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Abstract

Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most
important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and
computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we
present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR)
from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen
descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver
operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for
building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the
previously published procedures, whose performance indicators were recently compared by other research groups. The
results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue
proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/
indication) or, when certain conformational changes accompany interface formation. The development of amino acid type
specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid
conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive
power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent
physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein
interfaces. The IFR classifier developed in this study is now integrated into the BlueStar STING suite of programs.
Consequently, the prediction of protein-protein interfaces for all proteins available in the PDB is possible through
STING_interfaces module, accessible at the following website: (http://www.cbi.cnptia.embrapa.br/SMS/predictions/index.
html).
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Introduction

Protein-protein interactions are very specific in the sense that

they control almost all processes within cells, such as signal

transduction, metabolic and gene regulation, and immunologic

responses. [1]. Notably, even in a crowded intracellular environ-

ment [2], each one of these distinct protein-protein interactions is

mediated through a particular area of the protein surfaces [1].

To detect protein-protein interactions with resolution ranging

from the cellular to the atomic level, many experimental methods

may be employed [3]. Nevertheless, the combination of experi-

ments, which should offer a more detailed understanding of the

protein interaction network, usually takes a long time, especially

during protein sample preparation. Such a bottleneck of current

experimental techniques makes in silico approaches for character-

izing macromolecular complexes very useful as these approaches

may guide in vivo and in vitro experiments, reducing temporal and

financial costs.

However, similar to some experimental techniques used to

gather information about protein interfaces (for example, obtain-

ing 3D protein structures through x-ray diffraction or nuclear

magnetic resonance techniques), computational methods also do

face some challenges. These difficulties include predicting quater-

nary structure via template-based docking algorithms, which can

only yield atomic details of protein-protein interactions if the

sequence identity to another known protein complex structure is

higher than approximately 60%. If the sequence homology to
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known protein complexes falls between 30% and 60%, structural

similarity is conserved but details, such as residue pairing, are not

predicted correctly. When the similarity is less than 30%, no

reliable model is obtained and only the relative orientation of the

molecules is predicted [4]. Recent reviews on protein docking

methods have emphasized this issue in details [46–48]. Therefore,

a more accurate understanding of the principal amino acid

characteristics in protein-protein interfaces is required to improve

the quality and reliability of in silico generated protein complex

models. An advanced knowledge of this particular location may

result in much better structure predictions of the entire complex.

This improvement is mainly because all protein-protein interac-

tions occur only at a portion of the protein surface: the interface

between the molecules. In fact, it has been argued that monomeric

subunits have all the necessary features for establishing protein-

protein interactions [1].

Thus, it is not surprising that Schneider and colleagues [9]

approached the feasibility of predicting protein-protein binding

sites even when no interacting partner is present/known.

Accordingly, the information required for establishing an interac-

tion with another protein is already present in the tridimensional

structure of a single protein. In any case, one cannot ignore the

fact that the characteristics of the protein environment also can

play an important role by being able to modify protein structures

and, consequently, interfaces. Additionally, it is also clear that if a

protein is interacting with two or more different partners, different

interfaces may be formed for each partner.

A careful literature review will quickly confirm that although

there are several recently published studies regarding the

characteristics that could determine differences between inter-

face-forming residues (IFR) and free surface residues (FSR) [1,5–

8], there is no general agreement about exactly how proteins

associate with each other and which descriptors of their

characteristics are suitable for elucidating this mechanism [49–

54]. Also, by comparing the interface area against the rest of the

free surface is a common procedure during attempts to charac-

terize the main differences between those two classes. This type of

comparison has been described in recent studies, including those

cited above.

A variety of models and descriptors were explored to build

protein-protein interface classifiers. Promate [9] and PINUP [22]

used linear scoring functions, while PPI-Pred [25] used a support

vector machine approach, SPPIDER [23] and cons-PPISP [26]

used a neural network model, and Meta-PPISP combined the

results of cons-PPISP, Promate and PINUP as a meta-predictor.

In contrast to the method proposed in this study, the six

mentioned models make use of amino acid sequence conservation

and propensity. How important is this difference among Sting-

LDA and other mentioned algorithms could only be accessed

adequately if proper analysis is done on how often the

conservation property could not be used in known protein

(sequence and structure) universe. It is known that structural

genome projects used high-throughput techniques [56,57,58] to

produce and then deposit in the PDB thousands of new structures.

For instance, half of the protein structures solved during the year

of 2005 came from structural genome initiatives, including

structures of the so-called orphan proteins. Orphan proteins are

organism-specific proteins, i.e., they have no homologue protein in

other lineages. Estimates are that up to one third of the genes/

proteins from whole known genomes accounts for orphan proteins

[59]. Ekman et al. [60] show, using the structural classification of

protein (SCOP) [61], that up to 25% of the known non-redundant

protein structures from bacteria are from orphan proteins or from

proteins having an orphan domain. Also, up to 21% of known protein

structures in Eukarya kingdom and 24% in Archaea kingdom

follow the same trend. Operating in such scenario where

limitations imposed by orphan protein existence restricts the use

of aforementioned algorithms dependent on conservation param-

eter for predicting interface residues, would clearly lead to

unreliable results. Therefore, the strong demand is created for

the development of more general approaches for IFR prediction

which would have similar performance to conservation dependent

algorithms, yet without the use of evolutionary-related attributes

for prediction. The Sting-LDA was produced having in mind this

demand as well.

We report results on the classification of the 20 naturally

occurring amino acids into two distinct classes: IFR and FSR, by

using several amino acid descriptors from the BlueStar STING

database [10–13]. BlueStar STING has been used previously for

predicting enzyme class [14], protein-ligand analysis [15,16],

protein mutant analysis [17,18], and protein-protein interaction

pattern analysis [19], mostly because BlueStar STING offers easy

access to a very rich repository of protein characteristics. The

analysis reported in this paper uses only the information in the

three-dimensional structure for predicting protein interfaces.

Thus, sequence conservation attributes are not explicitly used

because inferences embedded into them are mere consequences of

preserving the nano-environment (which by itself dictates a

particular function for a specific amino acid ensemble (such as a

catalytic site or an interface)). Therefore, our method still functions

in scenarios in which no close homologue to a protein of interest is

available and in which all other methods that rely on the use of

‘‘conservation’’ attributes would fail. Nevertheless, for a complete

assessment of the suitability of the selected physicochemical and

structural descriptors for classifying amino acid residues as

interface residues and also of the importance of the contribution

of sequence conservation attributes to the same classification, an

additional IFR classifier was built that also includes the ‘‘amino acid

conservation’’ attribute from STING database [20]. We show that all

the clues necessary for IFR prediction may already be contained

within the information in descriptors that are derived only from

the protein structure. Furthermore, the addition of ‘‘conservation’’

does not improve the performance indicators for IFR classification

if an information plateau with a sufficiently high number of

structural attributes is reached that completely describes the nano-

environment of the interface. Additionally, we describe (for the

first time) how to construct and use classifiers that are specific to

amino acid type for additional improvements in predicting IFRs.

