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Abstract

Plant genomes are massively invaded by transposable elements (TEs), many of which are located near host genes and can
thus impact gene expression. In flowering plants, TE expression can be activated (de-repressed) under certain stressful
conditions, both biotic and abiotic, as well as by genome stress caused by hybridization. In this study, we examined the
effects of these stress agents on TE expression in two diploid species of coffee, Coffea canephora and C. eugenioides, and
their allotetraploid hybrid C. arabica. We also explored the relationship of TE repression mechanisms to host gene regulation
via the effects of exonized TE sequences. Similar to what has been seen for other plants, overall TE expression levels are low
in Coffea plant cultivars, consistent with the existence of effective TE repression mechanisms. TE expression patterns are
highly dynamic across the species and conditions assayed here are unrelated to their classification at the level of TE class or
family. In contrast to previous results, cell culture conditions per se do not lead to the de-repression of TE expression in C.
arabica. Results obtained here indicate that differing plant drought stress levels relate strongly to TE repression
mechanisms. TEs tend to be expressed at significantly higher levels in non-irrigated samples for the drought tolerant
cultivars but in drought sensitive cultivars the opposite pattern was shown with irrigated samples showing significantly
higher TE expression. Thus, TE genome repression mechanisms may be finely tuned to the ideal growth and/or regulatory
conditions of the specific plant cultivars in which they are active. Analysis of TE expression levels in cell culture conditions
underscored the importance of nonsense-mediated mRNA decay (NMD) pathways in the repression of Coffea TEs. These
same NMD mechanisms can also regulate plant host gene expression via the repression of genes that bear exonized TE
sequences.
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Introduction

Transposable elements (TEs) are genetic entities with an

intrinsic mobilization capacity. As a result of this characteristic,

they are responsible for donating regulatory sequences [1] and

transcription regulatory signals [2], as well as for creating

considerable genomic instability, mediating chromosome rear-

rangements [3], altering both gene expression and function [1],

and creating novel genes and exons [4]. Such mobilization can

also result in host genome contraction and expansion [5], [6].

According to a unified classification system proposed for

eukaryotic transposable elements [7], TEs can be grouped into

two classes according to their transposition mode: Class I elements

(retrotransposons), which use the enzyme Reverse Transcriptase

(RTase) to transpose via an RNA intermediate to a new genome

insertion site, and Class II elements, which are transposed directly

via DNA molecule using a transposase (Tpase) enzyme. Class I

elements are divided into five orders (LTR, DIRS, PLE, LINEs,

SINEs), each of which is subdivided into superfamilies (LTR:

Copia, Gypsy, Bel-Pao, Retrovirus, ERV; DIRS: DIRS, Ngaro, VIPER;

PLE: Penelope; LINEs: R2, RTE, Jockey, L1, I; SINEs: tRNA, 7SL,

5S). Class II (DNA transposons) elements are split into two

subclasses: subclass I contains superfamilies either with terminal

inverted repeats (Tc1-Mariner, hAT, Mutator, Merlin, Transib, P,
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PiggyBac, PIF-Harbinger and Cacta) or without terminal inverted

repeats (Crypton), whereas subclass II comprises the Helitron and

Maverick superfamilies.

Plant genomes are massively invaded by repetitive DNA,

primarily LTR retrotransposons [8]. Many of these retrotranspo-

sons are located near host genes and thus could impact the

expression of these neighboring genes whose expression is

mediated by a variety of mechanisms, such as RNAi [9], DNA

methylation [10], and readout transcription [11]. While the

transcriptional activity of TEs seems to be tightly controlled by

host genomes [12], e.g. by transcriptional gene silencing mecha-

nisms such as those that prevent the access of the host

transcriptional machinery [13], reports also show that TEs can

be activated under certain stress conditions, such as pathogen

infection, physical injuries, abiotic stress [14] or cell culture [15],

[16], [17], [18].

Of the approximately one hundred species in the Coffea genus,

only C. arabica and C. canephora are used in commercial production,

representing ,70% and 30% of global coffee production,

respectively [19]. C. arabica is a unique polyploidy species of the

genus (4n = 4X = 44 chromosomes) and was derived from a recent

(1 million years ago) natural hybridization between C. canephora

and C. eugenioides [20]. C. canephora is a diploid (2n = 2x = 22

chromosomes) and is an auto-incompatible species that grows in

humid and lowland habitats. It is usually more resistant to pests

and diseases as well as to abiotic stresses like water deprivation and

is also characterized by a higher productivity and bean caffeine

content than C. arabica. However, the quality of the beverage is

regarded as inferior to that of C. arabica [21].

The identification of transposable elements in Coffea was

initiated only recently [22], [23], [24], [25], [26]. To our

knowledge, detailed analyses of the abundance, activity and

regulation of transcriptionally active TEs in Coffea genomes, as well

as analyses of the relationship of these to their chromosomal

distribution, have yet to be performed. We previously searched the

Brazilian Coffee Genome Project database (LGE database, http://

www.lge.ibi.unicamp.br/cafe) aiming to identify TE fragments

within coding regions in expressed sequences (ESTs) of three Coffea

species (C. arabica, C. canephora and C. racemosa). The ESTs and

unigenes harboring TEs were analyzed regarding the size of the

TE fragment, the functional categories to which they were

assigned to and to their contribution to the proteome [22]. In

the present study, we rescreened the LGE database using a more

sensitive method, which allowed for a substantial increase in the

number of unigenes harboring TEs, and used the gene sequences

to identify paralogous unigenes that do not contain TEs.

Expression levels of isoforms with and without TEs in C. arabica

and C. canephora transcriptome were analyzed in cell culture and

plants grown under different irrigation conditions. This approach

was taken in order to understand the regulatory effects that

exonized TEs may exert on Coffea host genes. The expression levels

of TE transcripts themselves were also assayed across the same

conditions in order to better understand how they are regulated

and how they respond to various stresses including different

drought and irrigation conditions as well as cell culture and

polyploidization. The chromosomal distribution of Coffea TEs was

interrogated genome-wide for the first time here using FISH.

