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ABSTRACT. In this article we consider some properties of concern for research production at Embrapa.

We apply statistical tests to address questions related to the scale of operation, the presence of allocative

inefficiencies and separability of inputs and outputs. The production process is assessed by nonparametric

methods with the use of Data Envelopment Analysis. The period under analysis is 2002-2009. We conclude

that Embrapa’s technology frontier shows variable returns to scale, is allocative efficient in general and is

separable in inputs and outputs. These characteristics justify the company policy of adopting a VRS solu-

tion and the aggregation of output variables. Scale inefficiencies are the basis for further input congestion

studies.

Keywords: DEA, efficiency, agricultural research.

1 INTRODUCTION

The Brazilian Agricultural Research Corporation (Embrapa) monitors, since 1996, the produc-
tion process of 37 of its 42 research centers by means of a nonparametric production model.
Measures of efficiency are computed using data envelopment analysis. For more details see Souza
et al. (1999, 2007, 2010, 2011).

Our interest is on the economic, technical and allocative measures of efficiency, computed in the
production system under the assumption of cost minimization. Several important questions arise
in the actual application of DEA in the monitoring process at Embrapa.

Firstly there is the choice of aggregating or not the outputs. For some time Embrapa has used
a weighted average of output variables as a single output indicator in its production model.
Aggregation assumes separability, a property not fully investigated in the model. Aggregation
in ultimate analysis is a consequence of a multicriteria additive model, which requires preferen-
tial independence among the criteria (Pomerol & Barba-Romero, 2000; Bouyssou et al., 2010).
From an economic point of view aggregation, as well as separability, has been a longstanding
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subject of interest in the economic literature. See Berndt & Christensen (1973), Blackorby et al.
(1977), Chambers & Färe (1993).

Secondly, there is the assumption on the scale of operation. Embrapa’s model imposes con-
stant returns to scale, which generates harsh measures of efficiency for the evaluation process.
The approach is justified by the measurement of inputs and outputs on a per employee basis.
A statistical test is in order to quantify differences related to the scale of operation, if constant
returns is to be used as the final choice in the evaluation model.

It is also of importance for the institution to identify the sources of economic inefficiencies. Are
they due to technical inefficiencies, to poor choice of input combinations or both?

Our approach to test for the presence of allocative inefficiencies, returns to scale, and separability
of inputs and outputs for Embrapa’s production system follows closely to Banker & Natarajan
(2004).

Our discussion proceeds as follows. In Section 2 we describe Embrapa’s production system.
In Section 3 we establish the technological nonparametric production setting that can be related
to DEA and the parametric and nonparametric statistical tests that can be performed for the
assessment of scale of production, allocative inefficiencies and separability. In Section 4 we
show the empirical results based on the analysis by year. Finally, in Section 5 we summarize our
results.

2 EMBRAPA’S RESEARCH PRODUCTION MODEL

Embrapa’s research system currently comprises 42 research centers (DMUs in the DEA context).
Five of these production units were recently created and are not included in the evaluation system.
For this reason, our sample consists of 37 DMUs. Input and output variables have been defined
from a set of performance indicators known to the company since 1991. The company uses
routinely some of these indicators to monitor performance through annual work plans. With
the active participation of the board of directors of Embrapa, as well as the administration of
each of its research units, 28 output and three input indicators were selected as representative of
production actions in the company.

The output indicators were classified into four categories: Scientific Production; Production of
Technical Publications; Development of Technologies, Products, and Processes; Diffusion of
Technologies and Image.

By Scientific Production we mean the publication of articles and book chapters. We require
that each item be specified with complete bibliographical reference. Specifically, the category of
Scientific Production includes the following items:

1. Scientific articles published in refereed journals and book chapters – domestic publica-
tions1.

2. Scientific articles published in refereed journals and book chapters – foreign publications1.

1Prior to the definition of the categories’ weights, the different types of articles are combined following the QUALIS/
CAPES classification. The weights used in this aggregation were defined by Embrapa’s administration as follows:
A1 = 3.50, A2 = 3.25, B1 = 3.00, B2 = 2.50, B3 = 2.25, B4 = 2.00, B5 = 1.50, C = 0,50.
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3. Articles and summaries published in proceedings of congresses and technical meetings.

The category of Production of Technical Publications groups publications produced by research

centers aiming, primarily, agricultural businesses and agricultural production. Specifically,

1. Technical circulars. Serial publications, written in technical language, listing recommen-
dations and information based on experimental studies. The intended coverage may be the

local, regional or national agriculture.

