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The noteworthy of this study is to predict seven quality parameters for beef samples using time-domain

nuclear magnetic resonance (TD-NMR) relaxometry data and multivariate models. Samples from 61

Bonsmara heifers were separated into five groups based on genetic (breeding composition) and feed

system (grain and grass feed). Seven sample parameters were analyzed by reference methods; among

them, three sensorial parameters, flavor, juiciness and tenderness and four physicochemical para-

meters, cooking loss, fat and moisture content and instrumental tenderness using Warner Bratzler

shear force (WBSF). The raw beef samples of the same animals were analyzed by TD-NMR relaxometry

using Carr-Purcell-Meiboom-Gill (CPMG) and Continuous Wave-Free Precession (CWFP) sequences.

Regression models computed by partial least squares (PLS) chemometric technique using CPMG and

CWFP data and the results of the classical analysis were constructed. The results allowed for the

prediction of aforementioned seven properties. The predictive ability of the method was evaluated

using the root mean square error (RMSE) for the calibration (RMSEC) and validation (RMSEP) data sets.

The reference and predicted values showed no significant differences at a 95% confidence level.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

For most consumers, a sensory response reflects their first
impression about the quality of foods [1,2]. In general, the flavor,
juiciness, and tenderness are the main properties used to evaluate
the quality of meat on the consumer’s plate [3].

The sensory analysis of food is determined by trained assessors
who award scores for different attributes. These scores have a
specific point scale to describe the tested property [4]. However,
the problem with this procedure is the inherent subjectivity in
the results [5]. Additionally, these panel evaluations are time-
consuming and expensive [6].

Several studies have shown that meat sensory attributes such
as juiciness and tenderness depend on the water content and its
distribution. Bertram et al. [7] showed the relationship between
water mobility and its distribution using transverse relaxation
time (T2) measured by the Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequence (T2 relaxometry) and the sensory attributes in
pork slaughtered between the ages of 90 and 180 days. Time-
domain nuclear magnetic resonance (TD-NMR) relaxometry
ll rights reserved.
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showed three different water environments in the meat linked
to (i) proteins, (ii) myofibrils, and (iii) the myofibrillar lattice.
Each region has a distinct range of relaxation times based on its
aforementioned water distribution [7–9]. The meat with the
highest juiciness score was from the 90-day old pork, and it had
a longer relaxation time from the extramyofibrilar water corre-
sponding to more mobile water than that observed in the older
pigs [7].

Properties such as cooking loss, fat and moisture content, and
instrumental tenderness are the main physicochemical parameters
commonly used to evaluate beef quality [10,11]. However, the
drawback is that the content of fat and/or moisture is estimated by
taking an average value for one carcass. In other words, the
reported value does not belong to the product purchased by the
consumer [12].

The practice of displaying the nutrients or chemical properties
on the product’s label could be improved by utilizing the results
from analytical laboratory tests and other techniques [13].
The specific characteristics for each package should be displayed
on the product’s label to help the consumer’s choice and should not
be displayed as an average estimation [12].

Therefore, the goal of this study was to show the possibility of
predicting sensory traits, such as beef flavor, juiciness, and
tenderness, as well as the physicochemical parameters, such as
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cooking loss, fat and moisture content, and instrumental tender-
ness using Warner Bratzler shear force, and TD-NMR relaxometry,
which depends on fat and water content and their distributions.

The relaxometry studies were performed using a standard
CPMG sequence to measure the T2 values and the sequence known
as Continuous Wave-Free Precession (CWFP) to measure long-
itudinal relaxation time, T1 and T2, in a single and fast experiment
[14]. In our study, the entire TD-NMR signals obtained from the
sequences were investigated to develop models to predict these
seven properties. The main objective was not to replace the human
opinion but to speed up the sensory tests and help the manufac-
turer to improve quality control.
2. Materials and methods

Animal Care and Use Committee approval was not obtained for
this study because samples were taken from federally inspected
slaughter facilities.
2.1. Procurement of samples

Sixty-one Bonsmara heifers were separated into five groups
according to genetic (breeding composition) and feed system
(grain and grass feed). After harvest and chilling, a portion of
each left side strip loin (Longissimus dorsi muscle) was collected,
vacuum packaged and sent to the Meat Lab at the State University
of Campinas (UNICAMP, Campinas, S~ao Paulo state, Brazil).