Results and Discussion

Linear correlation among attributes
A long list of amino acid descriptors from the STING database

(table 1 lists all selected descriptors and their variations included in

this study) was subjected to analysis to determine whether there is

a linear correlation among them. The existence of non-orthogonal

attributes present in table 1 may be illustrated, for example, by

analyzing the case of ‘‘Sting hydrophobicity’’, which is calculated by

multiplying the relative accessibility of an amino acid with its

hydrophobicity index (from the Radzicka scale [21]). Therefore,

the descriptors ‘‘accessibility’’, ‘‘relative accessibility’’ and ‘‘Sting

hydrophobicity’’ are all correlated for the same amino acid type

(e.g., for all alanine residues) but uncorrelated among different

amino acid types. Consequently, only the ‘‘Sting hydrophobicity’’

descriptor was used for further analysis, while ‘‘accessibility’’ and

‘‘relative accessibility’’ were eliminated for redundancy. Table 2

summarizes the results from determining the orthogonality of

other structural descriptors. The ‘‘x’’ in table 2 refers to removed
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descriptors (because of identified linear correlations with some

other attributes), while the ‘‘-’’ sign is assigned to attributes that are

not applicable to specific amino acids. From table 2, we can

observe that the attributes Contact Energy Density (CED) at the Ca
(6Å), CED at Last Heavy Atom (LHA) (5Å), CED at LHA (6Å), density

at Ca (6Å), density at LHA (6Å), sponge at Ca (6Å), sponge at LHA (6Å),

electrostatic potential-average and Cross Link Order at Cb are linearly

correlated with another variation of the same descriptor in most

amino acid types.

The same procedure was applied to the ‘‘weighted neighbor

averages’’ descriptors (WNA, see Methods for more details). Table

3 shows the selected WNA descriptors after the removal of linearly

correlated descriptors from the initial ‘‘weighted neighbor

averages’’ ensemble. The newly created set was composed of

selected descriptors from tables 2 and 3. This set was then used in

principal component analysis and for building the linear models.

These models were formed using linear classifiers via discriminant

analysis while ensuring that data redundancy and consequent

over-fitting of classifiers was eliminated.

Principal Component Analysis
The number of orthogonal (independent/non-redundant) attri-

butes (principal components) was selected to form a new set of

attributes, which were specific for each amino acid type, by

calculating the correlation matrix from a training set of data. The

descriptors that had a high linear correlation with other

descriptors were eliminated from further use in this procedure -

a crucial procedural decision undertaken to avoid posterior model

over fitting. The resulting set of descriptors was composed of 22

principal components for glycine with the number of principal

Table 1. Selected Descriptors from the BlueStar STING database that were used for IFR prediction.

Accessibility – Acc

Acc in isolation Relative Acc

Eletrostatic Potential – EP

EP @ Ca EP @LHA EP average EP @ surface

Hydrophobicity

Hydrophobicity in isolation

Contact Energy Density – CED/Internal (INT) contacts

CED @ Ca INT (3) CED @ Ca INT (6) CED @ LHA INT (3) CED @ LHA INT (6)

CED @ Ca INT (4) CED @ Ca INT (7) CED @ LHA INT (4) CED @ LHA INT (7)

CED @ Ca INT (5) CED @ LHA INT (5)

Cross Link Order (CLO)

CLO @ Ca CLO @ Cb CLO @ LHA

Cross Presence Order (CPO)

CPO @ Ca CPO @ Cb CPO @ LHA

Dihedral angles

PHI PSI

Rotamers

CHI 1 CHI 2 CHI 3 CHI 4

Density

Density @ Ca (3) Density @ Ca (6) Density @ LHA (3) Density @ LHA (6)

Density @ Ca (4) Density @ Ca (7) Density @ LHA (4) Density @ LHA (7)

Density @ Ca (5) Density @ LHA (5)

Sponge

Sponge @ Ca (3) Sponge @ Ca (6) Sponge @ LHA (3) Sponge @ LHA (6)

Sponge @ Ca (4) Sponge @ Ca (7) Sponge @ LHA (4) Sponge @ LHA (7)

Sponge @ Ca (5) Sponge @ LHA (5)

Contact Energy

Hydrophobic contacts Hydrogen bond - MM Hydrogen bond - MWM Hydrogen bond - MWWM Aromatic contacts

Charged (Attractive) Hydrogen bond - MS Hydrogen bond - MWS Hydrogen bond - MWWS Disulfide bond

Charged (Repulsive) Hydrogen bond - SS Hydrogen bond - SWS Hydrogen bond - SWWS Total contact energy

Unused Contact Energy

Hydrophobic contacts Hydrogen bond - MM Hydrogen bond - MWM Hydrogen bond - MWWM Aromatic contacts

Charged (Attractive) Hydrogen bond - MS Hydrogen bond - MWS Hydrogen bond - MWWS Disulfide bond

Charged (Repulsive) Hydrogen bond - SS Hydrogen bond - SWS Hydrogen bond - SWWS Total contact energy

Labels: Ca = Carbon alpha; LHA = Last heavy atom; MM = Main chain – Main chain; MS = Main chain – Side chain; SS = Side chain – Side chain; W = Water
molecule; WW = 2x Water molecules.
*A complete description of the listed physicochemical and structural attributes is given at http://www.cbi.cnptia.embrapa.br/SMS and in [10–13,20].
doi:10.1371/journal.pone.0087107.t001
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Table 2. List of descriptors and variables from the BlueStar STING database that were removed after linear correlation analysis.

ASP HIS LEU CYS GLU

CED @ Ca (4) CED @ Ca (5) CED @ Ca (6) CED @ Ca (6) CED @ Ca (5)

CED @ Ca (5) CED @ Ca (6) CED @ LHA (4) CED @ LHA (4) CED @ Ca (6)

CED @ Ca (6) CED @ LHA (4) CED @ LHA (5) CED @ LHA (5) CED @ LHA (4)

CED @ LHA (4) CED @ LHA (5) CED @ LHA (6) CED @ LHA (6) CED @ LHA (5)

CED @ LHA (5) CED @ LHA (6) CLO atC-beta CLO atC-beta CED @ LHA (6)

CED @ LHA (6) CLO atC-beta CLO @ LHA CLO @ LHA CLO atC-beta

CLO atC-beta CLO @ LHA Densityat Ca (4) Densityat Ca (6) Densityat Ca (4)

Densityat Ca (5) Densityat Ca (5) Densityat Ca (5) Densityat LHA (5) Densityat Ca (6)

Densityat LHA (6) Densityat Ca (6) Densityat Ca (6) Densityat LHA (6) Densityat LHA (6)

EP Average Densityat LHA (6) Densityat LHA (6) EP Average EP Average

Spongeat Ca (4) EP Average EP Average Spongeat Ca (4) Spongeat Ca (4)

Spongeat Ca (5) Spongeat Ca (4) Spongeat Ca (4) Spongeat Ca (5) Spongeat Ca (5)

Spongeat Ca (6) Spongeat Ca (5) Spongeat Ca (5) Spongeat Ca (6) Spongeat Ca (6)

Spongeat LHA (4) Spongeat Ca (6) Spongeat Ca (6) Spongeat LHA (5) Spongeat LHA (5)

Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (6) Spongeat LHA (6)

Spongeat LHA (6) Spongeat LHA (6) Spongeat LHA (6)

ILE LYS MET PHE PRO

CED @ Ca (6) CED @ Ca (6) CED @ Ca (6) CED @ Ca (6) CED @ Ca (6)

CED @ LHA (4) CED @ LHA (4) CED @ LHA (4) CED @ LHA (4) CED @ LHA (4)