Results

Frequency and Classification of Expressed TEs in the
Transcriptomes of Coffea spp

A set of 181,405 ESTs derived from 39 cDNA libraries (31 from

C. arabica and 8 from C. canephora) were used to identify, classify and

quantify the number of expressed TEs. Sequence similarity

searches allowed the identification of 320 EST sequences

homologous to TEs in the two Coffea species (Table 1; Tables S1

& S2 in File S1). For C. arabica, the proportion of sequences that

were homologous to DNA transposons (51%) and to LTR+NLTR

retrotransposons (49%) were similar (P.0.05). Ty3/Gypsy was the

most frequently identified superfamily among the LTR Retro-

transposons (22%). However, in C. canephora, the proportion of

transposons (13.2%) and retrotransposons (86.8%) was consider-

ably different, as were the frequencies of Ty3/Gypsy (80.5%) and

Ty1/Copia (3.6%) (both P,0.05).

The TEs were classified into families based on the best

alignment against a completely characterized reference TE library

(Table S3 in File S2). The 100 ESTs from C. arabica were classified

into 24 families, 8 belonging to DNA transposons and 16 to

Retrotransposons (LTR:13, NLTR: 1 and not classified: 2) and the

220 ESTs from C. canephora were classified into 18 families (DNA

transposons: 7, LTR Retrotransposons: 9, NLTR: 1 and not

classified LTR: 1). The main difference between diversity of TE

families between the two species is due to higher number of Ty1-

Copia families in C. arabica, which harbors seven families of this

superfamily of LTR retrotransposon, but excepting Tst1, all

occurring in just one EST (Figure 1, Tables S1 & S2 in File S1).

Both species differ also regarding the TEs expression. For

example, the most expressed families in C. arabica among the

retrotransposons, considering their expression among the total

TEs and among the TE classes, respectively, were Retrosat2 (11

ESTs: 11% of the TEs and 22% of Class I), Melmoth (8 ESTs: 8%

of the TEs and 16% of Class I) and Tst1 (6 ESTs: 6% of the TEs

and 12% of Class I). Regarding the DNA transposons, the most

expressed families in C. arabica were MuDR (12 ESTs: 12% of the

TEs and 24% of Class II), Jittery (11 ESTs: 11% of the TEs and

22% of Class II) and Soymar (11 ESTs: 11% of the TEs and 22% of

Class II). Likewise, in C. canephora the most expressed retro-

transposons were dea1 (94 ESTs: 43% and 49%), Retrosat2 (56

ESTs: 25% and 29%) and Del1 (18 ESTs: 8% and 9%) and, the

most expressed DNA transposons were MuDR (7 ESTs: 3% and

24%), AtMu and Activator (6 ESTs each: 2.7% and 21%), and Jittery

(5 ESTs: 2% and 17%).

Characterization of cDNA Clones from C. arabica Similar
to TEs

After the 100 clones identified in C. arabica were classified into

families, the redundant clones (identical ESTs and identified in the

same library) were excluded and 64 clones remained, from which a

Table 1. Numbers and proportions of ESTs homologous to
expressed TEs1 in two Coffea species.

TEs Superfamily
C. arabica ESTs:
N (%)

C. canephora ESTs:
N (%)

LTR1 Ty1/Copia 12 (12) 8 (3.6)

Ty3/Gypsy 22 (22) 177 (80.5)

Not Classified 10 (10) 1 (0.4)

NLTR2 5 (5) 5 (2.3)

Total 49 (49.0) 191 (86.8)

Transposons3 51 (51.0) 29 (13.2)

1LTR: LTR Retrotransposons;
2NLTR Retrotransposons: NLTR;
3DNA Transposons: Transposons.
doi:10.1371/journal.pone.0078931.t001
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sample of 27 were fully sequenced (Table S4 in File S3) and the

remaining partially sequenced. Again, this set of sequences was

compared against two TE banks: the reference elements cited

above and the collection of consensus TEs stored in Repbase [27].

The results showed that these cDNAs were highly similar to

elements from Repbase described in species closely related to the

genus Coffea, such as Vitis vinifera and Solanum tuberosum. The

occurrence of frame shifts and stop codons was distinct for some

comparisons due to the differential choice of frame in the sequence

translation. Putative complete transposase or polyprotein searches

were performed by evaluating CDSs that spanned at least 60% of

the reference or consensus TE and had no frame shifts and stop

codons.

Expression Levels of TE Transcripts
Macroarray expression profiling was performed for 64 TE

transcripts (31 DNA transposons and 33 retrotransposons) in six

samples from the allotetraploid C. arabica (callus treated with

cycloheximide versus untreated callus (CHX+, CHX–), irrigated

versus non-irrigated leaves (_I, _NI) from drought tolerant versus

drought sensitive cultivars (I59, Rubi)), and in two samples from

the diploid C. canephora (14_). Many TEs exhibit relatively low

expression levels (Figure 2A and Figure S1 in File S4), and overall

TEs are expressed at significantly lower levels than genes

measured for the same cultivars and conditions (Figure 2B).

TE expression patterns across the species, cultivars and

conditions assayed here are highly dynamic and apparently

unrelated to their classification at the level of TE class (DNA

transposon versus retrotransposons) or at level of specific TE

families (Figure 2C). When hierarchical clustering is used to relate

the expression patterns of individual TE transcripts, there is no

apparent coherence within TE classes or families; individual

members of TE classes and families are dispersed throughout the

resulting tree (Figure S2 in File S4). The coherence of expression

patterns within and between TE families was also measured using

average Manhattan distances between TE expression profiles.

There is no statistical difference in the average distances between

TE expression profiles within or between families (Figure 2D).

This same lack of overall coherence in TE expression patterns can

be seen at the level of individual TE families, where there is

generally no difference in the distances between expression profiles

within or between families (Figure S3 in File S4). Exceptions to this

overall pattern can be seen for the Jittery and Tip100 families of

DNA transposons, which have relatively coherent within family

expression patterns (Figure 2A and Figure S3 in File S4).

