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Abstract—This paper presents a new data-mining aproach of feature subset selection as a fusion technique to automatically and optimally
configure an insects behavior identifier. It is accomplished by a fusion of video and sounds directly under the space of attributes. Harris
detection was used as insect tracking, as well as Wavelet-Multifractal as sound analysis. In the case of Wavelet-Multifractal, it was tested
more than one mother-wavelet, being Morlet the best. It was proposed wavelet modulus maximum to extract multifractal sound attributes for
pattern recognition of an insect behavior. Wrapper data mining approach was used to select relevant attributes. It has been found that, in
general, wavelet-multifractal-based schemes perform better for sound, particularly in terms of minimizing noise distortion influence. The
image features only determine the mating and the soud attributes for others behaviors.

Index Terms— fusion, insect behavior, sound, video tracking, wavelet-multifractal.

1 INTRODUCTION

The scientific interest of investigating insects has great eco-
nomic importance as beneficial organisms in agriculture and
forestry (insects play significant role in the food chain of other
species and the fertility of plants). However, a number of insect
species also have negative contribution to agricultural economy
as they constitute a threat to plants and crops [1].

Insects are mainly identified by their appearance and sound
production that are species-specific. The detection and species
recognition of insects are usually carried out manually, using
trapping and observation methods [1].

Recent progress in computer technology as well as in signal
processing and pattern recognition has introduced the possibil-
ity of automatically identifying species primarily on the basis of
capturing subtle differences by means of video frames [2], [3],
[4], [5] and [6], and acoustic signal processing [7], [8], [9],
[10], [11] and [12].

Tracking objects can be complex due to loss of information
caused by projection of the 3D world on a 2D image, noise in
images, complex object motion, nonrigid or articulated nature
of objects (insect legs and antennaes), partial and full object
occlusions, complex object shapes, scene illumination changes,
and real-time processing requirements [12].

At this work, insect movement and behaviour were moni-
tored and analysed by computing mean values of the temporal
movements during bioassays, saving the tracking for each in-
sect.

The insect behavior is more complex. It could not be mov-
ing, but communicating all the time by bioacoustics signals.
Acoustic identification of insects is based on their ability to
generate sound either deliberately as a means of communication
or as a by-product of eating, flight or locomotion. Provided that
the bioacoustics signal produced by insects follows a consistent
acoustical pattern that is species-specific, it can be employed
for detection and identification purposes [1].

At the same time to video tracking, the behavior needs to be
determined by acoustical signals too. There are a lot of acoustic

signal processing techniques [1]. In the present contribution, we
address a bioacoustic signal classification problem by exploit-
ing wavelet-multifractal techniques, and afterwards successfully
adapted for behavior system implementation.

The main goals of this work were study insects’ behavior by
fusion of videos and songs. Harris detector [13] was used to
describe moving and wavelet-multifractal, to automatic detec-
tion of 3 different types of songs: Calling songs, species-
specific songs used to call females from far away;  Courtship
songs, mostly used if male and female are close or preferably if
they have antennal contact; and Aggressive songs, this type of
song is used by one male telling all other males to keep their
distance. Finally, the fusion was performed based on feature
subset selection from a data-mining approach.

2 REVIEW METHODS

2.1 Video tracking
One of the most intuitive algorithms to detect moving

objects is the method of subtraction of consecutive frames in a
video [14]. They are very sensitive to noise and lighting
changes. When the number of frames in the sequence is large
and there is little change between consecutive frames, then the
modeling of the background is most appropriate. This technique
is widely used in the context of security applications, when the
camera is fixed, and is classified as predictive or not predictive
methods. Some variations can be considered, based on the
subtraction of the current frame from a standard frame, obtained
before the start of detection, until the last subtraction of
successive frames. The mixture of Gaussians is the detection
method based on modeling the background scene that stands
out. Variations of these functions using Gaussian mixtures
appear in many applications [15].