CED @ LHA (5) CED @ LHA (5) CED @ LHA (5) CED @ LHA (5) CED @ LHA (5)

CED @ LHA (6) CED @ LHA (6) CED @ LHA (6) CED @ LHA (6) CED @ LHA (6)

CLO atC-beta CLO atC-beta CLO atC-beta Densityat Ca (4) CLO atC-beta

CLO @ LHA Densityat Ca (4) Densityat Ca (4) Densityat Ca (5) Densityat Ca (4)

Densityat Ca (5) Densityat Ca (5) Densityat Ca (5) Densityat Ca (6) Densityat Ca (5)

Densityat Ca (6) Densityat Ca (6) Densityat Ca (6) Densityat LHA (6) Densityat Ca (6)

Densityat LHA (6) Densityat LHA (6) Densityat LHA (6) EP Average Densityat LHA (6)

EP Average EP Average EP Average Spongeat Ca (4) EP Average

Spongeat Ca (4) Spongeat Ca (4) Spongeat Ca (4) Spongeat Ca (5) Spongeat Ca (4)

Spongeat Ca (5) Spongeat Ca (5) Spongeat Ca (5) Spongeat Ca (6) Spongeat Ca (5)

Spongeat Ca (6) Spongeat Ca (6) Spongeat Ca (6) Spongeat LHA (4) Spongeat Ca (6)

Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (5)

Spongeat LHA (6) Spongeat LHA (6) Spongeat LHA (6) Spongeat LHA (6) Spongeat LHA (6)

TYR VAL SER THR TRP

CED @ Ca (6) CED @ Ca (6) CED @ Ca (6) CED @ Ca (6) CED @ Ca (6)

CED @ LHA (5) CED @ LHA (4) CED @ LHA (6) CED @ LHA (4) CED @ LHA (4)

CED @ LHA (6) CED @ LHA (5) CLO atC-beta CED @ LHA (5) CED @ LHA (5)

CLO atC-beta CED @ LHA (6) CLO @ LHA CED @ LHA (6) CED @ LHA (6)

Densityat Ca (4) CLO atC-beta Densityat Ca (4) CLO atC-beta Densityat Ca (5)

Densityat Ca (5) Densityat Ca (4) Densityat Ca (5) Densityat Ca (5) Densityat Ca (6)

Densityat Ca (6) Densityat Ca (5) Densityat Ca (6) Densityat Ca (6) Densityat LHA (6)

Densityat LHA (6) Densityat Ca (6) Densityat LHA (6) Densityat LHA (6) EP Average

EP Average Densityat LHA (6) EP Average EP Average Spongeat Ca (4)

Spongeat Ca (4) EP Average Spongeat Ca (4) Spongeat Ca (4) Spongeat Ca (5)

Spongeat Ca (5) Spongeat Ca (4) Spongeat Ca (5) Spongeat Ca (5) Spongeat Ca (6)

Spongeat Ca (6) Spongeat Ca (5) Spongeat Ca (6) Spongeat Ca (6) Spongeat LHA (5)

Spongeat LHA (4) Spongeat Ca (6) Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (6)

Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (6) Spongeat LHA (6) Spongeat LHA (6)

Spongeat LHA (6) Spongeat LHA (6)

ALA ASN GLN ARG GLY
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components increasing to 37 for tryptophan and arginine. After

integrating the WNA descriptors, the number of principal

components grew to 28 for glycine and peaked at 41 principal

components for arginine. Each specific training set from each cross

validation step actually has a different correlation matrix.

Extensive calculation revealed that the number of principal

Table 2. Cont.

ASP HIS LEU CYS GLU

CED @ Ca (6) CED @ Ca (6) CED @ Ca (6) CED @ Ca (6) CED @ Ca (6)

CED @ LHA (4) CED @ LHA (6) CED @ LHA (5) CED @ LHA (4) Densityat Ca (5)

CED @ LHA (6) CLO atC-beta CED @ LHA (6) CED @ LHA (5) Densityat Ca (6)

CLO atC-beta Densityat Ca (6) Densityat Ca (5) CED @ LHA (6) EP Average

CLO @ LHA Densityat LHA (6) Densityat Ca (6) Densityat Ca (5) Spongeat Ca (4)

Densityat Ca (5) EP Average Densityat LHA (6) Densityat Ca (6) Spongeat Ca (5)

Densityat Ca (6) Spongeat Ca (4) EP Average Densityat LHA (6) Spongeat Ca (6)

Densityat LHA (7) Spongeat Ca (5) Spongeat Ca (4) Spongeat Ca (4)

EP Average Spongeat Ca (6) Spongeat Ca (5) Spongeat Ca (6)

Spongeat Ca (5) Spongeat LHA (4) Spongeat Ca (6) Spongeat LHA (5)

Spongeat Ca (7) Spongeat LHA (5) Spongeat LHA (5) Spongeat LHA (6)

Spongeat LHA (5) Spongeat LHA (6) Spongeat LHA (6)

Spongeat LHA (6)

The number within parenthesis (indicated for some descriptors) represents the radius of the probing sphere used to calculate the numerical value of the respective
attribute.
doi:10.1371/journal.pone.0087107.t002

Table 3. List of selected ‘‘weighted neighbor averages’’ (WNA) descriptors.

Descriptors

Density @ ca3 WNADist UnusedChargedattractive Energy WNASurf

Density @ ca3 WNASurf UnusedChargedrepulsive Energy WNADist

EP Average WNADist UnusedChargedrepulsive Energy WNASurf

EP Average WNASurf UnusedDissulfidebond Energy WNADist

EP @ ca WNADist UnusedDissulfidebond Energy WNASurf

EP @ ca WNASurf Unused Hydrogen Bond - MM Energy WNADist

EP @ lha WNADist Unused Hydrogen Bond - MM Energy WNASurf

EP @ lha WNASurf Unused Hydrogen Bond - MS Energy WNADist

EP @ Surface WNADist Unused Hydrogen Bond - MS Energy WNASurf

Energy Density @ ca3 WNADist Unused Hydrogen Bond - MWM Energy WNADist

Energy Density @ ca3 WNASurf Unused Hydrogen Bond - MWM Energy WNASurf

Energy Density @ ca4 WNADist Unused Hydrogen Bond - MWSEnergy WNADist

Energy Density @ ca4 WNASurf Unused Hydrogen Bond - MWS Energy WNASurf

Energy Density @ ca7 WNASurf Unused Hydrogen Bond - MWWM Energy WNADist

Energy Density @ lha3 WNADist Unused Hydrogen Bond - MWWM Energy WNASurf

Energy Density @ lha3 WNASurf Unused Hydrogen Bond - MWWS Energy WNADist

Hydrophobicity WNADist Unused Hydrogen Bond - MWWS Energy WNASurf

Sponge @ ca3 WNADist Unused Hydrogen Bond - SS Energy WNADist

Sponge @ ca3 WNASurf Unused Hydrogen Bond - SS Energy WNASurf

Sponge @ lha7 WNADist Unused Hydrogen Bond - SWS Energy WNADist

Sponge @ lha7 WNASurf Unused Hydrogen Bond - SWS Energy WNASurf

Total Unused Contact Energy WNADist Unused Hydrogen Bond - SWWS Energy WNADist

UnusedAromaticcontacts Energy WNADist Unused Hydrogen Bond - SWWS Energy WNASurf

UnusedAromaticcontacts Energy WNASurf UnusedHydrophobiccontacts Energy WNADist

UnusedChargedattractive Energy WNADist UnusedHydrophobiccontacts Energy WNASurf

doi:10.1371/journal.pone.0087107.t003
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components that accounted for 95% of the training set variability

(see Methods for further details on selecting the number of

principal components) did not fluctuate much. Consequently, the

number of principal components for each specific amino acid was

maintained at a constant value for all cross-validation steps.