Interestingly, TE expression for CHX– (callus untreated) is not

higher than that of the other tissues/conditions in C. arabica (Figure

S4 in File S4), suggesting that cell culture conditions do not de-

repress TE expression in this species.

The dynamic expression patterns seen for individual TE

transcripts, along with the overall lack of TE expression pattern

coherence within classes and families of elements, suggest that the

expression of individual TE insertions is independently regulated

based in part on the surrounding genomic environment. This may

include both sequence-based and epigenetic factors for the

surrounding genomic environment. However, it should be noted

that changes in TE expression in response to cycloheximide

treatment appear to be more consistent across individual TE

insertions. On average, TEs are expressed at higher levels in callus

treated with cycloheximide (CHX+ versus CHX– in Figure 3);

although, the difference is only marginally significant owing to the

high level of variation in TE expression under cycloheximide

Figure 1. Comparative proportions of distinct TE families in ESTs from C. arabica and C. canephora (data available in Tables S1 and S2
in File S1).
doi:10.1371/journal.pone.0078931.g001
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treatment. Nevertheless, there are a number of individual TE

transcripts that show highly significant differences between CHX+
and CHX– conditions (Figure 2E and Figure S5 in File S4).

Cycloheximide (CHX) is a compound that blocks translation and

thereby inactivates the nonsense-mediated mRNA decay pathway

(NMD). The NMD pathway provides for the detection and

degradation of aberrant mRNAs that contain premature termi-

nation codons resulting from point mutations, rearrangements or

errors during transcription or RNA processing [28]. More to the

point, NMD may also represent a genome defense mechanism

against the proliferation of TEs since mRNA sequences derived

from TEs are frequent targets of NMD [29]. Thus, the up-

regulation of TE expression upon CHX treatment would seem to

reflect the mitigation of the plant genome’s NMD based defense

against TE expression. The consistency of this pattern seen across

TE transcripts assayed here underscores the likely importance of

NMD in genome defense against plant TE expression.

We performed similar comparative analyses in order to evaluate

whether there are overall differences in TE expression between

paired samples of irrigated (I) and non-irrigated (NI) cultivars that

are either drought sensitive or drought tolerant. TE transcripts

tend to be expressed at significantly higher levels in non-irrigated

cultivars for the drought tolerant samples; this effect is marginally

significant for C. arabica leaves and more highly significant for C.

canephora leaves (Figure 3). Drought sensitive cultivars from C.

arabica show the opposite pattern with irrigated samples showing

significantly higher TE expression (Figure 3). Considered together,

these results suggest the interesting possibility that TE expression

levels may be tuned to the drought response proclivities of their

host genomes.

TE–Derived CDSs
The unigenes containing TE cassettes (i.e. exonized TEs)

previously identified in the C. arabica and C. canephora ESTs using

RepeatMasker [22] are presented in Tables S5 & S6 in File S5,

respectively. Each unigene cluster contains sequences that

represent a unique gene resulting from assembling of various

ESTs. Rescreening the ESTs of C.arabica against the library of

2,503 consensus TEs from RepBase yielded 421 TE–containing

ESTs. Due to the high number of matches, only those with E-

values,e210 were analyzed, resulting in 303 matches. A

comparison of these TE–containing ESTs against the database

of unigenes (EST clusters) in the LGE database revealed 27 new

TE–derived protein CDSs in C. arabica (Table S5 in File S5). All of

the CDSs matched with proteins with a clearly defined function,

namely protein factors related to transcriptional and spliceosomal

machinery, chaperones and alcohol dehydrogenase.

Effect of Exonized TEs on the Expression and Regulation
of TE–containing Transcripts by NMD

Screening the unigenes containing TE cassettes from C. arabica

(86) and C. canephora (59) against their respective sets of unigenes

allowed the identification of 111 and 47 paralogous unigenes,

respectively, based on their high sequence similarity (Tables S5 &

S6 in File S5), as illustrated in Figure S6 (File S4). Two sets of

alignments showed evidence of putative alternative splicing in C.

arabica. The first had three transcripts (uni_CA_046, uni_CA_125

and uni_CA_127) that were similar to a rust resistance Rp1-D-like

protein (GB: AAK18308) and the second had two transcripts

(uni_CA_055 and uni_CA_138) that were similar to a universal

stress protein (USP) family protein (GB: NP_850562). Addition-

ally, this analysis is not exhaustive because 1) the EST libraries

were built based only on the representation of the 59 end of

mRNAs, preventing the identification of TEs in other portions of

the transcript; 2) several libraries were not targeted for full

sequencing (saturation), particularly for C. canephora, which meant

that fewer tissues were represented and fewer ESTs were obtained;

and 3) the limited Coffea genomic resources do not enable a

complete analysis of gene structure and TE insertion sites or the

identification of transcripts related to each expressed locus.

The expression levels of 77 gene transcripts containing TE

cassettes (TE+Genes) and 63 paralogous gene transcripts that

lacked TEs (TE–Genes) were analyzed using macroarrays across

the same eight cultivars as previously described for C. arabica and

C. canephora (Figure S1 in File S4). TE+Genes have significantly

lower levels of overall expression than TE–Genes (Figure 4A &

Figure S7A in File S4), and in fact TE+Gene expression levels are

not distinguishable from those of TE transcripts themselves

(Figure 2B). This result indicates that the presence of TEs in

genic transcripts leads to their down-regulation and suggests the

possibility that mechanisms similar to those used to repress TE

transcript, such as NMD, may be involved in this process. To test

this possibility, we compared the effects of CHX treatment on

TE+Genes versus TE–Genes. TE+Genes show significantly

greater overall levels of expression in CHX+ conditions compared

to CHX–, whereas TE–Genes show no such difference in

expression across the different CHX treatments (Figure 4B &

Figure S7B in File S4). CHX+ conditions, which are seen facilitate

the expression of TE+Genes, inactivate the NMD pathway for

aberrant transcript repression. Thus, these results are consistent

with the activation of the NMD pathway by the presence of TE

cassettes within expressed gene transcripts.

