| Crystal phase and illumination condition influence sublethal effects of nano-TiO ₂ | Notes: | |--|--------| | Zaira Clemente ¹ , Vera Lucia ¹ , Leandro Feitosa ² ,
Renata de Lima ² , Claudio Jonsson ¹ , Aline Maia ¹
and <u>Leonardo Fernandes Fraceto</u> ² | | | ¹ Embrapa Meio Ambiente, Jaguariuna, Brazil
² University of Sorocaba, Sorocaba, Brazil | | | revious study of our group showed that the acute co-exposure of the to nano-TiO ₂ and ultraviolet radiation influence the occurrence | | | sublethal effects. The aim of this work was to evaluate the effects of fish exposed to different nano-TiO ₂ formulation and illumination | | | onditions during a prolonged period. sh (<i>Piaractus mesopotamicus</i>) were exposed during 21 days | | | two different formulation of nano-TiO ₂ at 100 mg/L: TA (Sigma Idrich, 100% anatase, 25 nm) and TM (Aeroxide P25 Evonik, 20% | | | tile, 80% anatase, 25 nm). Both TiO ₂ exposure and respective ontrols were performed under two types of illumination: visible light | | | ithout and with ultraviolet radiation at environmental levels (UVA and B. 22.47 J/cm²/h). Protein carbonylation (PCO), and the specific | | | ctivities of catalase (CAT) and glutathione s-transferase (GST) were
nalyzed in liver. Comet assay was performed in blood. | | | here was no fish mortality in any group. Exposure to TA without V showed an increase in CAT, PCO and in the score of genetic | | | amage. TM without UV showed an increase in GST. The co-
xposure to TM and UV kept GST elevated, and showed also an | | | ocrease in PCO and genetic damage. Our results showed low toxicity of nano-TiO ₂ in fish corroborating | | | with literature data. However, they showed an influence of nano-TiO ₂ ormulation/crystal phase and illumination in the sublethal effects. In the meantime TA showed more biochemical effects without co- | | | xposure to UV, TM showed more sublethal effects with UV. Supported by: FAPESP, CNPq, CAPES, Fundunesp and Embrapa. | |