However, the different number of principal components for each

amino acid type indicates the existence of different eigenvectors

and thus a different correlation matrix, i.e., for each amino acid

type, the descriptors and their variations correlate differently with

each other. This result is a principal motivation for our decision to

formulate all classifiers in a ‘‘per amino acid’’ fashion.

Linear classifiers via discriminant analysis (LDA)
As explained in the Methods section, the dataset (DS30) used in

this study was created by selectively retrieving PDB files from the

PDB. While the information about ‘‘true’’ IFRs can be easily

obtained from specific tridimensional structures, the retrieval of

‘‘true’’ FSRs is not so straightforward. This difficulty is because

one cannot be completely sure that a given free surface residue will

not be part of a completely different interface formed with another

partner (perhaps one that has not been co-crystallized yet) [49].

Taking that bias into consideration, only information available in

the original PDB structure was used.

In addition, whenever a protein was available in more than one

PDB structure file with different partners and, potentially, different

interface regions, our selection algorithm only kept one example

(the first ranked PDB cluster) of the common (‘‘base’’) protein

chain. The other IFRs on the common protein chain, built by the

discharged chain, were not taken into account. Although we could

use a mapping procedure, similar to previously described methods

such as SPPIDER [23], we could not determine with certainty

how the lack of including differences in the nano-environments of

the considered interfaces (through use of corresponding amino

acid characteristics descriptors) would influence the results.

Therefore, we opted not to use any mapping of the ‘‘missed’’

IFRs on the unchanged ‘‘base’’ structures. Nevertheless, our

structure selection algorithm retained all of the non-redundant

chains. So, the IFRs from partners to a ‘‘base’’ protein were

included in the used dataset and, therefore, the ‘‘missed’’ IFRs on

the ‘‘base’’ protein were indirectly present, as long as sequence of

partner protein did not share more 30% sequence similarity with

any other protein chain in the DS30. The 20 amino acid-specific

linear classifiers obtained via discriminant analysis (no ‘‘weighted

neighbor averages’’ descriptors used in the first stage) were

subjected to receiver operating characteristic (ROC) evaluation. In

figure 1, we present the ROC curves for the 10-fold cross

validation of the tryptophan classifier (1-a) and for the glycine

classifier (1-b). The tryptophan LDA classifier is the best overall

when considering the area under the ROC curve (AUC) and the

maximum Matthew’s correlation coefficient (MCC) criteria. In

contrast, the glycine results indicate that this particular amino acid

had the lowest performance rates among all amino acids for

distinguishing IFRs from FSRs. Nevertheless, the glycine LDA

classifier outperformed a random classifier (for which AUC = 0.5

and MCC = 0), clearly showing that the use of physicochemical

and structural descriptors helps in predicting IFRs and FSRs.

Figure 1-c summarizes the results of the 10-fold cross-validation

for all amino acid-specific classifiers, sorted by average AUC. As

mentioned above, the tryptophan LDA classifier has the best AUC

and Matthew’s correlation coefficient rates, closely followed by the

aspartic acid, isoleucine, leucine, cysteine and valine classifiers.

When aggregating the 20 amino acid-specific classifiers (referred to

in figure 1 as Sting-LDA), an average AUC value equal to the

average of the LDA amino acid-specific classifiers was achieved

(figure 1-d). We also generated an LDA classifier with no

distinction among amino acid types. It is important to observe

the clear performance gain resulting from dividing the dataset per

residue fashion and then formulating amino acid-specific classifi-

ers. This procedure resulted in an AUC increase from 0.751 to

0.828. By using Welch’s two-sample statistical testing [14], we

were assured that the performance difference between the amino

acid-specific and the unspecific approach was statistically signif-

icant, with a p-value of 10210.

Next, the addition of ‘‘weighted neighbor averages’’ descriptors

remarkably increased the classification performance for all amino

acid-specific classifiers as well as for the amino acid-unspecific

classifier (figure 2). The amino acid order (with respect to

increasing AUC), shown in figure 2-a, changed when compared

with figure 1-c. The tryptophan and aspartic acid LDA classifiers

are still the best classifier models using both the AUC and

Matthew’s correlation coefficient criteria. Glycine improved in

ranking by many positions in this ordered list to become the 8th

ranked amino acid. The opposite behavior was observed for the

cysteine classifier, which became the 15th ranked amino acid in

figure 2-a.

As mentioned above, the performance gain, upon formulating

amino acid-specific classifiers for the case in which ‘‘weighted

neighbor averages’’ descriptors were present, is observed (figure 2-

b). However, the aggregated 20 amino acid-specific classifier, with

‘‘weighted neighbor averages’’ descriptors (referred to as Sting-

LDA-WNA), is still slightly better than the amino acid-unspecific

classifier with WNA descriptors. Welch’s two-sample statistical

testing [14] for this particular case results in a p-value of

approximately 1028, indicating a statistically significant gain in

performance for the aggregated specific classifier

Because of its improved classification performance, we used the

Sting-LDA-WNA classifier to continue the analysis in this study as

well as for comparison with other available methods in the

literature. Using 10-fold cross-validation and screening the

classification cut-off values (ranging from 0.1 to 0.9), the

classification limits of Sting-LDA-WNA were tested. Figure 3

shows the performance change for 9 of the tested cut-off values.

The precision and sensitivity rates have contrasting behavior as the

cut-off value increases: while the precision grows, the sensitivity

decreases. The best accuracy and Matthew’s correlation coefficient

occur when using a cut-off value of 0.50. This value appears to be

the most appropriate cut-off for general purposes, unless the

precision rate is preferred and one wants to minimize the number

of false positives. An example of the latter case with particular

biological meaning is pinpointing with great probability a region of

the binding site where any docking procedure may be further

explored to map all IFRs.

Impact of including amino acid conservation descriptors
on IFR classification

To assess the completeness of the information contained in the

ensemble of selected orthogonal structure attributes that were used

for protein-protein interface prediction, we also included an

analysis of the ‘‘amino acid conservation’’ descriptor from the STING

database. The same 10-fold cross-validation scheme was main-

tained for LDA classifier formulation. Figure 4 shows the

performance rates for this new classifier (figure 4-a) compared

(for three selected classification cut-off values) with the classifier

without the ‘‘amino acid conservation’’ attribute (figure 4-b). As it

clearly shows, no performance gain is achieved by using amino

acid conservation attributes. This result would apparently

contradict the results described in the work by Liang and

colleagues [22] in which they have shown that their protein-
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protein interface classifier (PINUP) performed better when

including a conservation score. Our results indicate that all the

necessary information for distinguishing IFRs from FSRs is present

in the original descriptor set, (retrieved directly from a protein

structure) if a sufficiently extensive list is used. Therefore, our

algorithm is not eliminating the space used by other groups [55]

which relay heavily on evolutionary information. In contrast, it

does contemplate possibility of cases where such information is

limited or even absent (orphan protein families) and where we

could continue predicting contacting interface among proteins

based solely on their structural and physicochemical information.