Chromosomal Distribution of TEs in C. arabica and its
Parental Species

Three TEs (two transposons: MuDR and Tip100 and one LTR-

retroelement: Del1) with average low expression levels were

selected, and their chromosomal distribution was evaluated using

FISH in C. arabica var. typica, C. eugenioides and C. canephora

(Figure 5). The transposon signals were preferentially clustered in

chromosomal terminal positions in the two ancestors (C. eugenioides

and C. canephora) of C. arabica. Interstitial and/or proximal signals

were observed in larger numbers in C. arabica var. typica, especially

using the Tip100 probe, indicating an increase in transposition

activity in this species compared to the parental species.

The probe containing the LTR-retrotransposon Del1 showed a

different hybridization profile, exhibiting signals that were more

Figure 2. Expression levels of TE transcripts. (A) Heatmap showing the relative expression levels of TE transcripts for 31 DNA transposons and
33 retrotransposons. CHX+: C. arabica callus treated with cycloheximide, CHX–: C. arabica callus untreated, I59_I: C. arabica irrigated leaves from
drought tolerant cultivar Iapar59, I59_NI: C. arabica non-irrigated leaves from Iapar59, 14_I: C. canephora irrigated leaves from drought tolerant
cultivar, 14_NI: C. canephora non-irrigated leaves from drought tolerant cultivar, Rubi_I: C. arabica irrigated leaves from drought sensitive cultivar
Rubi, Rubi_NI: C. arabica non-irrigated leaves from Rubi. (B) Overall expression level differences between TEs, genes with TE insertions (TE+Genes,
n = 77) and genes without TE insertions (TE–Genes, n = 63) across the conditions measured here. Average expression levels 6 standard errors were
compared using the Students’ t-test and the Mann-Whitney U test (MWU) as indicated. (C) Average expression levels for retrotransposons versus DNA
transposons. (D) Average Manhattan distances between expression profiles within versus between TE families. (E) Individual TE sequences that have
significantly up-regulated upon cycloheximide treatment (CHX+).
doi:10.1371/journal.pone.0078931.g002
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scattered. The number of positions hybridized with the Del1 probe

in C. arabica was nearly the same as that of the sum of signals of C.

eugenioides and C. canephora. Furthermore, C. canephora chromosomes

showed preferentially clustered signals, and most C. eugenioides

chromosomes showed dispersed signals. These results are in

agreement with previous FISH results [30] using another probe

containing a fragment homologous to a gag-like element from a

Del1 LTR-retrotransposon isolated from the germplasm of C.

arabica var. typica. Similarities in Ty1-copia-like retroelement among

the different Coffea genomes were also reported [25].

Discussion

This study provides a preliminary understanding of the TE

regulatory dynamics in the allotetraploid and complex genome of

C. arabica. The findings presented here show that this species is an

interesting study organism because most DNA transposons and

retrotransposons seem to be submitted to fine transcriptional

control. Differences and similarities with other plant genomes were

observed. For instance, it has been reported that cell culture

conditions increase the expression levels of some TEs in plants, as

for example Tnt1 from tobacco [31]; Tos10, Tos17 and Tos19 from

rice [32]; several DNA transposons and retrotransposons from

sugarcane [17]; and LTR retrotransposons from rice [18]. In

Figure 3. TE expression level differences for paired cultivar samples. Overall TE expression levels are compared for cycloheximide treated
(CHX+) versus untreated (CHX–) C. arabica callus and irrigated (I) versus non-irrigated (NI) leaves for drought tolerant C. arabica and C. canephora as
well as drought sensitive C. arabica. Average expression levels 6 standard errors were compared using the Students’ t -test and the Mann-Whitney U
test (MWU) as indicated.
doi:10.1371/journal.pone.0078931.g003

Transposable Elements in Coffea

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e78931



contrast to these previous observations, our results show that cell

culture conditions per se do not elevate TE expression levels in C.

arabica. On average, TEs in untreated cell culture conditions

(CHX–) show no significant difference in expression levels

compared to TEs analyzed from C. arabica plant tissue (Figure

S4 in File S4). These results suggest that TE regulatory and/or

suppression mechanisms remain largely intact in C. arabica cell

culture conditions. This conclusion is supported by the observation

that treatment of C. arabica cell culture with CHX, a repressor of

NMD, leads to a significant increase in TE expression (Figure 3).

In other words, the NMD regulatory systems that suppress TE

expression remain active in C. arabica cell culture.

Results reported here also underscore the importance of NMD-

related TE repression systems for the regulation of host genes.

Indeed, NMD not only represses the expression of the TEs

themselves (Figure 3) but also appears to repress the expression of

Figure 4. Effect exonized TEs on gene expression. (A) Comparison of overall expression levels of genes with TE cassettes (TE+Genes, n = 77)
versus genes with no TE cassettes (TE–Genes, n = 63). Average expression levels 6 standard errors were compared using the Students’ t-test and the
Mann-Whitney U test (MWU) as indicated. (B) Differences in overall expression levels between CHX+ and CHX– conditions for TE+Genes versus TE–
Genes. Average expression levels 6 standard errors were compared between CHX+ and CHX– conditions for TE+Genes and TE–Genes individually
using the Students’ t-test and the Mann-Whitney U test (MWU) as indicated.
doi:10.1371/journal.pone.0078931.g004
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host genes that contain exonized TE sequences (Figure 4). This

finding represents a novel molecular mechanism by which TE

sequences can influence the regulation of Coffea host gens.

Polyploid genomes are subjected to extensive changes, such as

insertions/deletions, inversions and translocations, as well as

alterations in gene expression patterns [33], [34]. Although the

mechanisms of these changes are poorly understood, increasing

TE transpositional activity is a possibility since quiescent TEs in a

diploid genome can become activated in the new polyploid genetic

environment. Additionally, the genetic redundancy in a polyploid

genome can mitigate the deleterious effects of transposition [35],

thereby allowing TEs to proliferate in allotetraploids and insert

within gene-rich chromosomal regions. Another possibility is the

relaxation of host silencing mechanisms (e.g., methylation) in

allotetraploids, which should also allow for increased transposition

rates [36]. These factors may explain the increase in transposon

copy number and their more prevalent interstitial chromosomal

location we observed in the allotetraploid C. arabica compared to

its parents, C. canephora and C. eugenioides.