2. Research bulletins. Serial publications reporting research results.

3. Technical communiqués. Serial publications, succinct and written in technical language,

intended to report recommendations and opinions of researchers in regard to matters of
interest to the local, regional or national agriculture.

4. Periodicals (document series). Serial publications containing research reports, technolog-
ical information or other matter not classified in the previous categories. Examples are

proceedings of technical meetings, reports of scientific expeditions, reports of research
programs etc.

5. Technical recommendations/instructions. Publication written in simplified language aimed
at extensionists and farmers in general, and containing technical recommendations in re-
gard to agricultural production systems.

6. Ongoing research. Serial publication written in technical language and approaching as-

pects of a research problem, research methodology or research objectives. It may convey
scientific information in objective and succinct form.

The category of Development of Technologies, Products and Processes groups indicators related
to the effort made by a research unit to make its production available to society in the form of a

final product. We include here only new technologies, products and processes. These must be
already tested at the client’s level in the form of prototypes, through demonstration units or be
already patented. Specifically,

1. Cultivars. Plants varieties, hybrids or clones.

2. Agricultural and livestock processes and practices.

3. Agricultural and livestock inputs. All raw materials, including stirps, that may be used or

transformed to obtain agricultural and livestock products.

4. Agro-industrial processes. Operations carried out at commercial or industrial level envis-
aging economic optimization in the phases of harvest, post harvest and transformation and
preservation of agricultural products.

5. Machinery (equipment). Machine or equipment developed by a research unit.

Pesquisa Operacional, Vol. 33(3), 2013
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6. Scientific methodologies.

7. Software.

8. Monitoring, zoning (agro ecologic or socioeconomic) and mapping.

Finally, the category of Diffusion of Technologies and Image encompasses production actions
related with Embrapa’s effort to make its products known to the public and to market its image.
Here we consider the following indicators:

1. Field days. The research units organize these events. The objective is the diffusion of
knowledge, technologies and innovations. The target public is primarily composed
of farmers, extensionists, organized associations of farmers (cooperatives), and under-

graduate students. The field day must involve at least 40 persons and last at least four
hours.

2. Organization of congresses and seminars. Only events with at least three days of duration

time are considered.

3. Seminar presentations (conferences and talks). Presentation of a scientific or technical

theme within or outside the research unit. Only talks and conferences with a registered
attendance of at least 20 persons and duration time of at least one hour are considered.

4. Participation in expositions and fairs. Participation is considered only in the following
cases: (a) With the construction of a stand with the purpose of showing the center’s
research activities by audiovisuals and distributing publications uniquely related to the
event’s theme; (b) Co-sponsorship of the event.

5. Courses. Courses offered by a research center. Internal registration is required specifying
the course load and content. The course load should be at least eight hours. Disciplines

offered as part of university courses are not considered.

6. Trainees. Concession of college level training programs to technicians and students. Each
trainee must be involved in training activities for at least 80 hours to be counted in this

item.

7. Fellowship holders. Orientation of students (the fellowship holders). The fellowship dura-

tion should be at least six months and the workload at least 240 hours.

8. Folders. Only folders inspired by research results are considered. Re-impressions of the
same folder and institutional folders are not counted.

9. Videos. Videos should address research results of use for Embrapa’s clients. The item
includes only videos of products, services and processes with a minimum duration time of

12 minutes.

Pesquisa Operacional, Vol. 33(3), 2013
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10. Demonstration units. Events organized to demonstrate research results – technologies,

products, and processes – already in the form of a final product, in general with the co-
participation of a private or governmental agent of technical assistance.

11. Observation units. Events organized to validate research results, in space and time, in
commercial scale, before the object of research has reached its final form. Observations
units are organized in cooperation with producers, cooperatives, and other agencies of

research or private institutions. The events may be organized within or outside the re-
search unit.

The input side of Embrapa’s production process is composed of three factors:

1. Personnel costs. Salaries plus labor duties.

2. Operational costs. Expenses with consumption materials, travels and services, less income
from production projects.

3. Capital. Measured by depreciation.

As indicators of the production process we consider a system of dimensionless relative indices.
These are all quantity indexes. The idea, from the output point of view, is to define a combined
measure of output as a weighted average of the relative indicators (indices). The relative indices

are computed for each production variable and for each research unit within a year dividing the
observed production quantity by the mean per research unit. The input indices are indicated by
xo

i , i = 1, 2, 3. These quantities represent relative indices of personnel, operational expenditures

and capital expenditures, respectively.