Optical flow detection is the most cited in the literature [16]
and [17]. Detectors for salient points have been recently the
most cited, and include Harris detector and SIFT transform
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(Scale Invariant Feature Transform) [18]. The approach of these
detectors is to extract the corners or salient points in each video
frame, followed by a matching algorithm to trace detected
points in successive frames.

It was used in this work the Harris detector as described in
next section.

2.2 Harris Detector
The Harris corner detector [13] is based on the covariance

matrix and the examination of its eigenvalues. This detector is
calculated quickly and efficiently for each pixel.

Let the motion estimation function E (u, v) for a movement
[u, v] of a point (x, y) in the image I (x, y), defined in (1):
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where w(x,y) is weight function at (x,y) and I(x+u,y+v) the
image after moving [u,v].

The weight function is defined as a Gaussian (2):
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For small [u,v], by Taylor expansion (3):
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where M is 2x2 covariance matrix from image (4):
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By autovalues of M, is determined λ1 and λ2, representing
the best and least changes of E(u,v).

The corner region R (5) is:
2det ( )R M k traceM  (5)

where:

1 2det M   (6)

1 2traceM    (7)
and k = 0.04-0.06 is an empirical constant.

The Harris algorithm is:

 Find all R > thresholding;

 Determine points with local maximum of R.

2.3 Wavelet Transform
The Wavelet Transform technique consists of a window vari-

able that allows the use of a time window to analyze low-
frequency information, more accurately, and a small window
for high-frequency information [19].

According to [19], it is defined the family of wavelet func-
tions Ψa,b(t) , as in equation (8):
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where, t represents time variable or space, generated from the
operations of expansion (a scale factor) and translation (b fac-
tor) of the same complex function, which is the mother wavelet.

The wavelet analysis uses a prototype function called mother

wavelet that has zero mean and is an oscillating function in a
central part, i.e., decays to zero on both sides. Mathematically,
the Continuous Wavelet Transform (TWC) of a given signal x(t)
in relation to the mother-wavelet Ψ(t) is defined by (9):
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being, a the dilation or scale factor, b the translation factor, and
these variables are continuous.

Consequently, can be all the characteristics of a particular
sign [19], [20].

The wavelet transform modulus maximum (MMWT) meth-
od [21] consists in changing the continuous sum over space in
equation into a discrete sum over the local maxima of TWC(x,a)
considered as a function of x.

The modulus maximum is found from the original TWC us-
ing a simple algorithm that traverses the Wavelet scalogram,
scale by scale and identifies the local maxima and minima [21].

2.4 Multifractal
The multifractal formalism has been introduced to provide a

statistical description of singular measures in terms of thermo-
dynamic functions such as the generalized fractal dimension Dq
and the f(α) sigularity spectrum [14]. Several numerical meth-
ods have been proposed to calculate these quantities. In this
paper it is shown the method based on canonical mehtod pro-
posed by [15].

Covering the support of the mesure µ of a song with box of
size δ and define Pi(δ) to be the probability in the ith box, it is
defined an exponent (singularity strength) as  the equation (10):

   ~   i
iP   (10)

If it is counted the number of boxes N(α) where the proba-
bility Pi has singularity strength between α and α+dα, then f(α)
can be defined as the fractal dimension of the set of boxes with
singularity strength α by equation (11):
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where the function f(α) possesses the properties of a dimension
and represents the singularity spectrum. Homogeneous
measures are characterized by singularity spectrum supported
by a single point (0 , f(0)). Multifractal measures involve
singularities of different strengh, in this case the f(α) spectrum
has generally a single humped shape wich extends over a finite
interval [min, max], where min corresponds to the strongest
singularity, and max corresponds to the weakest singularity.

The normalized measure µ(q,) is constructed, where the
probability in the boxes of size  are (12):
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Being q the order moment of a statistic distribution with qs

within the interval [-  ]. When q < 0,  emphasize regions in
the distribution with less concentration of a measure, whereas
the opposite is true for q > 0 [22].