After 14 days of aging, for each portion, 4 steaks (2.5 cm thick)
were prepared, overwrapped with parchment paper and frozen
(�20 1C) before being used for sensory analysis, shear force and
proximate analysis at Meat Laboratory at UNICAMP (Campinas,
S~ao Paulo state, Brazil) and, for TD-NMR tests at Embrapa
—Instrumentation (S~ao Carlos, S~ao Paulo state, Brazil). For cook-
ing and TD-NMR measurements, each steak was first trimmed of
any external fat and connective tissue.
2.2. Sensory analysis

Steaks were thawed (4 1C for 24 h) and cooked in a conven-
tional electrical oven—FEC (Imequi, series 8–4000 W, S~ao Paulo,
Brazil) equipped with upper and lower electrical resistances.
The oven was pre-heated with the thermostat adjusted to
170 1C, and the steaks’ internal temperatures were individually
monitored.

Each steak was placed on a metal rack over an aluminum tray
and was turned over after reaching an internal temperature of
40 1C. After this point, only the upper resistance was left on.
Steaks were removed from the oven when they reached an
internal temperature of 71 1C.

Grilled steaks were immediately cut into 1 cm cubes, which
were placed in glass flasks with metal lids. For sampling, cubes
with apparently no internal connective tissue were used.

A yogurt maker with the thermostat adjusted to 40 1C was used
to keep the samples warm until evaluation, which was conducted
in individual light- and temperature-controlled booths [15].

A trained sensory panel of eight members evaluated the
tenderness, juiciness and flavor intensity of the samples on an
8-point scale (8¼extremely tender, juicy and intense and
1¼extremely tough, dry and bland) [16]. A total of 444 evalua-
tions were performed, and they were reported by means of
individual scores.
2.3. Cooking loss

Before cooking, steaks were trimmed to remove external fat
and the thawed weight was recorded. Once steaks exited the
oven, the cooked weight was recorded immediately. Cooking loss
(%) was calculated using the following formula:

Cookinglossð%Þ ¼
ðthawedweightðgÞ�cookedweightðgÞÞ

thawedweightðgÞ

� �
� 100

2.4. Proximate analysis

Steaks were trimmed of fat and connective tissue, ground and
oven dried to a constant weight (12 h). The moisture content was
determined by weight difference [17]. The extraction of intra-
muscular lipids was performed using the Bligh and Dyer method
[18], which is a recommended method for determining total lipid
content in biological tissues [19].

2.5. Warner Bratzler shear force (WBSF)

After cooking, following the same procedure as performed for
the sensory analysis, the steaks were placed on trays, covered
with plastic film, and stored overnight at 4 1C for WBSF analysis.

In the next day, the cores from the lateral, middle, and medial
portions (for a total of 6 cores, 1.3 cm in diameter) of each steak
were removed parallel to the longitudinal orientation of the
muscle fibers. The cores were sheared using a texture meter
TA-XT 2i (Texture Technologies Corp./Stable Micro Systems, God-
alming, Surrey, UK) equipped with a 1 mm thick Warner–Bratzler
blade, and the peak shear force was recorded, and the average
was determined. The peak load (kg) for all 6 cores was averaged,
and the mean peak load (kg) was analyzed for each sample [16].

2.6. Time-domain nuclear magnetic resonance measurements

After thawing, each raw sample was separated into three
cylindrical slices using a cylinder cutter with a diameter of
2 cm. For measurements, a benchtop SLK 100 TD-NMR spectro-
meter (Spinlock Magnetic Resonance Solution, Cordoba, Argen-
tina) equipped with a 0.23 T permanent magnet (8.9 MHz for 1H)
and a 13�30 mm probe head was applied to collect CPMG and
CWFP decay signals. The CPMG sequence was executed using p/2
and p pulses of 6.28 and 12.56 ms, respectively, and echo times of
t¼300 ms with a total of 1500 echoes. The dead time was
approximately 50 ms. The CWFP [14] sequence also used p/2
and p pulses of 6.28 and 10.6 ms, echo times of t¼141.56 ms
and 1501 echoes. The frequency offset was 5 KHz. Each signal for
both sequences was the result of an average of 4 scans. The room
temperature was held constant at 23 1C.