Comparison with other methods and induced fit
assessment

As noted by Porollo and Meller [23], comparisons among

different methods may be limited. For instance, different methods

use different binding site definitions and different training sets.

Given such limitations, we tested our interface-forming residue

classifier with the same test set used by Zhou and Qin [24] to

compare six previously studied methods: PPI-Pred [25], SPPIDER

[23], cons-PPISP [26], Promate [9], PINUP [22] and Meta-PPISP

[27]. This test set is composed of 35 enzyme-inhibitor complexes

(referred to as 35Enz) from the docking benchmark 2.0 [28]. For

these entries, both unbound and bound structures are available.

Therefore, one can also account for induced fit, i.e., the use of

bound structures for prediction and unbound ones for evaluation.

Figure 1. Comparing LDA classifiers with ROC analysis. Performance evaluation using ROC analysis for the tryptophan LDA classifier (a),
glycine LDA classifier (b) and the aggregated result (in gray) of the 20 independent amino acid LDA classifiers (d). In blue, 10 ROC curves (from 10-fold
cross validation tests) are presented for the classifier that is not specific to the type of amino acid. Ten-fold cross validation was used, and the
performance indicators AUC and MCC are displayed for both classifiers in (a) and (b). The results for all generated classifiers are shown in (c): the AUC
(white) and MCC (gray). Tryptophan serves as the best classifier but is closely followed by (in AUC criteria) aspartic acid, methionine, isoleucine,
leucine and valine. The Sting-LDA aggregated classifier, which uses 20 amino acid-specific classifiers with no WNA descriptors, has an AUC average of
0.828, whereas the amino acid-unspecific classifier has an AUC average of 0.751.
doi:10.1371/journal.pone.0087107.g001
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Figure 5-a shows the comparison of the precision rates for the

listed methods using a scale of different values for sensitivity. The

Sting-LDA-WNA (labeled as STING-LDA on figure 5-a) is shown

to outperform almost all methods for most sensitivity cut-offs

except Meta-PPISP and PINUP. In fact, the method described

here has the highest precision for sensitivity of 0.75 and second

highest for 0.70, 0.65 and 0.25.

Observed high precision rate at 0.25 sensitivity could be suitable

for guiding docking simulations because the complete interface is

extrapolated from the docking method itself. Therefore, predicting

an average of 25% of the total IFRs with approximately 59%

precision (similar to PINUP but lower than Meta-PPISP), which

significantly reduces the number of false positive IFRs, can reduce

the size of the conformation space that must be searched during

successful docking procedure. At the end, the decision to what

prediction cut-off to use is dependent on the user needs. For that

reason, Sting-LDA returns the IFR probability for each amino

acid residue.

Although the 35Enz dataset is useful for comparison of

mentioned IFR prediction methods, it does not fully account for

issues regarded to as ‘‘induced fit’’. This is because most of the

35Enz structures are members of the so called "rigid-body" class in

the protein-protein docking benchmark, i.e., they undergo very

little conformational change upon protein complex formation. In

order to test the IFR classifier developed in this work for cases

where the protein chain undergoes conformational changes upon

interface formation, we used the structures from the "medium"

and "difficult" classes from completely different dataset: the

protein-protein benchmark 4.0 [45]. In total, 97 protein chains

were used from this new dataset to assess the limitations of our

method while predicting IFRs in such scenario. Similarly to the

35Enz dataset, here we used unbound structures for prediction

and bound ones for evaluating how well we ascertained the IFRs

and FSRs. Also, it is important to stress that none of the structures

Figure 2. Comparing LDA classifiers using weighted neighbor averages (WNA) descriptors with ROC analysis. The results for all
generated amino acid classifiers are shown in (a): the AUC (white) and MCC (gray). The amino acid ranking order is similar to that of figure 1-c, except
for glycine and cysteine LDA models. The Sting-LDA-WNA aggregated classifier from the 20 amino acid-specific classifiers with WNA descriptors has
an AUC average of 0.949, whereas the amino acid-unspecific classifier average was 0.944 (indicating that the performance gain while using the
formulated amino acid-specific classifiers is statistically relevant and, therefore, recommended for better IFR classification).
doi:10.1371/journal.pone.0087107.g002

Figure 3. Cut-off performance dependence of Sting-LDA-WNA
classifier. The performance indicators observed for the classifiers built
from DS30. When the cut-off is increased from 0.10 to 0.50, the accuracy
increases and reaches its peak, and then it gradually decreases with a
further increase in the cut-off value. The precision rate only grows as
the cut-off is increased, that is, for higher cut-off values, fewer entries
are classified as IFR, leading to more false positives. For sensitivity, the
opposite behavior is observed (illustrating the performance trade-off).
When increasing the cut-off, more entries are labeled as FSR, and fewer
labeled as IFR are misclassified. The highest MCC value occurred when
using the same cut-off as that for the highest accuracy, which is 0.50.
Box plots were obtained with 10-fold cross validation.
doi:10.1371/journal.pone.0087107.g003
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available in 35Enz and the benchmark 4.0 were used in the

training step. Figure 5-b informs that, for this particular dataset,

the performance decreases by only 6% if compared to the AUC

rate obtained for the DS30 dataset, showing that the method

developed is robust even when significant conformational change

accompanies interface formation. Unfortunately, we cannot

compare the performance of other methods in that respect as

the common denominator for comparison there was the use of

35Enz database (and not the benchmark 4.0). For the same reason

we are unable to compare our results with those obtainable by

some more recently published methods. For that, one would need

to construct a new benchmark (including not only ‘‘easy’’ but also

‘‘medium’’ and ‘‘difficult’’ cases as well as compile all methods in a

single server for posterior benchmarking. Nevertheless, a limited

comparison with PredUs [52] was carried out. The authors of

PredUS used the protein-protein docking benchmark for training

and testing, using a 10-fold cross validation scheme. Although no

Precision vs. Recall curve is shown in their report, in order to

compare STING-LDA to PredUS results, following the same

procedure we applied using the 35Enz dataset, the AUC rate of

0.74 in PredUS is considered. Comparing this rate to the AUC of

the Sting-LDA-WNA predictor, based only on medium and

difficult classes, the method described here is 0.02 lower, while

using the rigid-body class, it is 0.02 higher.

The choice to use specific protein-protein docking benchmark

was important so that we may have a glimpse on how robust is our

method under different conditions of application. Altogether, the

Sting-LDA-WNA can be used as a reliable IFR predictor for

protein structures even in cases where no other homologue protein

is known (eliminating demand for using conservation property in

IFR prediction) and also for the scenarios where proteins undergo

conformational changes while interfacing.