The generalized fractal dimension Dq , which correspond to
scaling exponents for the qth moments of measure µ , gives the
singularity or the multifractal measure.

Defining a partition function (13):
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Where q is the statistical distribution of moment. The partition
function Zq, is related with the escale δ by (14):
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By [21]:
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Thus the singularity spectrum f(α) is obtained by Legendre
transform ( )q . To avoid distortions from Legendre, in [22] it
was proposed a canonical method, based in equations (18) e
(19) to determine the singularity f(α) and α.
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A multifractal set can be completely described either by an
infinite number of generalized dimensions or by the singularity
spectrum. The generalized fractal dimension is defined as (20):
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The Dq is related to the system geometry and multifractal
spectrum f(α) to thermodynamics parameters of the system,
where f(α) e α are the entropy and the internal energy of the
system, respectively. The multifractal f(α) have the capability to
describe physically the system.

A fractal dimension D(q=0) or D0 is a global dimension and
gives the mean of the system, D(q=1) or D1 is the information
dimension and is related to Shannon entropy. For D1 near to 1,0
the system is uniform for all scales and for D1 near 0 gives a
subset of scales in which the irregularities are concentrated.
D(q=2) or D2 is the mesaure correlation for δ intervals. The
relation between D0, D1 e D2 is defined as (21).

D2 ≤ D1 ≤ D0 (21)
and D0 = D1 = D2 fractal is self-similar and homogeneous. And
the definitions of them are in (22) to (24).
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where C(δ) is a correlation function.
To use Wavelet it is necessary to rewrite the canonical equa-

tions. The Hölder exponent for function x(t) is the singularity .
It is defined as the largest exponent such that exists a polyno-
mial Pn(t) of order n satisfying (25):

  0 0( )  nx t P t t t t
    (25)

for t in a neighborhood of t0. The polynomial Pn(t) corresponds
to the Taylor series of x around t=t0. Thus the exponent measure
the regularity of a function x(t) in the point t0. The higher the
exponent (t0), the more regular is the function x(t).

Using a local TWC defined by equation (9), where b=t0,
then (26):
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where (t0) is the singularity exponent behind t0.

Using MMTW instead of the TWC, so the partition function
becomes (27):
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From [22], the normalized measure µ is rewrite as (28):
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where MMTW defined in escale a.
Finally, the singularity spectrum is defined by equations

(29) and (30):
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In the Figure 1 was shown (a) a sound from a male insect and
(b) the TWC escalogram with representation of MMWT in
black lines.

3 FUSION PROPOSAL

There are three levels of fusion: data fusion, feature fusion
and decision fusion. Feature level fusion was chosen over the
other forms of fusion for a variety of reasons. The most im-
portant of these is that, unlike the others, there are different
fonts of datas: soud and video. The obvious practical reason
aside, feature level fusion does have many desirable qualities in
a feature subset selection method. Big features not indicate a
better solution and it is necessary to select only the relevant
features.

In this work, at the same time are acquired sonds and videos
from a biassay. Spectrogram was generated for each sound.
Selecting main partes of them was applied Wavelet Transform
to construct the scalogram. With multifractal analysis was per-
formed the singularity spectrum and sound attributes were
determined. By the other side, each frame of video were ana-
lysed and applied Harris detector to determine corner points.
The euclidean distance was used to choose the right salient
points used to determine tracking of insects. Once the tracking
is performed some attributes of moving were saved in a data-
base and finally was applyied a fusion method.

Figure 1. (a) male insect sound and (b) TWC scalogram
with MMWT represented



3.1 INSECTS

All experiments were conducted on adult stink bugs of the
species of the Euschistus heros from laboratory colonies started
from adults and nymphs collected on soybean fields near Bra-
zilia, DF, Brazil. Males and females, at  Embrapa  Research
Institute in Brazilia in an environmental room at 26.0±1.0C and
60±10% RH, under an LD 14-10 h photoperiod with lighting
provided by 16  fluorescent lights of 40 W.