Output measures per category are defined as follows. The output component yi , i = 1, 2, 3, 4, of
each production category is a weighted average of the relative indices composing the category.
If o is the DMU (research unit) being evaluated then

yo
i =

ki∑
j=1

ao
ji yo

j i ; 0 ≤ ao
ji ;

ki∑
j=1

ao
ji = 1

where ao
ji , j = 1, . . . , ki is the weight system for DMU o in the category of production i, ki is

the number of production indicators comprising i and yo
ji is the relative index of production j .

The weights, in principle, are supposed to be user defined and should reflect the administra-

tion’s perception of the relative importance of each variable to each DMU. Defining weights is
a hard and questionable task. In our application we followed an approach based on the law of
categorical judgment of Thurstone (1927). See Torgerson (1958) and Kotz & Johnson (1989).

It is an alternative to the AHP method of Saaty (1994). The model is well suited when several
independent judges are involved in the evaluation process.

The psychometric model proposed by Thurstone (1927) postulates the presence of a psycho-
logical continuum as follows. Consider a set of r ≥ 2 stimuli S = {S1, . . . , Sr } and a set of
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m ≥ 2 categories C = {C1, . . . , Cm}. A referee or judge, randomly chosen from a population,

is to classify each stimulus Si into one of the categories C j . The categories in C are mutu-
ally exclusive and ordered according to an underlying characteristic of interest. In this context
C1 < C2 < · · · < Cm represents the ordination in C, that is, relative to the characteristics of

interest C1 represents the least intense impulses and Cm the most intense impulses.

Each time a referee faces a stimulus, a mental discriminal process is put into action and it gen-
erates a numerical value in the real line reflecting the stimulus intensity. Therefore, in this way,
the stimuli translate in the psychological continuum into scale values μ1, . . . , μr . Likewise the

categories translate into location values τ1, . . . , τm−1. These later quantities form a partition of
the real line (−∞, τ1], (τ1, τ2], . . . , (τm−1, +∞]. The partition relates to stimuli S1 and cate-
gories C j according to the following rule. The referee classifies stimulus Si into ∪ j

l=1Cl if and

only if μi ≤ τ j . The process inherits randomness from the sampling scheme and from the fact
that due to stochastic fluctuations in nature, a given stimulus and category when repeatedly eval-
uated by a referee does not generate the same scale and boundary values in the psychological

continuum. Randomness leads one to assume that the μi are indeed means of random variables
ξi with variance σ 2

i and that τ j are indeed means of random variables η j with variances φ2
j . The

discussion imposes row independence and joint normality, that is, the ξi are uncorrelated and
(ξ, η j ) are jointly normally distributed. In principle, one has primary interest in the pairwise

parametric differences μi − μ j .

Let πi j denote the probability of locating stimulus Si into one of the first j categories C1, C2,

. . . , C j . We assume πi j > 0. We then have (1).

P

{
Si ∈

j⋃
l=1

Cl

}
= πi j , i = 1, . . . , r, j = 1, . . . , m − 1

= P{ξi ≤ η j } =
{

Z ≤ − μi − τ j√
Var(ξi − η j )

}
.

(1)

Let g(·) denote the probit transformation. The assumption of joint normality leads to the equa-
tions (2), relating the cumulative probabilities πi j to the parameters of Thurstone’s model.

g(πi j ) = − μi − τ j√
Var(ξi − η j )

, i = 1, . . . , r, j = 1, . . . , m − 1 . (2)

Clearly it is possible to generalize the normal projection on the psychological continuum to
other distributions. Any monotonic function may play the role of g(·). Typical alternatives in
this context would be the logistic scale g(x) = ln{x/(1 − x)} and the log-log scale g(x) =
ln{− ln(1 − x)}. Here we follow the logistic scale.

If enough observations are available to estimate the probabilities πi j in (2), then the sample
version of the Law of Categorical Judgment is therefore (3), where π̂i j is the relative cumulative
frequency of observations in category C j .

g(π̂i j ) = − μi − τ j√
Var(ξi − η j)

+ ui j , i = 1, . . . , r, j = 1, . . . , m − 1 . (3)

Pesquisa Operacional, Vol. 33(3), 2013
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The vectors u′
i = (ui1, . . . , uim−1) are independently distributed with a distinct variance matrix

for each i. Clearly, π̂i j = p̂i1 + p̂i2 + · · ·+ p̂i j , where pil represents the proportion of times the
referees classify stimulus Si into Cl .