Coffea arabica and C. canephora showed a low TE–like mRNA

abundance; only 0.17% of ESTs were expressed TEs (320 out of

181,405 ESTs). This low abundance has also been observed in

other plant genomes. For an example, 60% of the Z. mays genome

is composed of retroelements, but only 0.014% of these retro-

elements (56 out of 407,000 ESTs) were identified as expressed

[37]. However, a recent systematic search in the maize

transcriptome showed that 1.5% of its ESTs (25,282 ESTs out

of more than 2 million) were similar to 56 well characterized TE

families [18]. In Saccharum officinarum, out of 260,781 ESTs, 276

(0.1%) were considered to be expressed TEs [38]. Finally, in

Eucalyptus grandis, out of 123,889 ESTs, 124 (0.1%) were identified

as transcriptionally active TEs [39]. Our data reinforce the fact

Figure 5. Chromosomal locations of TEs. FISH using sequences of transposons MuDRA (GI311206994), Tip100 (GI 315896428) and of
retrotransposon Del1 (GI 315862857) in the chromosomes of C. arabica var. typica, C. eugenioides and C. canephora. The MuDRA probe hybridized in
14 locations in C. arabica var. typica (A), with terminal, interstitial and proximal signals. Arrows indicate interstitial/proximal sites. This same probe
hybridized preferentially clustered signals in C. eugenioides, with scattered signals in two pairs (D) and only clustered terminal signals in C. canephora
(G). The Tip100 probe showed 36 hybridization sites in C. arabica var. typica (B), with chromosomes containing three sites (arrows) and two
hybridization sites in terminal and proximal/interstitial regions (arrowheads). The same probe showed only eight chromosomes with terminal sites in
C. eugenioides (E) and 14 chromosomes with signals in C. canephora (H). Note that four chromosomes exhibit two signals, being terminal and
interstitial (arrows) and double terminal (arrowheads). The Del1 probe hybridized in 20 chromosomes in C. arabica var. typica (C). In only eight of
them clustered signals were observed (arrows). From 12 chromosomes with signals observed in C. eugenioides (F), only two presented scattered ones
(arrows). For C. canephora (I), this probe showed two pairs with scattered signals and evident terminal signals in six chromosomes (arrows). Bar
represents 10 mm.
doi:10.1371/journal.pone.0078931.g005
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that TEs are poorly represented in the Coffea transcriptome,

although plant genomes are enriched by those repetitive sequenc-

es. This paradox reflects the strong host repression of TE

transcriptional and transpositional activity in plants, as is

illustrated by the paucity of TEs in Coffea transcriptomes and the

heterochromatic distribution of most Coffea TE sequences.

Nevertheless, transcriptional activation of several plant retro-

transposons under stress has been shown and it seems that these

mobile sequences have adapted to their host genomes through the

evolution of highly regulated promoters that mimic those of the

stress-induced plant genes (see [14], for a review). Moreover, it has

been also shown, as for example with Tnt1 in tobacco, that

subfamilies of the same retrotransposon show different stress-

associated patterns of expression [40]. Here, in a broader analysis

of TE expression, we demonstrate that differing plant drought

stress levels relate strongly to the changes in TE expression levels

observed upon changes in irrigation conditions. Drought stress

conditions were evaluated here in terms of predawn leaf water

potentials Ypd. In coffee (as in many other plants), Ypd values close

to 0 (.20.4 MPa) are observed for unstressed plants, while more

negative values (,20.4 MPa) characterize drought stress. In other

words, more highly negative Ypd values reflect higher levels of

drought stress. Thus, the observed Ypd value of 20.80 MPa for

C.arabica cv. Iapar59 is considered to show moderate drought

stress, whereas the 23.02 MPa Ypd value of C. canephora clone 14 is

considered to show severe drought stress [41,42]. Both of these

drought tolerant Coffea cultivars show higher expression in the

non-irrigated conditions (Figure 3). Interestingly, the opposite

pattern was observed for drought sensitive cultivars from C. arabica,

which showing significantly higher levels of TE expression in

irrigated conditions (Figure 3). Given the presumed effects of

genomic environment on the expression of individual TE

transcripts noted above, these divergent phenomena may relate

to the overall state of the particular plant genome with respect to

its ideal drought-related growth and regulatory conditions. In

drought sensitive plants, TE expression levels go down in drought

conditions consistent with an overall depression of genomic

regulatory activity. On other hand, TE expression is up-regulated

upon drought conditions in drought tolerant plants presumably

consistent with the ideal growth/regulatory conditions of these

cultivars.

Materials and Methods

The ESTs used in our study are derived from libraries of the

Brazilian Coffee Genome Project, hereafter called PGCB (http://

www.lge.ibi.unicamp.br/cafe), which contain partial sequences of

cDNA of a wide range of tissues (e.g., seeds, embryogenic calli,

roots, leaves, flowers), developmental stages and plant material

submitted to biotic (e.g., stems infected with Xylella spp and

nematodes) and abiotic (e.g., water deficit) stress conditions [43,22].

They comprises 131,150 ESTs from thirty-one cDNA libraries of

C. arabica and 50,255 ESTs from eight cDNA libraries of C.

canephora (12,332 obtained from 2 Brazilian Coffee Genome

Project libraries plus 37,923 of six libraries from Lin et al. 2005

[44], deposited at the SOL Genomics Network http://www.sgn.

cornell.edu/content/coffee.pl). These ESTs were analyzed with

two main objectives: (1) to characterize the classes, types and

numbers of expressed TEs, and to investigate their expression; and

2) to investigate the impact of fragments of TEs (TE–cassettes)

inserted in coding regions of both species comparing the

expression of sequences harboring TE–cassettes and homologous

sequences not harboring TE–cassettes (likely paralogous sequenc-

es).