2.7. Data set evaluations

For the construction of PLS multivariate regression models,
two separate data matrices were organized into 61 lines, which
correspond to the samples, and 1500 and 1501 columns for
variables (time) of CPMG and, of CWFP, respectively. TD-NMR
signals are related to the independent variables (X matrix).
The flavor, juiciness, tenderness, cooking loss, fat content (total
fat), moisture content and instrumental tenderness (Warner
Bratzler shear force) were the dependent variables (Y matrix)
used to compute the regression models. In the calibration data
set, 49 samples were included, and the validation data (randomly
chosen) set was comprised of 12 samples. The PLS chemometric
technique is available on the Pirouette 4.0 rev. 2 software (Info-
metrix, Bothell, Washington, USA). An electronic spreadsheet
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available at Microsoft Excel
TM

software was applied for statistical
analysis.
Table 2
Results from the reference methods for cooking loss, proximate analysis and

instrumental tenderness (WBSF).

Parameter Cooking loss

(g g�1)

Fat content

(g�100 g�1)

Moisture

Content

(g�100 g�1)

Instrumental

tenderness

(WBSF) (kg F�1)

Set of

breeding

composition

Mean7SD

1 (n¼10) 22.0373.01 7.4370.86 70.9772.59 3.8870.46

2 (n¼16) 23.1872.39 4.4570.41 73.2472.23 3.7170.27

3 (n¼10) 22.6073.14 3.8170.18 73.5670.81 3.9670.89

4 (n¼14) 23.0272.03 3.7070.39 73.3271.64 4.0070.65

5 (n¼11) 22.0373.17 3.0870.50 72.5573.35 4.1170.41

Fig. 1. Profiles of the TD-NMR signals for CPMG and CWFP recorded for one beef

sample.
3. Results and discussion

The sensory tests were executed following the international
standard methods, and the results were considered to be ade-
quate for evaluating the beef samples’ quality. The intra-sample
variability shown by the RSD values in Table 1 is considered to be
accurate because 12 or more slices from the same steak were
used. In addition, there is intrinsic subjectivity from each indivi-
dual assessor’s perception of the sample’s sensory property.

The physicochemical parameters were determined using at
least three replicates. The instrumental tenderness (kg F�1) was
performed with six replicates and the cooking loss (g g�1) was
measured for each steak. These results are shown in Table 2.

The reference value of each parameter for sensorial and physi-
cochemical properties used to calculate the regression models was
the mean from the other analyzed steaks. These tests require
different instrumentation and are time-consuming. To overcome
this limitation, TD-NMR can help to construct calibration models
based on the chemical features of food. The main objective is to
quickly visualize the repeatability of the quality parameters.

The advantage shown in this study is the possibility of measur-
ing raw beef samples with benchtop TD-NMR spectrometry.
The sample needs no preparation, and the method is non-
destructive. The TD-NMR signals from the benchtop spectrometer
are shown in Fig. 1 where differences between the relaxation decay
signals for the CPMG (1500 variables) and CWFP (1501 variables)
sequences can also be visualized. TD-NMR has sufficient sensitivity
to measure the differences in water content in several meat
samples due to variations in a signal’s amplitude [8,20].

The TD-NMR data were evaluated using the PLS chemometric
technique to create multivariate models [21,22]. The advantages
of PLS regression when compared with fitting procedures are:
(i) it is not necessary to assign the T2 values (or another
parameter) to the water in a specific environment; (ii) it is not
biased by the operator and (iii) it can be easily automated.

The raw data were mean-centered for modeling the indepen-
dent variables. The number of latent variables (LV) needed to
perform the prediction is showed in Table 3 for both sequences
(CPMG and CWFP).

With one or two LV (case of cooking loss and moisture content),
CPMG signals required the first 56 variables of the TD-NMR signals
for 99% of the explained variances for mostly of the seven
investigates parameters. For the CWFP signals, the values of the
explained variances ranged up 40 to 98% and the LV needed was
between 1 and 2 (for fat content). In this case, the first 58 variables
were used.

The selection of variables for both sequences was based on the
highest regression coefficients for the data. The signals of the CWFP
sequence were also transformed with the first derivative (15-point
window) and mean-centered, according to our previous study [23],
thus generating models with best results. This pre-processing also
Table 1
Values of relative standard deviation in percentage (%RSD) computed from the trained

Sensory property Flavor

Set of breeding composition Mean7SD (Median and %RSD ra

1 (n¼10) 672 (6 and 6–36%)

2 (n¼16) 671 (6 and 8–35%)

3 (n¼10) 572 (6 and 17–36%)

4 (n¼14) 672 (6 and 10–42%)

5 (n¼11) 571 (6 and 9–45%)
allowed more information to be extracted from the tested data in
this study.

