) and that could be

responsible for the significant differences on the antimicrobial

activities obtained for two peptides (Table 1). However, the N-

terminal structural differences demonstrated for both molecules

appear to cause no detectable response regarding micès gustatory

perception to bitterness. These findings are consistent with

previous works concerning amino acid epimerization in frog

peptides such as dermorphins and deltorphins, as well as predators̀

12.72 ms. D-Phes has its major conformation at 10.80 ms. Experiments were performed on a Synapt HDMS instrument (Quadrupole Ion Mobility
High-Definition mass spectrometry – Waters Co. MA, USA) equipped with nano-electrospray ionization. All spectra were acquired with a direct
infusion of 1 mL?min-1 of in a range m/z 300 up to 2000. Precursor charge state: 3. Tolerance: 0.1 Da. (B) and (C) The 20 lowest-energy structures for
both peptides. The hydrophobic residues are represented in gold yellow, the hydrophilic residues in green. (D) The lowest-energy Phenylseptins
showing Phenylalanine enatiomerization, the aromatic phenylalanine are in dark red and (E) The alignment of lowest-energy L- and D-Phes structure
in the presence of 60% TFE viewed along the helix axis and from the side.
doi:10.1371/journal.pone.0059255.g004

Table 1. Summary of the structural restraints and statistical
analysis of the calculated structures of L/D-Phes in TFE/D2O
60:40 v/v.

Structural Statisticsa L-Phes D-Phes

Experimental restraintsb

Distance restrains

Intraresidue (i–j = 0) 185 184

Sequential (|i–j| = 1) 80 82

Medium range (2#|i–j|#4) 66 78

Long range (|i–j|$5) 0 1

Dihedral restrains

Torsion angle (phi/psi) 30 28

Total number of restrains 361 373

Restrains statistics

NOE violations .0.5 Å 11 8

Dihedral violations .5u 3 1

CNS energies (Kcal/mol)

Etotal 238.5465.59 37.6664.56

RMSD from average for residues
1–18 (Å)c

Backbone N, CA, C9 0.5160.17 0.4460.12

Heavy atoms 1.5560.40 1.0160.10

RMSD from average for residues
1–3 (Å)c

Backbone N, CA, C9 0.4760.22 0.2460.18

RMSD from average for residues
4–17 (Å)c

Backbone N, CA, C9 0.2060.08 0.2060.06

Ramachandran plotd

Most favored regions (%) 85.7 99.6

Additional allowed regions (%) 0 0.4

Generously allowed regions (%) 8.9 0

Disallowed regions (%) 5.4 0

aThe statistics was obtained from an ensemble of 20 lowest-energy vacuum-
refined structures for both peptides (L/D-Phes).
bRestraint statistics reported for unique, unambiguous assigned NOEs.
cCoordinate precision is given as pair-wise Cartesian coordinate over the
ensemble Root Mean Square Deviations from the average structure.
dValues obtained from the PROCHECK-NMR analysis over all residues including
the first seven highly flexible residues.
doi:10.1371/journal.pone.0059255.t001
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aversive taste behaviors to various amphibian skin secretions

[16,51,55–58].

The Phenylseptins reported in this study were found to adopt at

least two major structural conformations and so far, according to

our cDNA library, both forms should be considered a single gene

product synthesized as a highly conserved pre-pro-protein that

yields the two mature polypeptides (L2/D-Phes) after enzymatic

processing and corresponding post-translational modifications.

Electrospray and MALDI (data not shown) ion mobility mass

spectrometry experiments demonstrated the presence of multiple

peptide ion (M+H+) conformers in the gas phase (Figure 4A),

which were confirmed by 1H NMR in solution (Figure 4D). The

amount of structural data that was unveiled in this occasion for

such a small polypeptide demonstrates how subtle, complex and

Figure 5. Phenylseptin Phe-Phe-Phe motif. Phenylseptin N-terminal sequence was compared to other peptides previously described on the
literature as being bitter. Sequence alignments were edited with the BIOEDIT software. On the right side a bitterness scale based on Kim, et al., 2006
analysis.
doi:10.1371/journal.pone.0059255.g005

Table 2. Antimicrobial activity of L/D-Phes.

Microorganism MIC (mM)a

L-Phes D-Phes Mg DS01 Amp. Chloram.

S. aureus ATCC 29313 65.5 32.7 ND 26,5 ,11 ND

E. coli ATCC 25922 65.5 65.5 79 6,6 46 25

P. aeruginosa ATCC 27853 .130 130 157.8 NT 25 25

X. axonopodis pv glycines
ISBF 327a

32.7 4.1 13 ,1.42 ND ND

aMIC -minimal peptide concentrations required for total inhibition of cell growth.
*ND - antimicrobial activity not detectable;
aPhytophatogenic bacteria; Amp and Chloram- ampicillin and chloramphenicol; Mg and DS01 - control peptides Magainin (Zasloff, et al and Brand, et al).
doi:10.1371/journal.pone.0059255.t002
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non-trivial peptide studies can be, and how easily one might be