We follow a particular case of this specification known as Model B (Torgenson, 1958; McCullagh
& Nelder, 1989). Model B assumes Var(ξi − η j ) = δi . From (3), this assumption generates

the nonlinear regression model (4).

g(π̂i j ) = −μi − τ j

δi
+ εi j . (4)

Notice that we must have 2r + m − 3 ≤ r(m − 1), i.e., the number of parameters should be

at most the number of observations. The number of parameters is adjusted for two identifying
restrictions

∑r
i=1

1
δi

= r and
∑r

i=1
μi
δi

= 0.

Following Souza (2002), the relative importance of stimuli i is given by (5), assuming the logis-
tic scale. (

1−πi j
πi j

)δi

r∑
v−1

(
1−πiv
πiv

)δv
. (5)

The parameters needed to use this formula may be estimated by maximum likelihood using the
multinomial distribution or generalized least squares (GLS) assuming residuals centered at zero.
We followed the GLS approach.

We sent out about 500 questionnaires to researchers and administrators and asked them to rank

in importance – scale from 1 to 5 – each production category and each production variable within
the corresponding production category. A set of weights was determined under the assumption
that the psychological continuum of the responses projects onto a lognormal distribution.

The efficiency models implicitly assume that the production units are comparable. This is not

strictly the case in Embrapa. To make them comparable it is necessary an effort to define an
output measure adjusted for differences in operation, perceptions and size. The solution pro-
posed for the latter is to measure variables on a per capita basis (Hollingsworth & Smith, 2003).

Further in that direction, at the level of the partial production categories, we considered a dis-
tinct set of weights for each production unit. In principle one could go ahead and use multiple
outputs. This would minimize the effort of defining weights. The problem with such approach is

that there is a kind of dimensionality curse in DEA efficiency models. As the number of factors
(inputs and outputs) increases, the ability to discriminate between units decreases. As Seiford &
Thrall (1990) put it, given enough factors, all (or most) of the DMUs are rated efficient. This is

not a flaw of the methodology, but rather a direct result of the dimensionality of the input/output
space relative to the number of units. Thus the set of production variables monitored by Embrapa
comprises an output y and a three dimensional input vector (x1, x2, x3). For the period 2002-

2009 we have balanced information on the vector (x1, x2, x3, y) for all 37 Embrapa’s research

Pesquisa Operacional, Vol. 33(3), 2013
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centers. It is important to emphasize here that we are postulating a production model. The uni-

variate y is assumed to be a monotonic concave function of the inputs defined on a convex set
of a three dimensional space. We assume separability, on economic and multicriteria senses, to
aggregate outputs. Separabilty will be tested.

We see the use of ratios to define production variables in our application as unavoidable. Dif-

ferent denominators are used with the virtue of being independent of the units’ size. This char-
acteristic facilitates comparisons between units and allows the assumption of a common pro-
duction function. In the context of a pure DEA analysis, the problem of efficiency comparisons

may be resolved by imposing the BCC assumption. See Hollingsworth & Smith (2003) and
Emrouznejad & Amin (2009). These authors state that when using ratio variables, the constant
returns to scale assumption is not valid. In this context a comparison of CCR and BCC solutions

is in order.

DEA models are known to be sensitive to outliers. Here we recognize two types of outliers:
errors of measurement, mainly in the output variables, and benchmarks resulting from the DEA
analysis. We want to detect DEA (benchmarks) outliers. Errors of measurement are undesirable.

In our application is crucial the control of this type of error. Control of measurement errors out-
liers prior to the DEA analysis is particularly important for output variables to avoid spurious
efficiency scores. In this context we use box plot fences to identify the values of outlying obser-

vations. Following standard exploratory statistical practices (Hoaglin et al., 2000), values above
Q3 + 1.5(Q3 − Q1) are investigated and acted upon if indeed resulted from measurement error.
Here Q1 and Q3 denote the first and third quartiles, respectively.