The ranges for sensory and physicochemical parameters are
also shown in Table 3. The magnitude of the RMSE values depends
on the property under analysis. The sensory parameters are non-
dimensional because the assessors followed a numerical point
scale (scores).

The noteworthy result from this study was that lower variations
are observed for the RMSE values for signals from the CPMG and
CWFP sequences. This finding provides good evidence that the TD-
NMR signals are sufficiently accurate or even more accurate than
an individual assessor’s evaluation and the standard tests for the
physicochemical parameters supported by the high correlation
between the water content and the amplitude of CPMG and of
CWFP signals. Then, the ability of TD-NMR to distinguish the
differences between samples was verified with a paired Student’s
t-test that showed no significant difference at 95% confidence
levels. The same result was observed for the validation data set.
assessors’ evaluations for sensory properties.

Juiciness Tenderness

nge)

671 (6 and 11–40%) 771 (7 and 6–22%)

671 (6 and 8–36%) 771 (7 and 7–27%)

671 (6 and 12–44%) 671 (6 and 10–24%)

671 (6 and 8–35%) 671 (6 and 7–33%)

671 (6 and 12–33%) 671 (6 and 8–28%)



Table 3
Results for prediction of sensory and physicochemical parameters of beef samples using PLS multivariate model and TD-NMR signals.

Parameter Sensory Physicochemical

Property Flavor Juiciness Tenderness Cooking loss

(g g�1)

Fat content

(g�100 g�1)

Moisture Content

(g�100 g�1)

Instrumental tenderness (WBSF)

(kg F�1)

Range 4–7 5–7 4–8 15.06–30.48 1.96–8.91 65.40–75.76 2.70–5.26

CPMG sequence

% Explained variance

(LV)

97.2

(1)

99.1 (1) 99.2 (1) 99.9 (2) 94.3 (1) 99.9 (2) 99.1 (1)

RMSEC (n¼49) 0.6 0.7 0.7 2.81 1.61 1.78 0.57

RMSEP (n¼12) 0.6 0.5 0.6 2.45 1.16 2.40 0.56

CWFP sequence

% Explained variance

(LV)

39.8

(1)

52.2 (1) 45.4 (1) 41.9 (1) 92.1 (2) 59.5 (1) 79.2 (1)

RMSEC (n¼49) 0.6 0.7 0.8 2.79 1.34 1.93 0.58

RMSEP (n¼12) 0.6 0.5 0.5 2.11 1.55 2.57 0.55

Fig. 2. Values of the correlation coefficients between the classical analysis results

and those predicted by PLS multivariate model with TD-NMR signals. From left to

right (1) flavor, (2) juiciness, (3) tenderness, (4) cooking loss, (5) fat content,

(6) moisture content and, (7) instrumental tenderness (WBSF).
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The potential of these multivariate models was also confirmed
by the low values for RMSEP, as shown in Table 3. For the
calculations, these samples were not included in the calibration
data set. Thus, the multivariate models can help predict the
studied properties by measuring of fat and water content using
TD-NMR.

The correlation coefficients (r) between the values of reference
methods and those predicted by the PLS models can be verified in
Fig. 2. CPMG is very promising for most properties with r values up
�0.56 to �0.91, except for cooking loss (r¼�0.21) Otherwise,
CWFP signals have a good correlation for cooking loss (r¼0.80),
moisture (r¼0.73) and fat content (r¼0.99). For better comparisons,
the modulus values of correlation coefficients are shown in Fig. 2.
4. Conclusions

The findings of this study showed the possibility of simulta-
neously measuring several sensory properties, such as flavor,
juiciness and tenderness, as well as cooking loss, fat and moisture
content, and instrumental tenderness (WBSF) with the TD-NMR
signals from two different sequences, CPMG and CWFP using a
PLS multivariate model. The low root mean square errors for the
calibration and validation data sets were verified in the models
and support the notion that the models can predict these seven
parameters. The information from the models provides a reliable
and fast analytical method for commercial applications; the TD-
NMR measurement takes less than 1 s per beef sample and it can
be easily automated.
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