driven to ignore relevant structural and functional features,

particularly when high throughput approaches tend to be

overemphasized. Furthermore, the uncommon triple phenylala-

nine N-terminal of the Phenylseptins seems to share similar

bitterness attributes observed in peptides released during food

hydrolysis or aging process in fermented products [59]. The

aversive gustative responses registered in normal mice caused by

aqueous solutions with different molar concentrations of Phenyl-

septins are comparable to those constituted by the classical bitter

alkaloids caffeine, theophylline and theobromine, when offered to

the same animals (Figure 6). Therefore, it is plausible to infer that

similar aversive activity could also be part of a general warning

strategy against natural predators of H. punctatus, especially if one

may ponder what was uttered with remarkable precision in De

Anima by Aristotle centuries ago: ‘‘…taste also must be a kind of

touch, because it is a sensation of that which is tangible and

nutritive… Hence excess in tangible qualities destroys not only the

sense-organ, but also the animal itself. For touch is the one sense

that the animal cannot do without… It (the animal) has taste on

account of what is pleasant and painful, to the end that it may

perceive what is pleasant in food and feels desire and be impelled

to movement.’’ (Aristotle, III. 13) [60].

These results strongly suggest that Phenylseptins may be part of

a multifunctional pool of peptides and proteins produced by the

skin glands of H. punctatus with at least two experimentally tested

defensive roles: against pathogenic microorganism and a potential

predator warning agent.

Supporting Information

Figure S1 MS/MS spectra assignment for L-Phes and
D-Phes fragmented peptides. The observed molecular mass

was 1954.2 Da. The peptides were fragmented by MALDI-TOF

MS/MS experiments showing the same fragmentation profile.

The resulting data were analyzed manually using both Pepseq

(Waters Co.) and Flex Analysis 3.0 (Bruker Daltonics) programs.

The primary sequence was confirmed by the automated Edman

degradation method on a PPSQ-23 protein peptide sequencer

(from Shimadzu Corp.). The loss of 0.98 Da on C-terminal

threonine residue indicates the amidation.

(TIF)

Figure S2 Theoretical and experimental accurate mo-
lecular mass values of Phenylseptins with internal
calibration determined by direct infusion on an ESI
MicrOTOF-Q II mass spectrometer operating with a
standard ESI probe. Mass accuracy of ,1 ppm RMS error;

M+2H+ = 977.651.

(TIF)

Figure S3 Enzymatic digestion of natural L-Phes and D-
Phes with immobilized trypsin and UFLC analyses. (A)

Analytical chromatographic profile of the digested peptides loaded

onto an Ultra Fast Liquid Chromatography (UFLC-HPLC) using

a Shimpack-XR-ODS column under a linear gradient of

acetonitrile at a flow rate of 0.4 mLNmin-1. L-Phes (red line) and

D-Phes (blue line) generated 3 fragments each. Fragments 1/19

and fragments 2/29 were eluted at the same time, while fragments

3/39 were eluted differently with a Dt = 0.9 min. (B) The

molecular masses and purity of all fragments were determined

by MALDI-TOF/MS (UltraFlex III, Bruker Daltonics, Germany)

and the observed molecular mass was 524.1 Da for fragments 1/

19, 594.1 Da for fragments 2/29 and 917.5 Da for fragments 3/39.

(TIF)

Figure S4 UFLC analyses of natural D-Phes and its
analogues. (A) Analytical chromatographic profile of the native

(dash line) and synthetic (dark line) peptides loaded onto an Ultra

Fast Liquid Chromatography (UFLC-HPLC) using a Shimpack-

XR-ODS column under a linear gradient of acetonitrile at a flow

rate of 0.4 mL̇min-1. L-Phes (red line) and D-Phes (blue line). (B)

The molecular masses and purity of peptides were determined by

ESI-HCT Ultra ETD (Iontrap, Bruker Daltonics, Germany) and

the observed molecular mass was 977.7 Da for all analogues.

(TIF)

Figure S5 NOESY spectra acquired using mixing times
of 160 ms from D-Phes showing Phe2 and Leu6 interac-
tion. For this experiment, the acquisitions were carried out in

60% TFE/H2O (v/v).

(TIF)

Table S1

(DOCX)

Table S2

(DOCX)

Table S3

(TIF)
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Figure 6. Trpm5 dependent bitter substances. Short-term (10 min) (A) caffeine vs. water, (B) theophylline and (C) theobromine two-bottle
preference tests. Trpm5 knockout (‘‘KO’’) mice displayed indifference to all choices. (D) The bitterness of Phenylseptin peptides is dependent on
Trpm5 regulation. Short-term (10 min) (E) L-Phes vs. water, (F) D-Phes vs. water and (3) L-Phes.1 vs. water two-bottle preference tests. Trpm5
knockout (‘‘KO’’) mice displayed indifference to all choices. Values displayed as preference ratios for water. (G) Amino acid organization on peptide
structure is fundamental to gustatory perception. Short-term (10 min) L-Phes mixture vs. water and D-Phes mixture vs. water. Wild-type and Trpm5
knockout (‘‘KO’’) mice were equally indifferent to all choices. Values displayed as preference ratios for water. Values displayed as preference ratios for
water. Post-hoc (Bonferroni-corrected) one sample t-test against indifference ratio of 0.5: *p,0.05; **p,0.04; all other comparisons p.0.05. Red line
denotes level of indifference (preference ratio of 0.5).
doi:10.1371/journal.pone.0059255.g006
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