Vibratory signals emitted by males and females in their tem-
poral and spectral characteristics were recorded from virgin and
sexually mature bugs using a loudspeaker with a microphone
amplifier (Sonifex Redbox, RB-MA1); and   home-made
operational   amplifier, digitized (Aardvark-Direct Pro 24/96)
and stored on a computer.

In Figure 2(a) is a typical pentatomid female calling [23].
Figure 2(b) is an irregular female songs observed when male is
not present, Figure 2(c) is a male song after female answer,
Figure 2(d) male song after some time without female songs
and Figure 2(e) male song when there is more males togheter
the female and Figure 2(f) male songs during head-butting or
when following the unreceptive female [19].

3.2 FEATURE VECTOR

Tracking features
It was released insects in the release area of the arena and

recorded its movements from above using a video system with a
video camcorder Sony. A video frame grabber (Pinnacle Sys-
tem) digitalized the analogue video signals from the camera,
and the data were processed. From video, it was record the
position of the insect at preset time intervals and processed the
analysis of different behavioural parameters. The parameters
defined are: linear displacement (dx), linear velocity (v), angu-
lar velocity (w), turning rate (dw) and tortuosity (T). They were
the tracking features extracted from videos and used as part of
feature vector.

Insect movement and behaviour were monitored and ana-
lysed by computing the linear velocity (mm/s), linear displace-
ment (mm), angular velocity (grade/s) ,turning rate (number of
directional changes/s) and tortuosity of insects that moved in
the olfactometer. Tortuosity was measured using the tortuosity
index, which quantifies insect kinetic movement by equation
(31).

1 /p lT m t  (31)

Where mp is the projection of the track in the general straight
line, and tl is the total length of the track defined by (32). The
index varies from 0 (zero) for minimal tortuosity to 1 (one) for
maximal tortuosity.

1l i it x x   (32)
Where xi is the position in a time and xi+1 the next position. It
was performed 30 replicates for each phase to be monitored
togheter the accustical signals.

Sound Features
For songs, it was selected typical sounds of male and female

insects when occurring: calling, courtship and aggressive songs
[24], 30 samples for each one. The spectrogram, TWC scalo-
gram by different mother-wavelet (Paul, Morlet, Gauss, Mexi-
cam Hat and Shanon) [20], MMWT, and graphs f(∝) x ∝ repre-
senting a multifractal spectrum was obtained for each behavior.
The singularity spectrum was represented by Δf, Δfmáx, Δfmin
to see the symmetry of the curve, the Hölder coefficient ∝, the
fractal dimension D0, D1 and D2, related to auto-similarity,
entropy and correlation, respectively.

A characteristic sound vector (Vc) was determined for each
insect analyzed, as the equation (33):
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3.3 FEATURE SUBSET SELECTION

Feature selection methods generally reduce the dimensional-
ity of a problem domain for the purposes of improving the
performance of Data-mining algorithms and to decrease the
computational load of applying the processing feature selection
is often viewed as a search problem in a space of feature sub-
sets. On one hand, filter methods use an evaluation function that
relies solely on properties of the data, thus is independent on
any particular learning algorithm. On the other hand, wrapper
methods use the inductive algorithm to estimate the value of a
given subset [25]. An induction algorithm is typically presented
with a set of training instances, where each instance is de-
scribed by a vector of features or attributes values and a class
label. The task of the induction algorithm (inducer) is to induce
from training data a classifier that will be useful in classifying
future cases. The classifier is a mapping from the space of fea-
ture values to the set of class values. In the feature subset selec-
tion problems, a learning algorithm is faced with the problem of
selecting some subset of features upon which to focus its atten-
tion, while ignoring the rest. In fact non-intuitive results have
been demonstrated that show that the inclusion/exclusion of
‘‘irrelevant’’ or correlated feature may improve the performance
of an induction algorithm while harming the performance of
another algorithm. Interactive methods to search for suitable
sets of features have been proposed and have found success
especially in unsupervised learning. In this case the user is
acting as the wrapper and directing the search process based on
their expertise in the problem domain. The idea behind the
wrapper approach [25] is simple: the induction algorithm is
used as a black box. For each selected feature subset during the
search process, one classifier is created by the learning algo-
rithm. Typically, the accuracy of this classifier is used evaluate
the feature subset efficiency. Therefore, the selected subset is