Construction of a Permanent cDNA Library of Clones of
Interest

To characterize the expression profiles of active TEs and to

evaluate putative differences in expression of transcripts containing

TE–cassettes compared to their isoforms without TEs, the 242

cDNA clones of interest (64 of expressed TEs, 86 of unigenes with

TE–cassettes and their 77 of isoforms without TEs) were trimmed

from the PGCB libraries. Multiplication of 3 mL of bacteria

culture containing each cDNA insert, cryopreserved in glycerol

(50% v/v) and kept at 280uC was allowed in deepwell plates with

1.2 ml LB liquid culture medium for. After growth, 75 mL was

removed to construct a permanent library with only the cultures of

interest, followed by the purification and cloning of DNA

plasmids.

Identification of Expressed TEs
Expressed TEs were identified in 181,405 ESTs (libraries of C.

arabica plus of C. canephora). The transcripts were considered likely

to represent a transcriptionally active element when the TE

sequence occupied more than 70% of an EST or unigene. EST

clusters that were similar to expressed TEs were not considered

because they may represent the mRNA assemblies of distinct

insertions. Searches for the transcriptionally active TEs were

performed using keywords such as ‘‘transposon’’, ‘‘transposase’’,

‘‘polyprotein’’, ‘‘retrotransposon’’, ‘‘retroposon’’, ‘‘MITEs’’,

‘‘LINEs’’, ‘‘SINEs’’ and family names (e.g., ‘‘hAT’’, ‘‘MuDR’’,

‘‘En/Spm’’) of the ESTs. A BLASTx [45] comparison of the ESTs

with TE annotations against the protein sequences in the NCBI

NR (non-redundant) database was then performed. Many BLAST

hits were obtained. To eliminate spurious and unreliable results, a

stringent cut-off (E = 1e230) was applied. The resulting transcripts

were classified into families according to the best alignment by

BLASTx or tBLASTx [45] against a completely characterized

library of 96 reference TEs (Table S3 in File S2), as well as against

840 consensus TEs of phylogenetic species close to Coffea (e.g., Vitis

vinifera, Populus trichocarpa, Solanum lycopersicum, and Solanum tuber-

osum) obtained from the dicotyledonous plant library Repbase

(www.girinst.com). When ESTs or unigene sequences were

annotated by the alignment with more than one reference TE

from different plant TE databases, the matches between Coffea

transcripts and reference TEs with the higher RM score was

chosen. The frequencies of retrotransposons and transposons, as

well as expressed TEs of the Ty-Copia and Ty3-Gypsy superfamilies

were compared using a x2 test.

From the set of 100 clones homologous to TEs of C. arabica

(Table S1 in File S1), 64 were cloned into pSPORT1 vector, and

sequenced using the BigDyeH Terminator v3.1 Cycle Sequencing kit

(Applied Biosystems, Foster City, CA, USA) using the universal

primers M13F (59-GTAAAACGACGGCCAG-39) and M13R (59-

CAGGAAACAGCTATGAC-39) as well as through internal

primers specific to each clone and run on a 3730xl DNA Sequencer

(Applied Biosystems). The sequences were clustered using

CodonCode Aligner v.3.5.6 (www.codoncode.com), and bases

had a Phred quality $20. The identification notation of these

active TEs was ‘‘Ca_’’ (for C. arabica), ‘‘TE–’’ (for transposable

elements) plus ‘‘three numerical digits’’, for example Ca_TE_031.

Full sequences were obtained for 27 of these clones and partial

sequences (sizes over 50% of the total length) for the remaining 37.
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Identification of Novel Cases of TEs Incorporated into
Mature mRNAs from C. arabica and of Paralogous
Sequences without TEs

It has been shown that the choice of sequence similarity search

methods to detect TE–derived sequences strongly influences the

estimate of TE-cassettes that can be identified in protein coding

regions [46]. Hidden Markov model based searches followed by

BLAST methods (tBLASTx R tBLASTn R BLASTx R
BLASTp R BLASTn) and RepeatMasker are more sensitive in

identifying exonized TEs. We used that protocol to identify novel

TE–derived sequences in protein coding sequences of Coffea in

addition to those previously identified by RepeatMasker alone

[22]. A total of 131,150 ESTs from C. arabica were compared by

tBLASTx [45] against 2,503 plant consensus TEs from Repbase

[27]. To avoid spurious results, only the best E#e210 matches

were accepted, without imposing additional scores or length

thresholds. ESTs containing TEs were then compared to EST

clusters of each species for the identification of their respective

unigenes. They summed 145 cDNA clones containing TE–

cassettes (59 from C. arabica obtained in our previous study [22]

plus 27 novel ones obtained in this study, and 59 from C. canephora),

which were compared by BLASTn [45] against all cDNA clones of

each species. This procedure allowed the identification of highly

similar and thus likely paralogous unigenes without TEs. Examples

of alignments between unigenes containing TEs and the highly

Table 2. List of CDSs similar to expressed TE families
identified in the transcriptome from C. arabica used as target
in the macroarray analyses using as probe RNA samples from
C. arabica.