3 TECHNOLOGY SET AND DEA ESTIMATION

Let x j ≥ 0 and y j ≥ 0, j = 1, . . . , n, be the observed input and output vectors in a sample
of n observations generated from the underlying technology set T = {(x, y); output y can be
produced from inputs x}. The underlying technology T is convex and satisfies the properties

listed in Coelli et al. (2005). The efficiency of a DMU j is defined by (6).

θ(x j , y j ) = infn
{
η; (ηx j , y j) ∈ T

}
. (6)

Banker et al. (2011) assume the following minimal additional probabilistic structure. The quan-
tity θ is modeled as a random variable with probability density f (θ) with support in (0, 1).

It is further assumed that if δ ∈ (0, 1), then
∫ 1
δ f (θ)dθ > 0.

Under the above assumptions the estimates θ̂ (x j , y j) are consistent and converge in distribution,
where θ̂ (x j , y j) = minλ,η η, subject to the conditions Yλ ≥ y j , Xλ ≤ ηx j , λ1 = 1 and λ ≥ 0.
Here Y = (y1, . . . , yn) is the output matrix and X = (x1, . . . , xn) is the input matrix.

One says that the technology T shows constant returns to scale if (x, y) ∈ T implies (kx, ky) ∈ T,

k > 0. In this case, a consistent and asymptotically convergent in distribution estimator is
obtained removing the convexity condition λ1 = 1.

Pesquisa Operacional, Vol. 33(3), 2013
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Banker & Natarajan (2004) suggest three statistical tests to examine the assumption constant

versus variable returns to scale. Two of them are based on specific assumptions on the den-
sity function f (θ) (exponential and half-normal distributions), and the third is a nonparametric
test. Our choice is for the nonparametric test, which is based on the Smirnov-Kolmogorov two

sample statistics.

Discussions about returns to scale in DEA can be seen, for instance, in Färe & Grosskopf (1994),
Zhu & Shen (1995), Jahanshahloo et al. (2005), Sueyoshi & Sekitani (2007), Djivre & Menashe
(2010), Krivonozhko et al. (2011), Khaleghi et al. (2012), Soleimani-Damaneh (2012), Essid et

al. (2013).

Now we turn our attention to separability of inputs and outputs. We begin with complete input
separability. The technology set under this assumption becomes (7). Here s is the number of
inputs and xg is a particular coordinate, and xs−1 the remaining components of the s-vector x .

TSinp =
s⋂

g=1

T
inpg
Sep ; T

inpg
Sep = {

(x = (xg, xs−1), y); xg may produce y
}
. (7)

For output separability we have (8). Here l is the number of outputs and yg is one particular

coordinate, and yl−1 the remaining components of the l-vector y.

TSoutp =
l⋂

g=1

T
outg
Sep ; T

outg
Sep = {

(x, y = (yg , yl−1), y); xg may produce yg} . (8)

Under the assumption of separability of inputs, the efficiency of firm j is given by (9).

θSinp(x j , y j) = infη
{
η; (ηx j , y j ) ∈ TSinp} (9)

It can be proved that

θSinp(x j , y j) = max
g=1...s

θ(xg
j , y j ), where θ(xg

j , y j ) = infη
{
η; (ηx j , y j) ∈ TSinpg

}
.

Under separability of inputs the efficiencies θSinp(x j , y j ) can be estimated calculating a DEA
coefficient under constant or variable returns to scale considering, in turn, a DEA estimate
θ̂ (x j , yg

j ) for each input, and computing the maximum of these measurements. One obtains a

similar estimate under output separability computing the DEA estimates for each output and the
maximum of these measurements. The statistical assessment of separability is performed again
via Smirnov-Kolmogorov test statistic.

The separability condition has also been studied by Homburg (2005), Kuosmanen et al. (2006),

Ajalli et al. (2011).

Finally, the existence of allocative inefficiencies is investigated exploring the decomposition of
economic (cost) efficiency into technical efficiency and allocative efficiency. If a firm is alloca-
tively efficient, then technical and cost efficiencies will be the same. The two measurements are

Pesquisa Operacional, Vol. 33(3), 2013
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to be compared via a nonparametric statistical test like the Smirnov-Kolmogorov two sample test.

We notice here that technical efficiency information may be retrieved from cost data on inputs as
in Banker & Natarajan (2004).

Allocative efficiencies were studied by Sueyoshi (1992), Fukuyama & Weber (2002, 2003), Ruiz
& Sirvent (2011), Paradi & Tam (2012), Begum et al. (2012), among others.