Amino acid-specific classifiers: the cysteine residue
example

The importance of amino acid classifiers with respect to IFR

localization as well as the description of local nano-environments

for each IFR could be well illustrated by observing, for example,

some peculiarities of cysteine residues. In another set of

experiments, also concerning interface residues and their proper-

ties [29], we observed that from 6,931 chains present in DS95,

5,625 of the chains (90.15%) have cysteine residues. Additionally,

the majority of these protein chains have cysteines accessible to

solvent on their surface (5,201, representing 92.46% of the

cysteine-containing proteins). Only half of these protein chains

have cysteine residues located at an interface region, accounting

for a total number of 2,653 chains (which represents 51% of 5,201

chains). We assessed the cysteine distribution in these 2,653 chains

and the number of cysteines that each chain enclosed within an

interface. As shown in figure 6, there is a difference in that respect

between proteins with ‘‘small’’ interface areas and ‘‘large’’

interface areas. For the comparison, we defined an interface area

of up to 800 Å2 as ‘‘small’’, interface areas ranging from 800 to

3,000 Å2 as ‘‘medium’’ and the ones larger than 3,000 Å2 as

‘‘large’’ interfaces. Large interfaces appear to have a greater

number of cysteine residues (as shown in figure 6), and of the 1,451

chains of this class, 789 contained cysteine residues (54.37%). This

percentage for ‘‘medium’’ interface and ‘‘small’’ interface proteins

is 36.2% (1,647 out of 4,549 chains) and 23.3% (217 out of 931

chains), respectively. The same analysis [29] clearly indicates that

the interfaces of at least 98% of all proteins with ‘‘large’’ interface

areas (.3000 Å2) are more hydrophobic than the free surface

areas. This result implies that as the size of the interface grows, so

does the area of hydrophobic residues that compose the selected

interface and that the hydrophobic area must be buried during

complex formation. At the same time, only approximately 60% of

‘‘small’’ interfaces (size between 200 and 500 Å2) are more

hydrophobic than the remaining protein surface area.

Consequently, formation of protein complexes with the small

interfaces might require larger stabilization (in a form of a

complementary energy source to the hydrophobic interactions) to

maintain their structure than the large interfaces, and it is possible

Figure 4. IFR prediction performance dependence on cut-off
values for the LDA classifier with conservation attributes and
comparison with Sting-LDA-WNA. The performance of the classifier
with amino acid conservation descriptor: (a). above the classification
cut-off of 0.5, the precision rate is always above 80%, reaching more
than 95% with a cut-off of 0.9. The MCC rate is higher for a 0.3 cut-off;
nevertheless, using a cut-off of 0.5 results in a similar MCC. (b)
Comparing the performance of Sting-LDA-WNA with STING-LDA, no
difference is noted for the three selected cut-off values.
doi:10.1371/journal.pone.0087107.g004
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that the formation of cysteine bridges is an alternative for

stabilizing these interfaces. DS95 indicates that large protein

interfaces contain more cysteine residues; these cysteines are

clearly able to form bridges to the complementary cysteine

residues located at the facing chain. However, the information

stored in the STING relational database regarding all established

contacts across the interfaces in DS95, clearly indicates that the

‘‘small’’ interfaces use a higher proportion of the available cysteine

residues (in comparison with ‘‘large’’ interfaces), most likely for

complementing the required energy for binding. For the ‘‘small’’

Figure 5. Comparison of Sting-LDA-WNA to other methods based on the test set 35Enz and induced fit assessment on benchmark
4.0 cases. (a) By selecting different thresholds for sensitivity, or coverage, the precision of the methods for IFR classification can be compared. For
high interface coverage values (75%), Sting-LDA-WNA (marked in this figure as STING-LDA) has the highest precision among the used methods (37%).
For balanced coverage (50%), Sting-LDA ranks third (47%), but not distant from PINUP (48%) and Meta-PPISP (50%) methods. For lower coverage
(25%), Meta-PPISP still ranks first achieving 70% precision while PINUP and Sting-LDA have similar precision (59%). (b) Sting-LDA-WNA performance
on the ‘‘medium’’ and ‘‘difficult’’ classes of the protein-protein docking benchmark, resulting in 6% decrease as compared to the DS30 performance,
by using the AUC rate, achieving 0.72.
doi:10.1371/journal.pone.0087107.g005
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interfaces with 1, 2 or 3 cysteines, those residues form Cys bridges

in at least 30% (of all DS95 identified) of the cases. In contrast,

only 15% of the available cysteines are used within the ‘‘large’’

interface area ensemble. This finding is very important and fully

supported by the data collected in the STING database.

Therefore, further exploration of the details was undertaken,

especially considering the specific amino acid nano-environments

and condition of the broader macro-molecular environment. In

addition to the role of the bonding agent between two facing

interfaces, cysteine residues, located at free surfaces, can also act as

components of redox sensor systems in cells. In these systems,

cysteines may change their state (reduced or oxidized) according to

environment status, which is influenced by the generation of

reactive oxygen species and the presence of oxidized thiols [30].

When these proteins undergo changes in their structure upon

oxidative stress, they can modulate cellular homeostasis, similarly

to signal transducers. The presence of cysteine at interfaces is also

related to stabilizing the interface itself, mainly through cysteine

bridges [31]. Because cysteine residues can act as core and

interface stabilizers and as redox sensors, we believe that structural

and physicochemical parameters may define the nano-environ-

ment for each functional role at each specific location of a

particular cysteine residue. These parameters/attributes/descrip-

tors/features enable us to distinguish between the cysteine residues

of a given chain that are located at the interface region from the

ones at the free surface, as previously discussed in the Results

section. This discriminative view of the residues regarding their

function in a given protein is similar to the definition of the

mechanisms that underlie the sensitivity of cysteines to redox

status, which is related to the nano-environment wherein cysteine

is located (such as its proximity to polar and charged groups [30]).

Corroborating the concepts assumed in this work, this point of

view indicates that physicochemical parameters define whether a

region will become an interface of a protein chain upon

oligomerization. Additionally, a similar approach may be applied

to any type of amino acid residue with respect to its location or

function and/or inclusion into a specific ensemble (IFR or FSR, as

in this study, or, catalytic residue ensemble or even particular type

of secondary structure element in some other studies).

Conclusions

The importance of detecting protein-protein interactions and

understanding how proteins associate with each other, giving rise

to protein networks, plays a central role in systems biology. The

use of structural biology tools to analyze protein networks may

eventually elucidate the many possible mechanisms through which

proteins can bind. This knowledge would identify important

residues such as hot spots and the complementary energy sources

that are eventually invoked to facilitate protein interactions. In this

paper, we assessed whether the tridimensional structural informa-

tion alone (without sequence conservation descriptors) can be

useful in distinguishing protein binding sites from the free protein

surface. The physicochemical and structural descriptors stored in

the STING relational database and evaluated in this study have

shown a significant discriminative power for the prediction of

protein-protein interaction areas, even using a simple linear model

such as the LDA. This approach is also suitable for cases (orphan

proteins) in which no close homologues are known for a protein of

interest because no descriptor ‘‘amino acid sequence conservation’’

(commonly employed by many previously published methods) is

used.

Although we are aware of the possible data bias regarding the

completeness of information for including particular amino acids

into a free surface residue ensemble (knowing that no reliable

information can be retrieved about real FSR), our rather simple

LDA classifiers have shown high accuracy and specificity. When

considering misclassifications (using the chosen 0.50 cut-off value)

Figure 6. Percentage of chains (relative to the total number present in the DS35), ordered by the size of their interfaces, showing
number of cysteine residues located at those interfaces. The numbers on the x-axis represent the number of cysteine residues at the
interface. The interfaces are grouped in three major groups, ordered by the size. The largest number of cysteine residues is encountered at very large
interfaces.
doi:10.1371/journal.pone.0087107.g006
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and using normalized values, we observed a higher number of

falsely identified free surface residues than falsely identified

interface forming residues. This result is of particular interest for

docking algorithms because the conformation space for screening

can be greatly reduced and the identification of real binding sites

can be assessed using specific scoring functions, which is yet to be

accomplished and will be studied in our future work.