(a) (b)

(c) (d)

(e) (f)

Figure 2. Songs repertoires of the Euschistus heros from [23]: (a)
and (b) female songs, (c) and (d) male songs, and (e) male rivality
(f) male after unreceptive female.
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relevant to the learning task and the algorithm [25].
Practical machine learning algorithms i.e. decision tree algo-

rithms such as C4.5 [26], and instance based algorithms such as
IBL [26] have shown lower classification performance when
induced from sets with a lot of irrelevant features. Thus, the
feature subset selection can improve the accuracy of classifiers
induced by the same algorithm used in wrapper method. In the
supervised learning, in general, it is attempting to minimize
misclassification or some loss function based on accuracy,
recall or precision. In this case an automatic search through the
space of solutions is useful and can incorporate, as a starting
point, the results of the user’s knowledge, gained through expe-
rience or discovered by interactively searching the solution
space.

Wrapper methods are widely recognized as a superior alter-
native in supervised learning problems, since by employing the
inductive algorithm to evaluate alternatives they have into
account the particular biases of the algorithm. However, even
for algorithms that exhibits a moderate complexity, the number
of executions that the search process requires results in a high
computational cost, especially as it is possible to shift to more
exhaustive search strategies.

In this work, it was used wrapper with an exhaustive search
by C4.5 algorithm. It was used too Greedy Stepwise search, in
order to reduce the processing time.

4 RESULTS

4.1 VIDEO TRACKING
The main problem in tracking system is the illumination. At

the first time it was used a fluorescent illumination. But this
kind of light presents flickering problems resulting in a lot of
wrong movent in the detector. In Figure 3 is possible to see the
corners detected before and after movement. Only insects
moved in this video, and the others points detected were light
effects. In spit of that, when using successive frames subtrac-
tion to define a region of probability of movements and corner
detector it was possible to select only the main vector represent-
ing a bug movent to trace the rote. Some time it fails too, but in
general it was possible to have good results.

In Figure 4 was shown a matching with all points detected
without filtering regions. Therfore, when insects move antennas
and legs, it could not be considered movement. It was solved
this kind of bugs, defining a smoothing filter preprocess the
images before movement detection.

The number of tracking attributes is not big. The feature se-
lection was made when sound attributes was joined to them.

Figure 4. Matching corner points to detect movement.

4.2 SONDS

For all signals it was ploted the spectrogram that identifies
all insect frequencies. It is possible to observe some examples
of songs and the spectrogram determined for male and female
insectcs in Table 1.

TABLE 1: Wavelet scalogram and their multifractal spectrum

Diferrent mother-wavelet was processed and analysed. In
[22] it is the description of selected mother-wavelets in this
work: Morlet, Gaussian, Gaussian 4th derivated, Mexicam hat,
Shanon and Paul.

It was observed that for a complet range of q, -2<q<2, steps
0.1 more then one kind of mother-wavelet is ok to perform
multifractal analysis. It was choosen the Morlet and Paul as
those presented more complet multifractal spectrum, i.e., ranges
from q<0 to q>0.

In Table 2, it is shown the wavelet scalogram determined
and results for fractal analysis, the multifractal spectrum. In the
female case, the punctual spectrum showed that are more ho-
mogeneous compared to the male, which may be indicative of
the different “sounds” emitted by males during the breeding
call, and even the   territoriality function. There were analysed
parts of signal and a complete on in a time.

By TWC scalogram and MMWT, was plotted f(α) x α graphs
representing a multifractal spectrum for each behavior. Those
analyses were made for 30 samples of each one. At the same
time, video tracking attributes were collected.