4 EMPIRICAL RESULTS

Table 1 shows descriptive statistics for the efficiency measurements of concern in our study.
These are cost efficiencies (BCC 1), technical efficiencies under constant returns to scale

(CCR 3), technical efficiencies under variable returns to scale (BCC 3), allocative efficiencies
(ALLOC) and technical efficiencies computed under the assumptions of separability of inputs
(SEP X) and outputs (SEP Y), respectively. Orientation in all DEA models is for inputs and
technical efficiencies are computed, typically, with four outputs and three inputs. Cost efficien-

cies are calculated with four outputs and one input (aggregated cost).

Looking at medians and quartiles we see large differences regarding the assumptions of scale.
These differences are further highlighted in Figure 1, where one sees other quantiles under each
assumption quite distinct. In the context of formal statistical test, only in 2006 the Smirnov-

Kolmogorov statistics shows a non significant p-value of 13.4%. Even in this case Figure 1
shows a distortion from the null hypothesis of no scale effect.

As a referee pointed out, a DMU that has a minimum input value for any input item or a max-
imum output value for any output item is BCC-efficient. This is a characteristic of the DEA

analysis under the VRS assumption. We notice that the theoretical production model considered
in this article does not allow the presence of fully efficient DMUs. This property does not affect
consistency and distributional results of the efficiency score relative to the underlying population

technology. In practical applications the weights on the optimum solution should be examined in
search of Pareto optimality. When one is concerned in characterizing factors causing efficiency,
efficient units may simply be discarded from the analysis, as in Simar & Wilson (2007), or mod-

eled via a fractional regression, as in Ramalho et al. (2010, 2011). If the BCC score is viewed
as a performance index and one is worried about spurious efficiency derived from unreasonable
input or output measurements, the scenario may be detected before the efficiency analysis by

robust statistical methods of outlier detection.

As for separability, we do not detect significant differences at the 5% level for the Smirnov-
Kolmogorov statistics in none of the years. The assumption seems to hold for both inputs and
outputs. The scatter diagrams shown in Figures 2 and 3 are closer to the reference lines than in

Figure 1. The p-values for separability of inputs are 100%, 98.2%, 88.8%, 98.2%, 100%, 100%,
98.2% for years 2002 to 2009, respectively, and 35.3%, 7.6%, 7.6%, 13.4%, 22.4%, 22.4%, 7.6%,
7.6% for outputs, respectively in the same years. Results are stronger towards separability for

inputs than for outputs. This is confirmed in Figures 2 and 3, where one sees a closer agreement
with the reference lines among the quantiles for inputs than for outputs.

Pesquisa Operacional, Vol. 33(3), 2013
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Table 1 – Number summaries for cost efficiency (BCC 1), technical efficiency under constant

returns to scale (CCR 3), variable returns to scale (BCC 3), allocative efficiency (ALLOC)
and technical efficiencies under separability for inputs (SEP X) and outputs (SEP Y).

BCC 1 CCR 3 BCC 3 ALLOC SEP X SEP Y

Min 0.4618 0.3739 0.6673 0.5802 0.6673 0.6462
Q1 0.6722 0.6412 0.8252 0.7938 0.8252 0.8252

2002 Median 0.8388 0.8432 1.0000 0.9340 1.0000 0.9579

Q3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.4246 0.2619 0.6748 0.6208 0.6748 0.6466

Q1 0.7312 0.5691 0.8785 0.8323 0.8683 0.8555
2003 Median 0.8405 0.8408 0.9866 0.9273 0.9255 0.9202

Q3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.6355 0.2719 0.7046 0.6493 0.6850 0.6687
Q1 0.7228 0.6538 0.8872 0.8293 0.8703 0.8585

2004 Median 0.8144 0.8770 0.9749 0.8810 0.9410 0.9286
Q3 0.9283 1.0000 1.0000 0.9858 1.0000 1.0000

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.3032 0.2831 0.7763 0.3906 0.7763 0.7736

Q1 0.8022 0.6949 0.9323 0.8575 0.8560 0.8682
2005 Median 0.8927 0.9103 1.0000 0.9398 1.0000 0.9815

Q3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.5916 0.3548 0.7661 0.7121 0.7661 0.7661

Q1 0.8169 0.7800 0.8687 0.9307 0.8584 0.8584
2006 Median 0.9773 0.9371 1.0000 0.9831 1.0000 1.0000