ROC analysis has shown that our method performs much better

than a random classifier, even for the worst specific case: the

glycine LDA classifier. The Sting-LDA-WNA classifier results for

the 20 amino acid-specific LDA classifiers were evaluated using

the Matthew’s correlation coefficient and AUC criteria. From

these tests, we found that the Sting-LDA-WNA classifier had

significant discriminative power, mainly for amino acids such as

tryptophan, aspartic acid, methionine, isoleucine, leucine and

valine. In particular, we showed a significant gain in IFR

prediction performance when dividing the dataset (DS30) into

the 20 datamarts corresponding to the 20 amino acids. We showed

that when using the same data and the same model (LDA), IFRs

can be better predicted using specific amino acid classifiers than

when no such distinction is used. To our knowledge, this is the first

time that such an approach has been performed, and it may be

extended to other existing methods for improved performance.

The motivation for creating amino acid-specific classifiers arises

from the fact that we found a different number of principal

components (orthogonal attributes) for each of the 20 amino acids.

Also, we show, by using the ‘‘medium’’ and ‘‘difficult’’ classes of

the protein-protein docking benchmark 4.0, that the Sting-LDA-

WNA classifier is fairly robust regarding its application in scenarios

where some conformational change accompanies protein complex

formation.

The resulting procedure is now implemented in the BlueStar

STING suite of software (http://www.cbi.cnptia.embrapa.br/

SMS/predictions/index.html) and can be used for predicting

interface residues for all current entries in the PDB.

Methods

Dataset Selection
Three-dimensional structures were selected from the Protein

Data Bank [32] to analyze the protein-protein complexes in this

study. A set of filters (figure 7) was used to select only those

structures that had an equal number of chains in their asymmetric

unit and also in an oligomeric state as defined by the PISA

database (Protein Interfaces, Surfaces and Assemblies) [33]. According to

Xu et al. (2008) [34], the PISA oligomeric state is the most accurate

for protein complexes compared with the PDB and PQS (which is

now out of date). This filter makes it more likely to retrieve only

biologically relevant complexes, excluding possible crystal com-

plexes (artificially formed macromolecular complexes resulting

from the requirements imposed by the crystalline state that have

no relevant biological importance or activity).

Additional data filtration prevented those proteins that are

assigned as "fragment" by UniProtKB from consideration in this

work [35]. The PDBSWS - PDB/UniProt Mapping database was

used to include identifiers of UniProtKB into the PDB [36] and

then perform the required filtration.

According to Scheneider et al. [37], there are significant

differences between protein structures solved using x-ray crystal-

lography and those solved using nuclear magnetic resonance

(NMR), especially with respect to the type and number of contacts

between amino acid residues. For that reason, we only selected x-

ray complexes. Our decision was also guided by the far fewer

number of protein-protein complexes solved by NMR (because of

the macromolecular size limitation of this technique). Crystal

complexes (biologically irrelevant) have a relatively small interface

area [7]. Thus, those complexes with interface areas of less than

200 Å2 were also excluded. The complexes formed by proteins

with other macromolecules, such as DNA and/or RNA, were also

excluded from our dataset.

The final step in data filtration was removing redundancy from

the protein sequences using a 30% cut-off value (alternative values

of 70 and 95% were also employed, producing datasets DS70 and

DS95, respectively, for comparative studies). This procedure

removes all chains built from primary sequences that have

Figure 7. Filters used to establish DS30. Filters were used in sequential order to eliminate the structures accessed from three databases (PDB,
PISA and UniProt) and to select the protein complexes used for this study. In November 2010, there were 68,997 structures in the PDB, and 60,031 of
those entries were solved using x-ray crystallography. Removing DNA/RNA chains resulted in 55,962 files. Only 29,578 entries had an oligomeric state
as defined by a PISA equal to the PDB asymmetric unit. Approximately half of these entries were found to have at least two chains. We defined a
crystal resolution threshold, and only used structures that were solved with resolutions up to 3 Å. The double filter removed chains smaller than 50
residues and interface areas smaller than 200 Å2, yielding 14,094 files. A few entries were removed because for having a fragment flag in the UniProt
database. The last filter removed entries with 30% positional sequence identity. The resulting datasets are referred to as DS30 (4,219 PDB files).
doi:10.1371/journal.pone.0087107.g007
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similarities higher than 30%. To guarantee the removal of

redundant data (therefore avoiding model over-fitting), no single

chain is present more than once in the DS30, even if it makes

more than one distinct interface with different pairing chains.

It is important to mention here that we made, in this work, no

distinction regarding homo- and hetero-complexes (neither for

training nor testing). As shown by Chen and Zhou [26], no clear

advantage arises from using solely hetero-mers for training and

evaluation. Actually, the training being performed by using all

complexes and testing on hetero-complexes gave slightly better results

(‘‘strict’’ accuracy shown in table II from Chen and Zhou, 2005).

Additionally, we found that the composition of the DS30 is as

following: the total number of homo complexes accounts for

69.33% and hetero-complexes, for 30.67% of the total (as

established after consulting corresponding PISA information).

The list of all chains with regard of this specific classification is also

provided at our server web page.As previously mentioned,

including IFRs from alternative partners partially and indirectly

compensates for not mapping alternative IFRs on the ‘‘base’’

structure (where the ‘‘base’’ structure is the one that forms more

than one interface with different partners). With this method, data

redundancy is also completely avoided. Because of some missing

attributes in the BlueStar STING database, we had to discard

another 121 chains. The resulting dataset, referred to as DS30,

contains 4149 non-redundant PDB files. Each PDB file from DS30

was further divided, by randomly selecting structures, into 10

groups to perform 10-fold cross validation.

Physicochemical and structural parameters/descriptors/
attributes

The STING database covers all the proteins in the PDB, which

is updated weekly. STING has over 1050 descriptors that are

provided in a residue-by-residue manner (most of which are

calculated using homemade algorithms) and divided into 97

different classes. Approximate calculations suggest that STING is

the largest databank of its type. Each PDB entry has in an average

of 2.68 chains and each chain has an average of 222 residues.

Therefore, the STING database has over 5.361010 descriptor

records.

In this study, we consider only a fraction of all of the descriptors

in the STING database (table 1). The descriptors were organized

into a relational database, allowing multiple (usually similar and/

or homologous) structures to be analyzed at the same time. The

full definition of the descriptors used in this work is not provided

here (being beyond the scope of this work). However, a very short

outline follows to make reading easier. Alternatively, readers are

invited to access the full descriptions published previously on

STING’s web-server site at http://www.cbi.cnptia.embrapa.br/

SMS/ STINGm/help/MegaHelp_JPD.html#chainsparameters

[38] and in several papers [10–13,20].