Multifractal analysis indicate that the values of Δα are higher
emissions for isolated insects males or females and, therefore,
in the case of mixed mating and rivalry, have a greater degree
of multifractal, i.e., the system is more chaotic than for separate
issues. Depending on the behavior issues observed in videos
when there is more stress for absence of one partner, male or
female, more then one male or when female refused a courtship,
the multifractal analysis indicate the system in changing, more
entropical.

Original songs Spectrogram

female

Male Rivality

Male

(a) (b)
Figure 3. Sequence frames from a video after salient point detection by
Harris detector. (a) intant t0 and (b) t0+1



4.3 EXPERIMENTS

This work was divided in two experiments: First, fusion of
sound and tracking using sound attributes from equation (33)
plus all video attributes; Second, instead of sound attributes
from equation (33) it was used a complete singularity spectrum
f(∝) x ∝, for interval -2<q<2, with step 0.1 plus all video at-
tributes.

The idea here was to study the use of a complete singularity
graph with all values of q, or identify the better parameters that
describe the multifractal autosimilarities.

The proposed method has been tested on a wide variety of
conditions. The proposed selection of attributes using wrapper
with exhaustive (when impossible, Greedy Stepwise search),
C4.5 algorithm was applied to both vector of characteristics.
The exhaustive search has algorithm complexity O(2n), where n
is the number of features corresponding to 41 (sound) + 5
(tracking) and 14 (sound) + 5(tracking) for the first and second
experiments, respectivelly. The fusion of attributes was made
by feature subset selection to obtain the most relevants attrib-
utes in behavior of insects.

TABLE 2: Wavelet scalogram and their multifractal spectrum

The precision obtained with the best feature subset was
99.62% (10-fold cross-validation). For all experiments it was
used 10 folds cross-validation.

The results could be observed in Table 3.The use of wrapper
approach improve the correct classification.

TABLE 3: Results of analyzes with all attributes and a subset selec-
tion of attributes

Experiments
First Second First w/

wrapper
Second w/
wrapper

Correctly
classified
instances

67.37% 39.07% 80,99% 97.61%

Mean error 0.25% 0.47% 0.15% 0.01%

The correct classification did not result in a good precision
for all classes. The Table 4 has the values obtained for precision
each class of analysis, i.e. male, female, rivality or courtship
classes. The class that had better classification could be ob-
served in Table 4. The rivality is where there is more multifrac-
tal complete description and better results.

TABLE 4: Precision of class’s classification
First Exeriment

male female rivality Courtship

With wrapper 59.9 45.1 67.1 27.9

Without
wrapper

68.3 55.2 87.8 37.1

Second Experiment

With wrapper 88.43 78.23 99.1 98.3

Without wrapper 40.1 65.2 75.2 65.7

The first experiments with Wrapper, selected α(q=-1.6),
α(q=1.7), f(α(q=-2), f(α(q=1.8) and the second experiment, the
caracteristics Δf, Δfmax, Δfmin, f(0)-f(-1), α(0)-α(-1). Is it
possible to observe that video attributes did not selected and it
was reduced a lot the number of attributes.

Just only one case it was selected Tortuosity parameter.
However, is was discarded here because the precision for male,
female and courtship times analysis was less than 40%. Only
rivality was classified with 57.7%, with wrapper approach.

It was selected only small times where the insectcs was sing-
ing or in a calling way or in a rivality way. As the analysis need
much more time, it is necessary much more processing time and
better machines to perform a complete analysis.

5 CONCLUSION

The evolution of the chemical ecology was accelerated in
the last decade with the coming of emergent technologies of
instrumentation for analysis and for diagnoses. In that way, this
work presents the software methodology for analysis of behav-
ior of insects through images and sounds for studies of the
sense of smell of insects. The principal result of this system,
until now, is the obtaining of the consistent evaluation way of
the behavior of the insects. Thus, it can be determined the com-
position of a pheromone mixture that induces modification in
the behavior of the white insect, be in the attraction and sexual
intercourse, be aggregation or dispersion.
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