Q3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.4150 0.3936 0.7275 0.5524 0.7275 0.7275
Q1 0.7370 0.6091 0.8400 0.8539 0.8333 0.8274

2007 Median 0.8567 0.8009 0.9680 0.9272 0.9327 0.9129
Q3 0.9735 1.0000 1.0000 0.9780 1.0000 1.0000

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.2998 0.3872 0.6575 0.4560 0.6575 0.6470

Q1 0.7725 0.6413 0.8532 0.8745 0.8411 0.8311
2008 Median 0.8785 0.8429 1.0000 0.9178 0.9722 0.9748

Q3 1.0000 0.9731 1.0000 1.0000 1.0000 1.0000
Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Min 0.3447 0.5066 0.6354 0.5424 0.6354 0.6354

Q1 0.8070 0.7135 0.9085 0.8830 0.8919 0.8817
2009 Median 0.9130 0.9068 0.9796 0.9701 0.9649 0.9694

Q3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Figure 1 – Quantile-quantile plots of technical efficiency measures under variable returns to
scale (BCC 3) and constant returns to scale (CCR 3) by year – 2009 to 2002 in row order.
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Figure 2 – Quantile-quantile plots for investigation of input separability by year – 2009 to

2002 in row order. SEP X is technical efficiency under input separability and variable returns
to scale and BCC 3 is technical efficiency under variable returns to scale.
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Figure 3 – Quantile-quantile plots for investigation of output separability by year – 2009 to
2002 in row order. SEP Y is technical efficiency under output separability and variable returns

to scale and BCC 3 is technical efficiency under variable returns to scale.

The differences between the use of separate and combined outputs can be seen in the median

efficiency evolution in the period 2002-2009. For separate outputs the figures are 1.00, 0.99,
0.97, 1.00, 1.00, 0.97, 1.00, 0.98, respectively, and for a weighted average combined output the
figures are as expected lower: 0.90, 0.85, 0.87, 0.89, 0.91, 0.87, 0.88, and 0.88, respectively.
These differences do not seem to be strong enough to invalidate statistically the separability

assumption.

There are statistically significant allocative inefficiencies for almost all years. Corresponding p-
values for Smirnov Kolmogorov test statistics are 1%, 0.4%, 0.03%, 7.6%, 13.4%, 7.6%, 7.6%,

4% for years 2002-2009, respectively. On the other hand, it should be pointed out that the annual
medians of allocative efficiencies are all above 90% (exception of 2004 with 88%), indicating
proper choices of input mixes. In this case the Smirnov-Kolmogorov test statistics seems to be
detecting small deviations.

As stated in Coelli et al. (2005), allocative efficiency reflects the ability of a firm to use the inputs
in optimal proportions given their respective prices and the production technology. It is difficult
for a research public company as Embrapa to control the proper input ratios. The decision-makers
may not chose the proper input proportions based on relative prices of inputs. Even so, consid-

ering the high values obtained for allocative efficiencies, the choice of the proper proportions of
inputs does not seem to be a problem for Embrapa’s managers.
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5 CONCLUSIONS AND EXTENSIONS FOR FUTURE STUDIES

For Embrapa’s research production model we investigated the properties of returns to scale,
proper choice of input mixes and separability of inputs and outputs.

The assumption of constant returns to scale is rejected leading to the more flexible variable
returns assumption and higher values of the DEA measures of efficiency. The scale adjustments
carried out by the company were not successful to overcome scale of operation differences.

Allocative efficiency is very high for all years, although one notices, in sub-periods, statistically
significant differences relative to a variable returns cost technology frontier.

Inputs and outputs are separable. This implies that aggregation is justifiable on both sides of
production. The implications of this result to Embrapa are important. For inputs, separability
means that the influence of each of the inputs on the output is independent of the other inputs,
emphasizing the need for controlling marginal input effects. For outputs, it implies that the same
efficiency level could be obtained considering as a production response an output projection on a
lower dimensional space. In this context, combined output weighted averages may be computed
to impose administration perceptions in the production process and to reduce any biases noticed
in the process in the direction of an unwanted grouping of variables. This justifies the use of
combined outputs by the company in the evaluation process.

Future researches, as a result of the studies carried out here, should envisage the association of
scale inefficiencies with congestion measures. Coelli et al. (2005) points out that one should not
go looking for congestion, as it will often be found whether or not it actually exists. Scale is an
important component in congestion studies.
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