A short description of each used attribute follows:

Accessibility [Acc]. BlueStar STING uses the rolling sphere

algorithm (Lee e Richards, 1971) to calculate protein surface

accessibility. BlueStar STING uses the software SurfV [39] to

calculate the accessibility of amino acids to a solvent. For protein

complexes, SurfV calculates the amino acid-accessible surface for

each individual chain (accessibility in isolation) and for the complete

PDB (accessibility in complex). The amino acids that undergo a change

in their accessibility upon protein-protein complex formation are

referred to as IFRs. Their corresponding (interface) area is the

difference between accessibility in isolation and accessibility in complex.

Electrostatic Potential [EP]. BlueStar STING uses a

modified version of DelPhi software for high-throughput calculation

(Rocchia e Neshich, 2007). DelPhi solves the Poisson-Boltzmann

equation for each group of fixed charge points that constitutes each

type of amino acid in a protein.

Hydrophobicity. BlueStar STING uses the Radzicka amino

acid scale of hydrophobicity weighted by the amino acid relative

accessibility as a definition of amino acid hydrophobicity.

Cross-Link Order [CLO]. This attribute is defined as the

number of amino acids undergoing any type of interaction (any

one (or combination) of 6 possible types of interatomic contacts)

that are separated by at least 30 amino acids in sequence but close

in three-dimensional structure.

Cross-Presence Order [CPO]. This attribute is defined as

the number of amino acids that are separated by at least 30 amino

acids in sequence but close in the three-dimensional structure

within a probe sphere of radius 8.0 Å.

Dihedral Angles. The PHI and PSI angle of the main chain.

Side Chain Angles. The CHI 1 to CHI 4 angles of the amino

acid side-chains. These angles are not suitable for calculation for

all the amino acid types (e.g. glycine).

Density. A probe sphere of varying radius (from 3 to 7 Å) is

centered either on the carbon alpha (CA) or the last heavy atom

(LHA) in the amino acid side chain. The masses of the atoms are

summed and divided by the probing sphere volume.

Sponge. This attribute is similar to the density definition in

calculation, but instead of using the atomic masses, the volumes of

the atoms are subtracted from the probing sphere volume and

normalized.

Contact Energies. Atoms or residue pairs are associated with

the following energy values: hydrophobic interaction = 0.6 kcal/

mol; aromatic stacking = 1.5 kcal/mol; hydrogen bond =

2.6 kcal/mol; salt bridge = 10.0 kcal/mol; and cysteine bridge

= 85.0 kcal/mol.

Unused Contact Energies. The entire PDB is screened for

the maximum contact energy of each amino acid type. This

maximum value is subtracted from the contact energy of each

specific amino acid. The resulting value is considered the amino

acid contact potential, which is yet to be established.

Following the definition of weighted neighbor averages (WNA)

as described by Porollo and Meller [23], each used descriptor D

was averaged for neighboring amino acid values Di using two

distinct equations:

D
surf
WNA ~

XN

i~0

Di Accrelative,i ð1Þ

D
dist
WNA ~ D0 z

XN

i~1

Di

di

ð2Þ

where N is the number of neighbors within 15 Å from the amino

acid of interest, Accrelative,i is the relative accessibility, and di is the

distance of the i-th amino acid from the amino acid of interest.

The reason for selecting the cut-off value of 15 Å is justified in da

Silveira et al. [44] by considering the largest distance from which

contacting residues still influence the central residue.

Linear correlation among variables
We checked for the possible existence of linearly correlated

attribute variables among the same attribute class. In a second

step, the linear correlations among different attributes were

removed by principal component analysis (as detailed in the next

section). We employed the linear correlation coefficient (r) defined for

pairs of variables x and y as follows:
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r~

P
x:yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

x2
P

y2
p ð3Þ

A threshold of 0.85 (highly correlated variables) was used for r.

The variable (and attribute) most correlated to others was removed

from consideration in the forthcoming construction of multivariate

linear classifiers for IFR prediction.

Principal component analysis
As an alternative to using all of the remaining descriptors as inputs

for the linear classifiers, we performed principal component analysis

and calculated the principal component scores for all of the amino

acids. Principal components form a set of normally distributed and

orthogonal variables (linear correlation coefficient vanishes for each

pair of principal components). Both characteristics are assumed when

performing LDA analysis. The correlation matrix was calculated

using only the training set, and the generated principal components

were applied to both the training set and the test set. It is important to

emphasize that the resulting principal components are all orthogonal

and normally distributed. There are as many principal components

as there are variables in that new dataset. We defined the number of

used principal components as the minimal number that can account

for 95% of the total variability in the original training set [40]. This

procedure was repeated for 10-fold cross validation. Additionally, we

divided the training set and the test set according to amino acid type.

In total, we have analyzed 200 classifiers (20 amino acid-specific

classifiers for each of the 10-fold cross validation group).

LDA classifiers
The LDA methodology uses a training set to calculate the mean

and standard deviation values for each attribute and thus

discriminate between the two groups: IFR and FSR. With these

values, LDA uses maximum likelihood estimation with a Gaussian

probability distribution to determine the a posteriori probabilities

for each amino acid from the test set [40].

Evaluation of LDA classifiers
Using linear discriminant analysis [40,41], we linearly combined

the new set of attributes and their variables (principal compo-

nents). This procedure resulted in 20 classifiers (one for each

amino acid type). Each amino acid-specific classifier was applied to

its respective test set. As far as we know, this is the first time that

amino acid-specific classifiers have been used for IFR prediction.

To measure the performance of the generated classifiers with the

test sets, we used ROC analysis [42,43] and two criteria: the area

under the ROC curve (AUC) and the maximum Matthew’s

correlation coefficient (MCC) defined by:

MCC~
TP � TN{FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPzFN)(TPzFP)(TNzFP)(TNzFN)
p ð4Þ

where TP, TN, FP and FN represent true positive, true negative,

false positive and false negative, respectively.

The MCC rate is defined for algorithms used for binary

classification between two classes (in this work: interface forming

residues and free surface residues). MCC ranges from -1 to +1, and

classifiers with better discriminative power have higher MCC

values. For a random classifier, the MCC rate is equal to zero. For

each cut-off used to plot the ROC curve, we calculated the MCC

rate and the maximum MCC that can be used to choose a specific

classification cut-off.

Following, to establish the final classifier, we simply combined

the results of the 20 amino acid-specific classifiers into a single

classification file. As shown, the division and further summation of

the 20 amino acid prediction classifiers improved the performance.

LDA classifiers can determine a posteriori probabilities for

whether each amino acid will be classified into the IFR or FSR

ensemble. The performance change was calculated (using MCC

and the three other rates described below) for different cut-offs for

this probability.

Different methods for predicting protein-protein interfaces,

cited in the literature, use different performance measures.

Therefore, to compare our predictor to others, the following

three rates were calculated:

accuracy~
TNzTP

TNzTPzFNzFP
ð5Þ

precision~
TP

TPzFP
ð6Þ

sensitivity~
TP

TPzFN
ð7Þ

Accuracy is a general performance measurement that does not

differentiate between true positives and true negatives, as accuracy is a

somewhat simplistic rate. Precision is related to how confident we

are when predicting that a given amino acid is an IFR. With

higher precision, fewer false positives are found in the prediction.

Sensitivity gives an idea of the coverage of the interface being

predicted. When sensitivity values are higher, fewer false negatives

occur in the prediction. Following the procedure of Zhou and Qin

[24], a direct comparison to other methods was performed using

precision-sensitivity values. Therefore, a specific value of coverage

(sensitivity) may be selected, and the respective precision values are

then compared.
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