Query id Library Subject id GenBank Accession

Ca_TE–001 RM1 MuDRA GW476772.1

Ca_TE–003 IC1 MuDRA GW461848.1

Ca_TE–004 IA2 MuDRA GW460883.1

Ca_TE–005 EA1 MuDRA GW439358.1

Ca_TE–006 CS1 MuDRA GT724977.1

Ca_TE–007 SH2 MuDRA GW447279.1

Ca_TE–008 LV5 MuDRA GT697838.1

Ca_TE–009 FB1 MuDRA GT709698.1

Ca_TE–011 CA1 MuDRA GT688551.1

Ca_TE–012 FR1 MuDRA GT714837.1

Ca_TE–015 RT8 Jittery GW451071.1

Ca_TE–017 LV8 Jittery GW478609.1

Ca_TE–018 EA1 Jittery GW445953.1

Ca_TE–019 FB1 Jittery GW480270.1

Ca_TE–025 SI3 Soymar GT720097.1

Ca_TE–030 LV4 Soymar GT694144.1

Ca_TE–031 LV4 Soymar GT694146.1

Ca_TE–033 CS1 Soymar GT724651.1

Ca_TE–036 RX1 TAG2 GW444348.1

Ca_TE–037 LV4 TAG2 GW488918.1

Ca_TE–038 RT8 TAG2 GW452630.1

Ca_TE–039 LV5 TAG2 GW470411.1

Ca_TE–042 FR2 TAG2 GW468343.1

Ca_TE–043 SH2 AtMu1 GW446952.1

Ca_TE–045 IC1 AtMu1 GT731348.1

Ca_TE–046 CB1 AtMu1 GW460044.1

Ca_TE–047 PA1 Activator_orf1 GT685618.1

Ca_TE–048 LV4 Activator_orf2 GW465099.1

Ca_TE–049 FB2 Tip100 GW463960.1

Ca_TE–050 SH2 Tip100 GW447257.1

Ca_TE–051 SI3 TAG1 GW432669.1

Ca_TE–053 LV8 Retrosat2 GW470427.1

Ca_TE–057 BP1 Retrosat2 GW436442.1

Ca_TE–059 FB1 Retrosat2 GW481089.1

Ca_TE–061 SH2 Retrosat2 GW447231.1

Ca_TE–062 RT5 Retrosat2 GT686160.1

Ca_TE–063 FR2 Cin4 GW467887.1

Ca_TE–064 RT8 Cin4 GW429899.1

Ca_TE–065 PC1 Cin4 GT671271.1

Ca_TE–066 FR1 Cin4 GW487483.1

Ca_TE–068 FB2 Melmoth_orf1 GW485897.1

Ca_TE–069 FR1 Melmoth_orf1 GW473493.1

Ca_TE–071 BP1 Melmoth_orf1 GW436111.1

Ca_TE–072 CL2 Melmoth_orf1 GT678668.1

Ca_TE–073 LV5 Del1 GW469064.1

Ca_TE–075 RM1 Del1 GW476916.1

Ca_TE–076 IC1 Del1 GW434887.1

Table 2. Cont.

Query id Library Subject id GenBank Accession

Ca_TE–077 FR1 Del1 GW472574.1

Ca_TE–079 LV8 dea1 GW470679.1

Ca_TE–080 RT5 dea1 GT686341.1

Ca_TE–081 FR1 Tst1_orf4 GW473442.1

Ca_TE–082 LV5 Tst1_orf4 GW469004.1

Ca_TE–085 CA1 Tst1_orf2 GT689576.1

Ca_TE–086 SH2 Tst1_orf2 GW447114.1

Ca_TE–088 CB1 Melmoth_orf2 GW458400.1

Ca_TE–089 CL2 Melmoth_orf2 GT680947.1

Ca_TE–090 PA1 Endovir1-1 GT684931.1

Ca_TE–093 FR1 Tnt1 GW473549.1

Ca_TE–094 CL2 Ta1_1_rt GT681881.1

Ca_TE–095 CB1 Osr1 GW428435.1

Ca_TE–096 LV4 Athila1_orf1 GW465397.1

Ca_TE–097 EA1 Hopscotch GW439671.1

Ca_TE–098 CA1 Opie2_pol GT688707.1

Ca_TE–100 FB1 Maggy_pol GW474059.1

Query id: arbitrary identification; Ca_TE–001 - Ca_TE–059: DNA Transposons;
Ca_TE–060 - Ca_TE–100: Retrotransposons; Library: tissue, developmental
stage or stress condition in which the clone was obtained (BP1 - Suspension
cells treated with acibenzolar-S-methyl, CA1 - Non-embryogenic callus, CB1 -
Suspension cells treated with acibenzolar-S-methyl and brassinosteroids, CL2 -
Hypocotyls treated with acibenzolar-S-methyl, FB1 - Flower buds in stages 1
and 2–long, FR1 - Flower buds no 6, pinhead fruits no 1 and fruits (stages 1 and
2)–long, FR2 - Flower buds no 6, pinhead fruits no 1 and fruits (stages 1 and 2)–
short, LV4 - Young leaves from orthotropic branch – long, LV5 - Young leaves
from orthotropic branch–short, PA1 - Primary embryogenic callus, RT5 - Roots
with acibenzolar-S-methyl, RT8 - Suspension cells stressed with aluminum, SH2 -
Water deficit stresses plants (pool of tissues).
doi:10.1371/journal.pone.0078931.t002
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related unigenes using sequence similarity searches by BLASTn

are given in Figure S6 (File S4).

Expression Analyses
The expression analyses were carried out for the 64 individual

transcriptionally active TEs characterized in this study (Table 2)

and for transcripts of CDSs harboring TE–cassettes (77) identified

in this and in a previous study [22] and corresponding CDSs

without TE insertions (63), identified in this study (Table 3).

Plant material. For probe synthesis, total mRNA was

extracted from the following samples of C. arabica: a) Drought

stress: leaves of cultivars tolerant (Iapar59) and sensitive (Rubi) to

drought grown in field conditions (Cerrado Agricultural Research

Center, Planaltina-DF, Brazil) with (predawn leaf water potentials

Ypd20.3860.10 and 20.2260.07 MPa for Iapar59 and Rubi

cultivars, respectively) and without (Ypd = 20.8060.12 and

21.8860.36 MPa for Iapar59 and Rubi cultivars, respectively)

irrigation [47], b) Cell culture: embryogenic callus from C. arabica

cv. Catuaı́ Vermelho maintained in a multiplication medium for

,4 months; c) Inhibition treatment: the same embryogenic callus

was treated for 4 h with the protein biosynthesis inhibitor

cycloheximide (CHX: 10 and 30 mg/mL in alcohol) added to

cell culture for a final concentration of 100 and 300 mg/mL. C.

canephora var. conilon drought stress: clone 14, tolerant to drought

was selected by the INCAPER [41] and grown in a greenhouse

with (unstressed condition, Ypd leaves = 20.0260.03 MPa) or

without (stress, Ypd leaves = 23.0260.12 MPa) water [42]. For

fluorescent in situ hybridization (FISH), slides were prepared with

root tips of C. arabica var. typica, C. canephora and C. eugenioides

pretreated with a saturated solution of paradichlorobenzene for

24 h at 14uC, without acid hydrolysis.

