Alternative Strategy on Postharvest Diseases of Mango Control by Use of Low Dose of Ultraviolet-C Radiation.

TERAO, D.¹; BENATO, E.A.²; CAMPOS, J.S.de C.³; ALBERS, C.C.M.³

1) Embrapa Semiarido/Embrapa Environment, Petrolina, Brazil. daniel.terao@embrapa. br

2) ITAL, Campinas, Brazil.

3) UNICAMP, Campinas, Brazil.

FIESC SENAL Embrana 408

Brazil is an important producer and exporter of mango. The quiescent infection of fungi that cause decay has resulted in serious losses and has led growers to use fungicides in postharvest treatments, resulting in chemical contamination of the fruit. The demand for alternative control measures that are clean, safe and sustainable has increased in recent years and the use of UV-C radiation is a potential option. This study focused on evaluating UV-C dose effect on in vitro development of fungi species and on postharvest decay on mango cv. Tommy Atkins. The fungi causing decay evaluated were: Botryosphaeria dothidea, Lasiodiplodia theobromae, Alternaria alternata and Colletotrichum gloeosporioides. Fungus mycelium was exposed to increasing doses of UV-C radiation: 0 (control); 2,0; 3,0; 5,0; 10,0 and 20 kJ.m⁻². Mangos artificially inoculated with B. dothidea were treated with doses of UV-C radiation: 0,0; 0,5; 1,0; 2,5; 5,0; 7,5 e 10,0 kJ.m⁻ ². After treatments, the mangos were placed in storage at 10 °C for 15 days and 3 days at 22 °C, observing daily the rot symptoms to calculate decay control. The trials were conducted in a completely randomized design with 6 replicates for in vitro tests and 4 replicates with seven fruit as experimental unit. The in vitro trials showed that even high doses of UV-C (20 kJ.m⁻²) were not able to control the fungi development. Nonetheless, low doses of UV-C light around 2,5 kJ.m⁻² controlled around 70 % of fruit rot severity. Higher doses (> 5 kJ.m⁻²) caused damage on mango peel increasing the rot severity. Results suggest that the application of low dose (< 3 kJ.m⁻²) of UV-C light can contribute to the integrated management of postharvest diseases on mango, and that the control mechanisms involved are not directly on the fungi development.

Keywords:*Mangifera indica*; postharvest disease; integrated pest management. **Acknowledgments**:rsthanktheSãoPauloResearchFoundation (FundaçãodeAmparoàPesquisadoEstadodeSãoPaulo - FAPESP:2011/23432-8) forfinancialsupport.

WORKSHOP

FIESC - Federação das Indústrias do estado de Santa Catarina FIESC - Federation of Industries of Santa Catarina State

October, 01 - 02, 2013

Florianópolis, Brazil.

Organizers

POSTER ABSTRACTS

	Theme 1 - Food Safety and Legislation		
N°	Title	Presenter	
12	Aflatoxin Degradation by Aqueous Ozone in Different Matrices	Maria de Lourdes Souza	
13	Alternative Strategy on Postharvest Diseases of Mango Control by Use of Low Doses of Ultraviolet-C Radiation	Daniel Terao	
14	Antifungal Effects of Ozone Gas against Toxigenic Strain of Wheat	Maria Eduarda do Vale Pereira	
15	Combined Nonthermal Treatments for Food Preservation: high hydrostatic pressure and essential oil nanoemulsions	Giovanna Ferrari	
16	Conservation of Blackberry Pulp by Gamma Radiation	Lourdes Maria Cabral	
17	Effect of Irradiation Setup and Modified Atmosphere Packaging on Radiation D10 Values for <i>Salmonella</i> <i>Typhimurium</i> LT2 and an <i>Escherichia coli</i> Cocktail in Pecan Nuts (Kanza cultivar)	M. Elena Castell-Perez	
18	Effect of Pressure Level and Holding Time on the Survival of <i>Escherichia Coli</i> O157 Shiga Toxin- Producing and Indigenous Microbiota on Cured Beef Carpaccio	Sérgio Ramon Vaudagna	
19	Effect of Pulsed Electric Fields (PEF) on the Inactivation of <i>Saccharomyces Cerevisiae</i> in Prickly Pear Puree	Rebeca García-García	
20	Effects of High Hydrostatic Pressure on the Inactivation of Bacterial Metaloproteases Enzymes Associated To Milk Spoilage	Wilson Rodrigues Pinto Júnior	
21	Efficacy of a Pulsed Electric Fields and Tangential- Flow Microfiltration Based Hurdle Technology for the Inactivation of Pathogenic <i>E. coli</i> , <i>Salmonella</i> , and <i>Listeria</i> in Skim Milk	Dipendra Khanal	
22	Employment of Gamma Irradiation as a Patulin Decontamination Method	Marcelo Carneiro dos Santos	
23	Evaluation of Aflatoxins Degradation Submitted to High Hydrostatic Pressure	Otniel Freitas-Silva	
24	Evaluation of Aqueous Ziziphus joazeiro Extract Like a Sanitization Agent on Lettuce	Bárbara Aoki	
25	Influence of Spectral Distribution on Bacterial Inactivation of Fresh-Cut Mushrooms Treated With Intense Light Pulses	Ana Ramos Villarroel	

26	Modeling the Growth of Lactic Acid Bacteria in Chilled Chicken Meat, vacuum andmodified atmosphere packed stored at different temperatures	Francisco Konkel
27	Ozone Gas Exposure Induces Biological Effects on Penicillium Citrinum	Maria Eduarda do Vale Pereira
28	Potential of Electron Beam to Control Aflatoxigenic Fungi in Peanuts	Otniel Freitas Silva
29	Pulsed Electric Field and thermal Inactivation Kinetics of <i>Escherichia Coli</i> and <i>Pseudomonas Fluorescens</i> in Milk	Roman Buckow
30	Reduction of <i>Shigella flexneri</i> in Minced Beef by Means of Lytic Bacteriophages and High Hydrostatic Pressure Processing	Hanie Ahmadi
31	Relevant Factors Affecting Microbial Inactivation in Liquid Food by Pulsed Light (PL)	Gianpiero Pataro

	Mariel de Linsa
	Mario Perez