RNA isolation, DNAse treatment and reverse

transcription. RNA of all samples was extracted from cells

using ConcertTM reagent (Invitrogen, Carlsbad, CA, USA)

according to the manufacturer’s protocol. Total RNA samples

(10 mg) were incubated for 30 min at 37uC with 3 U of RQ1

RNAse-Free DNAse (Promega, Madison, WI, USA) in a final volume

of ,10 ml. Each total RNA sample was mixed with 1.5 ml

Oligo(dT)12–18 (Invitrogen), heated at 75uC for 10 min, and then

cooled for 5 min on ice. The reaction mixture for the reverse

transcription contained 5 ml of 56first-strand buffer, 2.5 ml of

0.1 mol/l DTT, 40 U of RNAseOUT, 50 mCi (a-33P)-dCTP and

2.5 ml of a 10 mM mixture of unlabeled dNTPs (dATP, dTTP and

dGTP) and was heated at 42uC for 5 min. The reverse

transcription was performed at 42uC for 20 min with 300 U of

SuperScript III First-Strand Synthesis System for RT-PCR (Invitrogen).

Then, 1.25 ml of unlabeled dCTP (10 mM) was added and

maintained for 1 h, terminated by heating at 94uC for 5 min and

cooled for 5 min on ice. The total volume (30.25 ml) was used in

the hybridization experiments.

Amplification of target DNA. Each target cDNA (100 ng)

was amplified by PCR in a volume of 25 ml with 1.25 U of

PlatinumH Taq DNA Polymerase (Invitrogen) in 106 polymerase

buffer, 2 mM MgCl2, 200 mM each dNTP and 10 mM of each

universal primer, M13F and M13R. The solutions were heated to

94uC for 2 min, followed by 35 cycles of denaturation (94uC for

30 sec), annealing (50uC for 30 sec), extension (72uC for 4 min),

and final extension at 72uC for 7 min. The target DNAs were used

to make the membrane arrays.

Macroarray experiments and analysis. The PCR prod-

ucts of the target DNAs were denatured in DMSO (50% v/v) for

30 min at 37uC, arrayed in a 384-well microtiter plate and then

spotted twice in the same position onto Performa II nylon filters

(Genetix Limited, Hampshire, UK) using the high-throughput

robot system Q-BOT (Genetix Limited). To increase the signal

homogeneity among spots and filters, the set of 64 cDNAs was

spotted in duplicate (262 array) onto two identical arrays using the

same nylon filters (2226222 mm). Additionally, 16 spots contain-

ing cDNA of the reference gene ubiquitin were applied to delimit

the two arrays. After sample deposition, the filters were dampened

with a denaturant solution (NaCl 0.13 M and 0.5 M NaOH) for

10 min and a neutralization solution (NaCl 1.5 M and Tris 1 M)

for 5 min, then fixed by UV light exposition (1,200 mj/cm2) for

12 sec and stored at 280uC. The filters were pre-hybridized for

2 h at 65uC in Modified Church and Gilbert Buffer (0.5 M Na

Phosphate Buffer pH 7.2, 7% SDS, 10 mM EDTA) and

hybridized overnight with cDNA sample probes. Membranes

were washed for 15 min three times with 0.1% SDS/16SSC and

three times with 0.1% SDS/0.16SSC at 65uC. After washing, the

filters were exposed on imaging plates BAS-MS 2340 (Fujifilm,

Tokyo, Japan) for 72 h in a BAS 2340 cassette (Fujifilm) and

scanned using a fluorescent image analyzer FLA3000 (Fujifilm).

The radioactive intensity of each spot was quantified by Array

Gauge software (Fujifilm), corrected by the level of the local

background, normalized to the average intensities of the reference

gene ubiquitin (except for callus treated with CHX, in which the

reference gene expression was completely suppressed). For

differences in probe labeling, normalization was by use of the

average signals of all genes studied. The homogeneity of the spot

replicates were evaluated and represented by average values using

limma of the Bioconductor package [48] from R (http://www.r-

project.org).

The resulting normalized expression levels for individual

probes, expressed as signal intensity values, were visualized,

clustered and statistically analyzed across all conditions assayed

here. Signal intensity values of individual transcripts were

visualized and hierarchically clustered using the TIGR Multi-

experiment viewer (MeV) program (http://www.tm4.org/mev.

html). Average expression levels between conditions were

compared using both parametric (Student’s ttest) and non-

parametric (Mann-Whitney U test) statistical tests. Differences in

condition-specific expression profiles for individual transcripts

were computed using Manhattan distances between signal

intensity vectors across conditions. The resulting distances were

averaged within and between TE classes and families to measure

TE expression coherence.

Fluorescent in Situ Hybridization
FISH was performed as described elsewhere [49] with

modifications. Three expressed TE cDNA clones (GI

311206994, GI 315896428 and GI 315862857 similar to MuDR,

Tip100 and del1, respectively) were used to synthesize the probes

with biotin-14-dATP by nick translation. The reaction mixture

(total volume 33 ml) contained 15 ml of 100% formamide, 6 ml of

polyethylene glycol, 3 ml of 206SSC, 1 ml of calf thymus DNA

(100 ng), 4 ml of water and 4 ml of each probe (200 ng). The

samples were denatured at 70uC for 10 min, and hybridization

was performed at 37uC overnight in a humidified chamber. The

washes were carried out in 66SSC and 46SSC/0.2% Tween 20

at room temperature. The probes were detected with avidin-

FITC, followed by post-detection washes in 46SSC/0.2% Tween

20 at room temperature. Slides were mounted with 25 ml of

antifade, composed of glycerol (90%), 1,4-diaza-bicyclo(2,2,2)-

octane(2.3%), 20 mM Tris-HCl pH 8.0 (2%), water and 1 ml of

2 mg/ml 4,6-diamidino-2-phenylindole (DAPI). The images were

acquired using a Leica DM4500 B Microscope (Leica Microsystems,

Wetzlar, Germany) equipped with a DFC 300FX Digital Color

Camera (Leica Microsystems), and the image was overlapped with
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red color for DAPI using the Leica IM50 4.0 image management

software (Leica Microsystems).
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